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Abstract. Deep convolutional neural networks (DCNNs) have shown
dominant performance in the task of super-resolution (SR). However,
their heavy memory cost and computation overhead significantly restrict
their practical deployments on resource-limited devices, which mainly
arise from the floating-point storage and operations between weights and
activations. Although previous endeavors mainly resort to fixed-point
operations, quantizing both weights and activations with fixed coding
lengths may cause significant performance drop, especially on low bits.
Specifically, most state-of-the-art SR models without batch normaliza-
tion have a large dynamic quantization range, which also serves as an-
other cause of performance drop. To address these two issues, we propose
a new quantization scheme termed PArameterized Max Scale (PAMS),
which applies the trainable truncated parameter to explore the upper
bound of the quantization range adaptively. Finally, a structured knowl-
edge transfer (SKT) loss is introduced to fine-tune the quantized network.
Extensive experiments demonstrate that the proposed PAMS scheme can
well compress and accelerate the existing SR models such as EDSR and
RDN. Notably, 8-bit PAMS-EDSR improves PSNR on Set5 benchmark
from 32.095dB to 32.124dB with 2.42x compression ratio, which achieves
a new state-of-the-art.
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1 Introduction

Single image super-resolution (SISR) aims to recover a high-resolution (HR) im-
age from the corresponding low-resolution (LR) one, which has been a research

t Equal contribution.
* Corresponding author.
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Fig. 1. The framework of our approach. The super-resolution operation is split into
three modules, i.e., low-level feature extractor, high-level feature extractor and recon-
struction. We deploy PAMS with different o on each activation layer in the high-level
feature extractor. quant denotes the quantization operation and clamp represents the
clamp function of quantization. Dash lines denote the weights are quantized with the
maximum. Here, we illustrate EDSR as backbone.

hot spot in computer vision for decades. Coming with the advances of deep learn-
ing, deep convolutional neural networks (DCNNs) [7, 18, 23] have dominated SR
in recent years. These networks commonly use an extraction module to extract
a series of feature maps from the LR image, cascaded with the up-sampling
module, which stepwisely increases the resolution to reconstruct the HR image.

As one of the pioneering works for deep learning based SR, Dong et al. [7]
introduce three convolution layers to achieve high visual perception. After that,
Kim et al. [18] design a deep network VDSR by stacking 20 convolutional layers.
Subsequent works mainly resort to increasing the network depth to improve SR,
performance. For instance, Lim et al. [23] propose the enhanced deep residual
networks (e.g. EDSR and MDSR) and remove batch normalization (BN) [16] to
reduce the memory consumption, which however still requires at least 64 convo-
lution layers (more than 160 layers for MDSR). A channel attention mechanism
equipped into the RCAN model [38] requires more than 400 layers with about
30B FLOPs and 13M parameters. Such significant computation and memory
overheads restrict their applications in scenarios where only limited memory
and computation resources are available. Consequently, compressing deep SR
networks has attracted increasing attention recently [29].

Beyond SR, neural network compression and acceleration have been widely
studied in the literature. Representative works include parameter pruning [11-13,
27,26, 22], low-rank approximation [6, 24, 25], compact networks [33, 28], knowl-
edge distillation (KD) [14,32], neural architecture search (NAS) [43,40] and
quantization [5,17]. Considering the unique structures such as EDSR [23] and
RDN [39] in SR, it is by nature to leverage quantization schemes to acceler-
ate and compress SR networks, i.e., by converting full-precision weights [17],
activations [2], and gradients [41] to low bits.
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Ma et al. [29] first apply weight quantization to compress SR models, which
merits in low on-device storage. However, the computational complexity is still
significantly high, since full-precision activations are still used. In contrast, di-
rectly applying weight quantization to activations will incur significant accuracy
drop in general SR tasks without using batch normalization, due to the high
dynamic quantization range. On one hand, the work in [23] has shown that
normalizing features on SR models limits the network’s representation power.
Since BN layers make the features to be smooth, which results in the blurred
reconstructed HR images with artifacts. To this end, recent SOTA SR models
(e.g. EDSR [23], RDN [39]) have already removed BN layers to obtain better
reconstructed HR images. On the other hand, the absence of BN causes a se-
vere dynamic range problem when quantizing the activations by using the SOTA
quantization methods [17, 3]. For example, the work [17] simply set the upper
scale of activations to their max value, which causes significant performance de-
generation in SR task. This is due to the fixed max scale that may be an outlier
as the upper scale. Although Choi et al. [3] propose PACT to clip and quantize
activations by learnable parameters, it only concentrates on the positive range
while neglecting the gradient information in the negative range. In addition, the
novel regularization term [4] is added to automatically learn quantized control-
ling parameters and then obtain an accurate low-precision model. However, it
leads to the increase of additional computation burdens and memory footprint,
which is not runtime friendly for practical applications.

To address the above issues, a novel quantization scheme, termed PArame-
terized Max Scale (PAMS), is proposed to compress and accelerate SR, models.
Different from the previous works that focus on quantizing activations in a fixed
manner, PAMS adaptively explores the upper bound of quantization range based
on the gradients using a trainable clamp function, which significantly improves
the model generality. Furthermore, structured knowledge transfer (SKT) is in-
troduced to transfer structured knowledge from the full-precision network to the
quantized one, which enables the latter to gain better visual perception. Fig. 1
presents the flowchart of our method. We first replace each basic block in the SR,
model with PAMS block. In each PAMS block, weights are quantized before they
are convolved with the inputs and activations are quantized after the outputs
of convolutional layer with its own learnable max scale. To further improve the
performance of the quantized model, we align the high-level features between
full-precision model and the corresponding low-precision quantized one among
pixels. Finally, we employ stochastic gradient descent (SGD) method to min-
imize the objective function, which leverages the distillation loss to pixel-wise
loss.

We evaluate our method on several benchmarks over widely-used deep SR
models like EDSR [23] and RDN [39]. Quantitative and qualitative results demon-
strate that PAMS can well quantize various SR models with a significantly high
compression ratio, as well as nearly identical accuracy to the full-precision SR
models. The proposed PAMS also well outperforms most existing alternatives
such as Dorefa [41], Tensorflow Lite [17] and PACT [3]. For instance, on BSD100,
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the 4-bit PAMS-EDSR outperforms 4-bit Dorefa-EDSR by 0.828dB with a scale
factor of x4. Extended experiments also show that SKT is more effective for the
quantized SR models with lower-bit operations.

2 Related Work

Deep SR models with light weights. Most recent SR models are built based
upon DCNNG, for instance, MDSR [23] and RDN [39]. Such networks are typ-
ically deep with heavy computation cost and memory footprint, which restrict
their applications in resource-limited devices. Recent advances in SR network
compression mostly focus on redesigning light-weight networks. For instance,
DRRN [34] and DRCN [19] have been proposed to share parameters for reduc-
ing network parameters. However, the cost of computation and memory storage
in these networks are still very large, due to the floating-point operations during
inference and the sufficient parameters to ensure the model capability.
Network quantization. Previous works in network quantization mainly focus
on quantizing weights [?], while maintaining the full-precision activations to en-
sure the model performance. Joint quantization of activations and weights are
explored in HWGQ [2] and PACT [3]. However, these methods mainly concen-
trate on object classification [20, 10], which is easier than the complex pixel-wise
or patch-wise SR tasks. The work in [29] serves as the first to extend quantiza-
tion to compress SR models, which quantizes only weights to be binary. However,
the operations between activations and quantized weights are still floating-point,
which cannot largely reduce the FLOPs towards the practical speedup. Differ-
ent from the previous work [29], we optimize the SR network with both low-bit
quantized weights and activations by introducing a learnable parameter, which
achieves the bound of the quantization range.

Knowledge distillation. Knowledge distillation [14] aims to transfer the knowl-
edge from a cumbersome network (teacher) to a compact network (student). It
has been widely applied to various computer vision tasks by using the softened
output knowledge [14] and intermediate feature representations [24,37]. In line
with our work, Zhuang et al. [42] proposed a guidance loss to jointly optimize
the full-precision network and the low-precision model. However, it is not suit-
able to directly use such probability-based loss for SR, as the outputs of SR are
reconstructed HR images. Different from these methods, our approach adopts
structured knowledge based on the implicit information of a pre-trained network,
which concentrates on aligning the spatial correlation between the low-precision
and full-precision features to be more suitable for pixel-wise SR task.

3 The Proposed Method

3.1 A Close Look at SR Model Quantization

Current practice [29] only quantizes the weights in deep SR models, which
does reduce the storage cost but unfortunately ignores the computational ef-
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Fig. 2. Max value of activations from different layers and samples of ResNet-18 on
ImageNet, EDSR [23] w. / wo. BN on DIV2K. The absence of BN causes more dynamic
range problem in SR models.

ficiency caused by the full-precision multiplication between weights and activa-
tions. Moreover, the conversion between low-precision weights and full-precision
activations aggravates the training time. It is not runtime-friendly to deploy
such quantization scheme in real scenarios. Note that some quantization meth-
ods quantize the activations based on the premise of batch normalization [16].
In this way, the activations are supposed to stay in a stable range.

However, prior work [23] has shown that batch normalization layers get rid
of range flexibility by normalizing the features, and simply removing them can
make a big margin of improvements while reducing GPU memory cost. This
modification can be effectively extended to the recent state-of-the-art SR mod-
els (e.g. RDN [39], RCAN [38], DBPN [9]) for ensuring range flexibility and
reducing artifacts. Fig. 2 shows the statistics collected from pre-trained ResNet-
18 on ImageNet, EDSR with and without BN on DIV2K. We can see that the
max value of activations varies a lot in different samples in the same layer, and
the activation range is more dynamic of SR model (EDSR) than that in classifi-
cation model (ResNet-18). It indicates the dynamic range problem is more severe
in the SR model than that of the classification model. Moreover, the absence of
BN causes a more severe dynamic range problem. Compared to EDSR with BN
(Fig. 2(b)), the max value of activations in EDSR without BN has a wider max
value range and shows a more even distribution, which indicates that removing
BN in current SR models causes activations in a more dynamic range, so as to
be difficult to manually decide the quantization range. We argue that this quan-
tization range is vital to the performance: If its maximum tends to a tiny value,
the upper bound of the quantization range will be very small. And as reflected in
the reconstructed HR images, the details will be mostly lost, which thus causes
significant quality degradation. In contrast, if its maximum is abnormally large,
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the quantization range may include outliers that contain redundant information
and decrease the accuracy of quantized DNNs.

3.2 Parameterized Max Scale (PAMS)

The proposed PAMS quantizes both activations and weights of deep SR models.
In this subsection, we first elaborate on our overall quantization approach. Then
we describe how to leverage trainable truncated parameters to adaptively learn
the upper bound of activations. To efficiently use the pre-trained network and
improve the performance, we further introduce a structured knowledge transfer
(SKT) loss. The overall framework is presented in Fig. 1.

Quantization function. As shown in [2], distributions on different layers of
activations tend to be symmetric. This characteristic can help to improve the
model accuracy of a quantized network with extremely low-bit weights and acti-
vations, as validated in [8]. Therefore, given a specific full-precision model with a
parameter set X' (X denotes either weights or activations of a specific layer), we
quantize every element x (x € X') by using the following point-wise quantization
function @) with a symmetric mode:

Js(n), (1)

where f(z) is the clamp function that limits the inputs range and s(n) is the
map function that scales the higher precision inputs to their lower bit reflections,
which can be formulated by f(z) = mazx(min(z,a), —a) and s(n) = 57=4—, re-
spectively. n denotes the number of quantization level. a represents the maximum
of the absolute value of X’ and |-] rounds the value to the nearest integer.

For quantizing weights, previous work [17] has shown that simply set a :=
max(Jw|) only has a negligible effect on the performance, which is therefore
adopted in our approach. As for activations, the quantization range depends on
the inputs, which leads to a dynamic range. This instability is unfavorable to
the performance and model generality, which is designed in the following.
Trainable upper bound. In the previous work [3], the dynamic range of acti-
vations can be partially alleviated by using a parameterized clipping activation
function to replace the Rectified Linear Unit (ReLU), which limits the applica-
tion scope. In this paper, we propose a novel activation quantization scheme,
in which the clamp function f*(-) has the trainable parameter a to dynami-
cally adjust the upper bound of the quantization range. We can directly employ
the stochastic gradient descent to update this parameter, which is able to min-
imize the performance degradation arising from the quantization. For a given
activation, the corresponding value will be quantized to n bits by:

n-l 1
zy = Q(z,n) = —QH_?_ . X |2 x Y 1, (2)
where & = f*(z) = maxz(min(z,a),—a). The dynamic range is limited to
[—a, a]. The advantages of our quantization function lie in that Q(x,n) directly
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involves in the back-propagation process based on only one learnable param-
eter o, based upon which we can train the quantized SR network in an end-
to-end manner. Extensive experiments in Section 4 demonstrate that Eq.2 can
introduce more effectiveness comparing to several state-of-the-art quantization
methods [41,17, 3].

Back-propagation with quantization. In back-propagation, % can be ap-
proximated to 1 based on the straight-through estimator (STE) [5]. Inspired by
[3], the gradient of « is calculated as follows:

- -1,z € (—o0, —q],
% ~ %gﬁ ~ o ze(-aa) (3)
@ roa 1, z € [a,+o0).

Note that, the work in [3] cuts off the gradients in the regions satisfied with
x < 0, while PAMS can adaptively adjust « based on the gradients in both = > «
and x < « areas. It is important for the post-training quantization, since the
gradients of the pre-trained model tend to 0. In other words, PAMS can retain
more gradient information for updating c.
Initializing «. To avoid gradients vanishing or exploding, non-convex optimiza-
tion on DCNNs heavily depends on the initialization of parameters. Instead of
manually designing the initial value of «, initialization based on the statistics
from a pre-trained network can achieve better performance. Therefore, we resort
to task-related statistical methods based on the pre-trained network to cali-
brate the quantization error. In particular, given the [-th layer with m input
activations xﬁl’”, e xg{t), a® is calculated by the redefined exponential moving
average (EMA) function at the start of training:

o) = .ot 4 (1 - 6) . avg(max(mgl’t)), ymaz(zbt), (4)

where t is the iteration number and 8 denotes the smoothing parameter of EMA,
which is set to be 0.9997. Specially, we set 8 to 0 when ¢ is 0.

3.3 Optimization

Pixel-wise loss. Given a training dataset D = {I% , I} | with n LR input
images and their corresponding HR counterparts, SR models are commonly op-
timized by minimizing the conventional pixel-wise L; loss between the output
Isgr and the ground truth image Igg:

R ,
Lprx = EZHI}IR_LZS'RHL (5)
i=1

where || - ||1 denotes the Ly norm. A better SR model needs to infer the high-
frequency textures from a low-resolution input. However, it is hard to obtain by
only using Eq. 5 based on low-bit quantization, which is due to the accumulated
quantization error.
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Algorithm 1 Quantization SR Model
Input: Training dataset D, full-precision model T', quantization level n;
Output: The quantized model S;
1: Define the low-precision model S by replacing convolution layers of T" by n-bit
PAMS;
2: Initialize o of each layer [ with Eq. 4;
3: for i =1,..., N epoch do

4:  Forward pass by applying clamp function to weights and activations using Eq.
1 and Eq. 2;

5:  Update all parameters in Eq. 7 via SGD;

6: end for

7: return S;

Structured knowledge transfer (SKT). Inspired by [37], we consider that
the full-precision model has learned high-level representation, which provides
knowledge to the low-precision one about where it concentrates. More specifi-
cally, instead of using the soft probability in the classification task, we align the
structured features between the cumbersome network and the quantized one by
minimizing their pixel-wise distance. Therefore, the loss function for our SKT is
defined as:

F{ F;
Lsxr = ||—2— — =L ||, 6
<0 =W ~ T ©

where F7., F§ are a pair of structure features after the spatial mapping of ac-
tivations from the full-precision network and the correspond low-precision one,
respectively. The spatial mapping defined by F’ = Zlc:l \FZ|2 € RT>XW where
F € ROXHXW denotes the activations after the last layer in the high-level feature
extractor. We set p = 2 for p-norm in our experiments. In sum, SKT enhances
the learning process of spatial correlation in the low-precision model which ef-
fectively improves the performance of the quantized network and provides an
additional constraint to avoid producing over-smoothed images.

The overall loss function. Given an SR model, as consistent with the distil-
lation term mentioned above, the whole objective function is given as:

Lsr = ApLprx + AsLskr, (7)

where A\, and A, are coeflicients to control the balance of the corresponding loss.
We set A, to 1 and As to 103, The overall optimized process is summarized in
Alg. 1.

4 Experiments

4.1 Experimental Settings

Datasets and metrics. DIV2K [35] contains 800 training images, 100 validat-
ing images and 100 testing images. We train all models with DIV2K training
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Table 1. Comparison between quantizing EDSR [23] and RDN [39] by deploying PAMS
with low-bit weights and activations on the public benchmark (PSNR(dB)/SSIM). The
higher PSNR and higher SSIM, the better performance the methods achieve. EDSR is
based on the residual block and RDN is based on the dense block. RDN* denotes the
results based on our implementation.

PAMS-EDSR  PAMS-EDSR
(8-bit) (4-bit) (8-bit) (4-bit)

’ PAMS-RDN ~ PAMS-RDN
x2 33.66/049299’374985/0,9604 37.946/0.9603 37.665/0.9588 | 38.027/0.9606 38.060/0.9606 36.528/0.9527

Dataset  Scale Bicubic EDSR ‘ RDN*

Setb

x4 28.42/0.8104 | 32.095/0.8938 32.124/0.8940 31.591/0.8851 | 32.244/0.8959 32.340/0.8966 30.441/0.8624

x2  30.24/0.8688 | 33.568/0.9175 33.564/0.9175 33.196/0.9146 | 33.604/0.9174 33.732/0.9189 32.392/0.9050
x4 26.00/0.7027 | 28.576/0.7813 28.585/0.7811 28.199/0.7725 | 28.669/0.7838 28.721/0.7848 27.536/0.7530

32.155/0.8993 32.157/0.8994 31,936/0.8966‘32.187/0,8999 32.215/0.9000 31.268/0.8853

Set14

X2  29.56/0.8431

BSD100 x4 25.96/0.6675

27.562/0.7355 27.565/0.7352 27.322/0.7282 | 27.627/0.7379 27.644/0.7382 26.869/0.7097

Urban100 x2 26.88/048403’314977/0.9272 32.003/0.9274 31.100/0.9194 | 32.084/0.9284 32.262/0.9298 29.703/0.8976

x4 23.14/0.6577 | 26.035/0.7848 26.016/0.7843 25.321/0.7624 | 26.293/0.7924 26.367/0.7955 24.523/0.7256

images. For testing, we use four standard benchmark datasets: Set5 [1], Set14
[21], BSD100 [30] and Urbanl00 [15]. For the evaluation metrics, we use PSNR
and SSIM [36] over the Y channel between the output quality image and the
original HR image.

SR models and alternative approaches. Both residual block and dense block
are widely used in SR models, like VDSR [18], EDSR [23] and RDN [39]. To val-
idate the superiority of our approach, we choose EDSR and RDN as backbones
and use 8-bit and 4-bit quantization on them. As most parameters exist in the
high-level feature extraction module, we do not quantize weights and activa-
tions in low-level feature extraction and reconstruction modules, which ensures
a trade-off between performance and model size. The qualitative comparisons
are generated by the publicly available source code in EDSR [23].

Training setting. The model is implemented by using PyTorch [31]. Following
the setting of [23], we pre-process all images in the DIV2K training dataset
by subtracting the mean RGB and adopt a normal data augmentation during
training, which includes random horizontal flips and vertical rotations. The mini-
batch size is set to 16. We deploy the ADAM optimizer with 81 = 0.9, B2 = 0.999
and € = 1078 to the model, which is trained for 30 epochs. The learning rate is
initialized by 10~* and is halved at every 10 epochs.

4.2 Quantitative and Qualitative Results

As shown in Table. 1, the proposed PAMS with 8-bit weights and activations
achieves competitive or even better results on different backbones. For instance,
8-bit PAMS-RDN outperforms the full-precision RDN by 0.178dB PSNR and
0.074dB PSNR on Urbanl100 with scale factors of x2 and x4, respectively. The
4-bit PAMS-EDSR only suffers 0.24dB PSNR loss on BSD100 for a scale factor
of x4 compared to its full-precision model. Quantizing RDN leads to a significant
improvement over EDSR in 8-bit, which indicates that dense blocks may produce
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GT Bicubic EDSR PAMS-EDSR RDN PAMS-RDN
(25.205/0.6902) (26.054/0.7521) (26.127/0.7529) (25.898/0.7512) (26.212/0.7582)
\ A , r I 0 i [ r

\ 7 ] V. Nl | J=

Bicubic PAMS-EDSR PAMS-RDN
(21.031/0.5688) (27.462/0.7819) (27.431/0.7822) (27.610/0.7849)

NI

Bicubic EDSR PAMS-EDSR RDN PAMS-RDN
(PSNR(dB) / SSIM) (25.209/0.7836) (33.242/0.9483) (33.358/0.9478) (33.310/0.9484) (33.445/0.9518)

Fig. 3. Qualitative comparison between 8-bit and full-precision models with a scale fac-
tor of x4. (a) and (b) are the results of “barbara” and “zebra” from Set14, respectively.
(c) is the results of “img055” from Urbanl00. Note that the quantized models with
PAMS produce extremely similar or even better SR images to their full-precision coun-
terparts, while the former has a significant reduction of model size and computational
complexity.

more redundancy than residual blocks. We provide more qualitative evaluations
on the 8-bit quantization in Fig. 3. The models with PAMS produce more visually
natural images than the bicubic interpolation, and are extremely similar to their
full-precision counterparts. Considering that residual-based models are widely
used, the results also indicate the generality of the proposed method.

For a better comparison, we re-implement Dorefa [41], Tensorflow Lite [17]
and PACT [3] on EDSR. We use the same initialization method and quantize
both weights and activations in each residual block as PAMS-EDSR. For Dorefa,
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Table 2. Comparison to the state-of-the-art quantization methods by using different
bits on a scale factor of x4 super-resolution. EDSR is the backbone network.

Dataset Bits Dorefa-EDSR TF Lite-EDSR PACT-EDSR PAMS-EDSR
Set5 8 30.194/0.8556 31.910/0.8906 31.520/0.8853 32.124/0.8940
4 29.569/0.8369 31.380/0.8812 31.393/0.8834 31.591/0.8851
Set14 8 27.297/0.7492 28.416/0.7779 28.181/0.7712 28.585/0.7811
© 4 26.817/0.7352 28.109/0.7690 28.104/0.7695 28.199/0.7725
BSD100 8 26.767/0.7079 27.470/0.7329 27.288/0.7261 27.565/0.7352
4 26.474/0.6971 27.252/0.7239 27.251/0.7245 27.322/0.7282
Urban100 8 24.220/0.7128 25.739/0.7760 25.245/0.7570 26.016/0.7843
4 23.753/0.6898 25.198/0.7551 25.148/0.7535 25.321/0.7624

GT

Dorefa (Zhou et al. 2016)

TF Lite (Jacob et al. 2018)

PACT (Choi et al. 2018)

PAMS

(22.554/0.6578)

(23.367/0.7185)

(23.067/0.6988)

IS
ol

Fig. 4. Qualitative comparison of our method with other quantization methods on a
scale factor of x4.

(23.489/0.7263)

we do not quantize gradients for a fair comparison. Table. 2 shows the results of
8-bit and 4-bit EDSR. Our method achieves better performance, compared to all
baselines. For example, 8-bit PAMS-EDSR outperforms 8-bit Dorefa-EDSR. by
1.288dB PSNR and 1.796dB PSNR on Setl4 and Urbanl00, respectively. The
reconstruction results are further shown in Fig. 4. Compared to other methods.
The output (SR images) using PAMS are better-looking with sharp edges and
rich details. In conclusion, PAMS with trainable truncated parameters rely on
the backward which achieves much better generalization ability.

4.3 Compression Ratio
The model size and compression ratio of EDSR and RDN are presented in Table.

3. In particular, the full-precision network is represented by using single precision
floating point. The model size of the full-precision network considerably decreases
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Table 3. Comparison of EDSR and RDN with different bits on BSD100. W and A
represent the number of bits of weights and activations, respectively.

Model W/A StorageSize (rcomp) PSNR(dB) / SSIM
EDSR (32-bit) 32/32 1.518M (0%) 27.562/0.7355
PAMS-EDSR (8-bit) 8/8 0.631M (58.4%) 27.565/0.7352
PAMS-EDSR (4-bit) 4/4  0.484M (68.1%) 27.322/0.7282
RDN (32-bit)  32/32  22.27M (0%) 97.627/0.7379
PAMS-RDN (8-bit) 8/8  5.82M (73.9%) 27.644/0.7382
PAMS-RDN (4-bit) 4/4 3.08M (86.2%) 26.869/0.7097

e of g

vale of sgha

(a) PAMS-EDSR Block 8 (b) PAMS-EDSR. Block 13 (c) PAMS-RDN RDB_0 (d) PAMS-RDN RDB_13

Fig. 5. Convergence curves of a for 8-bit PAMS-EDSR and 8-bit PAMS-RDN.

after quantization. Note that, we only quantize the weights and activations in
the high-level feature extractor module, such that the compression ratios are cal-
culated based on the total parameters of the network and the parameters in the
high-level feature extractor. Although PAMS introduces a trainable parameter
a, it still yields a 50%-90% compression ratio, since it directly depends on the
backbone and the number of bits. It can be seen that 4-bit weights and activa-
tions cause more performance degradation than the 8-bit model. But lower-bit
quantized networks can significantly reduce storage requirement.

4.4 Convergence of the a

To demonstrate the convergence of our method, we directly validate the con-
vergence on « during training. The results are presented in Fig. 5. The first
and second columns show the a of PAMS-EDSR on the layer of Block_8 and
Block_13, respectively. The third and fourth columns show the o of PAMS-RDN
in RDB_0 and RDB_13, respectively (RDB denotes the Residual Dense Block).
It illustrates that « in different layers not only have different values but also
have different evolving directions.

For instance, PAMS-EDSR Block_8 (Fig. 5(a)) and PAMS-RDN RDB_0
(Fig. 5(c)) act in the same direction, while PAMS-EDSR Block_13 (Fig. 5(b))
and PAMS-RDN RDB_13 (Fig. 5(d)) are with the opposite trend. We also found
that a can promote the convergence to a stable value for both EDSR and RDN,
which indicates the effectiveness of our method.
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Table 4. Comparison of the performance gap between the singe-precision EDSR, 8-bit
PACT-EDSR w. / wo. BN and 8-bit PAMS wo. BN. (PSNR(dB) / SSIM).

Model With BN Setb Set14 BSD100 Urban100

PACT-EDSR v 0.531/0.0083 0.273/0.0068 0.166/0.0056 0.354/0.0125
PACT-EDSR X 0.575/0.0085 0.395/0.0101 0.274/0.0094 0.790/0.0278
PAMS-EDSR X 0.029/0.0002 0.009/-0.0002 0.003/-0.0003 -0.019/-0.0005

Table 5. Results about different initialization methods of o on EDSR with x4 scale
factor (PSNR(dB) / SSIM).

Init. Setb Set14 BSD100 Urban100

Random 31.782/0.8896 28.383/0.7779 26.273/0.6879 23.488/0.6780
EMA  32.002/0.8923 28.497/0.7797 28.497/0.7797 25.806/0.7788

4.5 Ablation Study

Effect of BN in SR models. To investigate the effect of quantizing normal-
ized features, we use PACT to quantize EDSR with BN and without BN. As
shown in Table. 4, the performance gap between the quantized EDSR without
BN is larger than the quantized EDSR with BN. For example, The gap of 8-bit
PACT-EDSR without BN is 0.790dB PSNR on Urban100, which is larger than
PACT-EDSR with BN (0.354dB PSNR). It shows that the performance degrada-
tion of unnormalized features is more pronounced in lower-precision SR models,
Moreover, PAMS-EDSR can save more important information for unnormalized
weights and activations which largely decrease the performance gaps.

Effect of the learnable a. We compare our learnable max scale (PAMS)
with the fixed maximum (TF Lite) for quantizing activations. Quantitative and
qualitative results are represented in Table. 2 and Fig. 4, respectively. Compared
to TF Lite-EDSR, PAMS-EDSR . achieves a better score as it produces sharper
images and more realistic textures. It indicates that our method can learn a
more suitable quantization range which contains more information about the
full-precision model and reduces the quantization error.

Effect of the initialization of a. We evaluate our EMA initialization with
random initialization on EDSR with a scale factor of x4. For the random mode,
we initialize o in the activation quantization layer with a random number ranges
from 0 to 128, which ensures that o can be initialized to a larger value in differ-
ent layers independently. As illustrated in Table. 5, EMA initialization achieves
better performance on all benchmark datasets. To explain, EMA achieves better
statistical distribution by « that can further help improve SR performance.
Investigating SKT loss. To investigate the effectiveness of SKT, we further
compare the quantized model with and without SKT. As shown in Table. 6,
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Table 6. Results of PAMS-EDSR w. / wo. Lskr on 8-bit and 4-bit settings (PSNR(dB)

/ SSIM).

Dataset  bits without Lskr with LskT metrics. T
Set5 8  32.127/0.8939 32.124/0.8940 -0.003/0.0001
4 31.538/0.8842 31.591/0.8851 0.053/0.0009
Set14 8  28.541/0.7807 28.585/0.7811 0.044/0.0004
4 28.177/0.7723 28.199/0.7725  0.022/0.0002
BSD100 8  27.550/0.7352 27.565/0.7352  0.015 /0.0000
4 27.302/0.7280 27.322/0.7282 0.020/0.0002
Urban100 8  25.984/0.7835 26.016/0.7843  0.032/0.0008
6  25.840/0.7794 25.876/0.7802  0.036/0.0008
4 25.250/0.7607 25.321/0.7624 0.071/0.0017

PAMS-EDSR which is optimized with the SKT outperforms the corresponding
counterpart. Especially, our method obtains much better performance on lower
bits. For instance, compared to the PAMS-EDSR without Lsxr on Urban100,
4-bit PAMS-EDSR with Lgkr gains 0.071dB PSNR while 8-bit PAMS-EDSR
with the same optimization gains only 0.032dB PSNR. It also indicates that the
feature maps from the full-precision model can help the low-precision model to
better capture the spatial correlation from images.

5 Conclusion

In this paper, we propose a novel symmetric quantization scheme, termed PA-
rameterized Max Scale (PAMS), to effectively quantize both weights and acti-
vations of the full-precision network for SR tasks. The proposed method adopts
a truncated parameter « to adaptively adjust the upper bound of quantization
range. This technique alleviates the negative effect of dynamic range caused by
the absence of batch normalization layers and helps to reduce the quantization
error. To further approximate the full-precision network, we employ structured
knowledge transfer (SKT) to retrain the quantized network in a few epochs.
We have comprehensively evaluated the performance of the proposed approach
on EDSR and RDN over public benchmarks, which demonstrates the superior
performance gains and significant reduction in model size and computational
complexity.
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