
Appendix

1 Architecture of Label Encoding Function

Table 1. Architecture of our label encoding function. It has 19 layers. Most stages
have the same output channels and stride as in ResNet-50 and ResNet-101, which is
convenient for later supervision. Except that the first convolution has 80 and 128 for
input and output channels respectively, instead of 3 and 64, in order to satisfy COCO
dataset. We also remove the max pooling and we do not use batch normalization

Stage Block Kernel Size Stride Output Channels

Stage1 Conv 7 × 7 2 128

Stage2 ResBlock
1 × 1 1 64
3 × 3 2 64
1 × 1 1 256

Stage3

ResBlock
1 × 1 1 128
3 × 3 2 128
1 × 1 1 512

ResBlock
1 × 1 1 128
3 × 3 1 128
1 × 1 1 512

Stage4

ResBlock
1 × 1 1 256
3 × 3 2 256
1 × 1 1 1024

ResBlock
1 × 1 1 256
3 × 3 1 256
1 × 1 1 1024

Stage5 ResBlock
1 × 1 1 512
3 × 3 2 512
1 × 1 1 2048

2 Derivation of Eq. (7, 8)

In Sec. 1 and Sec. 3 we introduce our model as follows:

θ∗f , θ
∗
d = arg min

θf ,θd

E(I,y)∼DLdet(d(f(I; θf ); θd), y) + λLdis(f(I; θf ), h(y;ψ∗)), (1)

where the optimal weights ψ∗ of the label encoding function (h(·)) is derived
from:

ψ∗ = arg min
ψ

E(I,y)∼DLdet(d(h(y;ψ); θ∗d), y). (2)



2

Clearly, there exist nested dependencies on the two variables θ∗d and ψ∗. Thus
the above equations are infeasible to compute directly.

Notice that in Eq. 1, ψ∗ actually acts as a constant in the optimization. We
define a function θ̂d(·) as follows:

θ̂d(ψ) , arg min
θ′d

[
min
θ′f

E(I,y)∼DLdet(d(f(I; θ′f )); θ′d), y) + λLdis(f(I; θ′f ), h(y;ψ))

]
.

(3)
Compared with Eq. 1, we use θ′d, θ

′
f instead of θd and θf respectively for distin-

guishing. Easy to find that θ̂d(ψ
∗) = θ∗d. Then, we can rewrite Eq. 2 as follows:

ψ∗ = arg min
ψ

F(ψ,ψ∗), (4)

where
F(ψ,ψ∗) = E(I,y)∼DLdet(d(h(y;ψ); θ̂d(ψ

∗)), y). (5)

Eq. 4 suggests that we need to find a certain ψ∗ satisfying that the optimal
point of the partial function F(·, ψ∗) is also ψ∗, i.e. minψ F(ψ,ψ∗) = F(ψ∗, ψ∗).
It motivates us to approximate ψ∗ with the following optimization, since Eq. 4
is nontrivial to compute directly:

ψ∗ ' arg min
ψ

F(ψ,ψ)

= arg min
ψ

E(I,y)∼DLdet(d(h(y;ψ); θ̂d(ψ)), y),
(6)

which derives our formulations in the text.

3 Feature Visualization

In this section we analyze our method with visualization on feature maps. We
pick the second layer of the multi-scale feature maps from RetinaNet. We use
images in validation set. We visualize each feature map with its intensity. Specif-
ically, we use the L2 norm of each pixel. The larger the L2 norm is (i.e., the
stronger the intensity), the brighter it is in the figure. Visualization results are
shown in Fig. 1. Four columns are: (a) The original images. (b) Feature from
baseline models. (c) Feature from our model. (d) Feature from our encoding
function, which is the optimization target for (c). Compared with feature from
baseline, which has clear boundary at the outline of each object, feature from
ours is closer to boxes. Under the supervision from (d), the feature extends out-
side the object outline and “tries to reach the box edges”. We believe this is
beneficial for later instance extraction by detection head. Note that Fig. 1 is just
a spatial projection of features. Information across channels is not visible here.



Appendix 3

(a) (b) (c) (d)

Fig. 1. Visualization of feature in baseline and ours. (a) The original images. (b) Fea-
ture from baseline. (c) Feature from ours. (d) Feature from our encoding function


