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In this supplementary material, we provide,
1. More analysis of the proposed method;
2. More experimental results.

1 Further Analysis
In this section, we first analysis some detail settings of the proposed model. We then
use the proposed framework to extend some potential non-blind deblurring methods,
and we further discuss the effectiveness of the method which includes both the blind
and non-blind steps. At the end of this section, we give a possible extension of the
proposed non-blind method.

1.1 Running time comparisons
We further compare OID with other blind deblurring methods on blurry images with
different sizes in term of running times. As is shown in Table 1, OID performs favorably
against recent outlier handling methods [4, 14], and it also conducts one of the fastest
running time among recent optimization-based methods.

Table 1. Running time comparison for different sizes of blurry image (seconds). All methods are
implemented in MATLAB.

size
Methods

Xu et al. Zhong et al. Pan et al. Pan et al. Dong et al. Gong et al. Chen et al. Ours

[19] [21] [14] (outlier) [15] (dark) [4] [6]4 [1]

255×255 2.71 12.40 154.75 137.43 155.96 180.00 65.20 56.83
600×600 16.89 53.19 662.32 945.91 736.68 ∞ 376.94 252.07
800×800 31.14 77.55 1113.12 1992.44 1214.17 ∞ 755.43 437.86

.

1.2 Parameter settings
In this subsection, we analyse the parameters that affect outlier detecting process (i.e.,
α and β in Eq. (9) of the paper). These two parameters control the reasonable range of
? Corresponding Author
4 The code from [6] is not provided, we use the reported processing time in their paper (hardware

settings are similar).
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Bi−(I⊗K)i and the range of corresponding weightWi. Because the range of weight is
fixed as default setting (i.e., Wi ∈ (0, 1)), we only consider the range of Bi− (I⊗K)i.
As shown in Fig. 1, when the range is too narrow (blue line in Fig. 1 (a)), many inliers
are also assigned with small weights (Fig. 1 (h)), which results in less details in the
recovered image (Fig. 1 (d)); and when the range is too wide (red line in Fig. 1 (a)),
outliers can not be fully detected (Fig. 1 (e) and (h)); and we found parameters using
our settings can better detect outliers while keeping inliers (Fig. 1 (f) and (i)).
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Fig. 1. (a) Visualization of Eq. (9) of the paper with different parameter settings. (b) Blurry image.
(c) Input blurry image and kernel for final pyramid, the kernel is generated from previous coarse
pyramids. (d)-(f) Latent images and blur kernels using different parameter settings (correspond
to blue, red, black lines in (a) from left to right). (g)-(i) Corresponding weight maps for latent
image of (d)-(f). Our proposed parameter settings can best discard outliers while keeping inliers.

1.3 Sparse constraint on outliers
As mentioned in section 2 in the main manuscript, the l1 norm constraint on outliers
(W ) is not the only option. We here compare it with l0 constraint on outliers. We do
not consider the p-norm (0 < p < 1) sparse constraint since it does not lead to a close-
form solution of corresponding weight entry. With l0 imposed on outliers, Eq. (3) of the
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paper is modified into,

min
I,K,W

∑
i

Wi|Bi − (I ⊗K)i|2+λ‖∇I‖0.8 + θ‖K‖22 + α‖W‖0 + β
∑
i

(Wi logWi +Wi logWi),

s.t. Wi +Wi = 1,
{
Wi,Wi

}
∈ [0, 1],

(1)

we here define 0 ∗ log 0 = 0. Thus the updating refer to weighting matrix turns into,

min
W,W

∑
i

Wi|Bi − (I ⊗K)i|2 + α‖W‖0 + β
∑
i

(Wi logWi +Wi logWi),

s.t. Wi +Wi = 1,
{
Wi,Wi

}
∈ [0, 1].

(2)

We use the same strategy in the main manuscript by decomposing Eq. (2) into sub-
problems, and the energy is given by,

min
Wi

E(Wi) = min
Wi

Wi|Bi − (I ⊗K)i|2 + α|1−Wi|0 + β(Wi logWi + (1−Wi) log(1−Wi)).

(3)
We have the closed-form solution of Wi,

Wi =

{
(exp( |Bi−(I⊗K)i|2

β ) + 1)−1, E(Wi) < E(1) = |Bi − (I ⊗K)i|2,
1, otherwise.

(4)

The form of Wi imposed on different sparse constraints are shown in Fig. 2 (a). As
shown in the figure, when the parameters are the same, the curve of l0 acts as a hard
threshold, and the differences between l1 and l0 curves are subtle. We also compare
with the case without sparse constraint (i.e., α = 0). We use the same example in Fig. 1
(b), as shown in Fig. 3 (a)-(f). We can see the results generated by l1 or l0 constraints are
similar, while without sparse constraint is less effective. A thorough experiment on our
dataset is demonstrated in Fig. 2 (b). The ultimate results are close (with average PSNR
values for l1, l0 and without sparse constraints are 30.01, 29.96 and 23.51, respectively).

-0.15 -0.1 -0.05 0 0.05 0.1

B
i
 - (I ⊗ K)

i

0

0.2

0.4

0.6

0.8

1

W
i

Constraint with l
1

Constraint with l
0

Without sparse constraint

(a)

im1 im2 im3 im4 im5 im6 im7 im8 im9 im10im11im12im13im14im15
15

20

25

30

35

40

A
v
e

ra
g

e
  

P
S

N
R

Constraint with l
1

Constraint with l
0

Without sparse constraint

(b)

Fig. 2. (a) Visualization of weight map under different constraints. (b) PSNR values of our dataset
under different sparse constraints.
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(a) (b) (c) (d) (e) (f)

Fig. 3. (a)-(c) are latent images and kernels with l1, l0 and without sparse constraints. (d)-(f) are
corresponding weight maps for latent image of (a)-(c).

1.4 Limitation and future work
Although OID is able to deblur blurry images with significant outliers, we find one of
its limitations is that it is ineffective in handling blurry images with severe Gaussian
noise. As shown in Fig. 4, OID fails to recover sharp images. Moreover, recent outlier
deblurring methods, which assume outliers do not follow the linear formation rule, are
all invalid in this occasion. The results indicate that Gaussian noise can not be treated as
outliers like non-Gaussian noise. Our future work aims to develop a more robust model
that can handle both significant Gaussian and non-Gaussian noise.

(a) Input (b) Dong et al. [4] (c) Pan et al. [14] (d) Ours

Fig. 4. Blind deblurring results of a blurry image contaminated with severe Gaussian noise with
noise density of 0.1. Recent outlier deblurring methods are not able to handle this situation.

1.5 Recovering missing information with the proposed non-blind deblurring
method

As introduced in [3], pixels in blurred images contain partial information of its neigh-
boring pixels due to the scattering nature of blur. Thus, outlier pixels can still be recon-
structed if the neighboring region contains enough information about it, although out-
liers do not contribute to the recovering process in this case. To verify the effectiveness
of our non-blind method on recovering missing information, we conduct an experiment
shown in Fig. 5. We add outliers of different intensities and sizes to a blurry image with
known blur kernel. The deblurrin results demonstrate that, OID can robustly recover
blurry images contaminated by small outliers. For large outliers, these pixels can only
be smoothed out. Moreover, OID consistently outperforms the methods from [3, 14].
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(a) Input (b) W/O outlier handling (c) Cho et al. [3] (c) Pan et al. [14] (d) Ours (e) GT

Fig. 5. Recovering a blurry image with missing information [3]. Here the values of the quadran-
gles are 1, 0.5 and 0, respectively. Best viewed on high-resolution displays with zoom-in.

1.6 Effectiveness of the proposed algorithm
We first analyse the effectiveness of different blind deblurring methods using examples
with different densities of outliers. As shown in Fig. 6. OID performs robust when
facing different densities of outliers, while methods from [4,14] and the extension of [3]
is ineffective facing heavy outliers.

(a) Blurry images with increasing densities of outliers (10%− 50% from left to right).

(b) Results from Pan et al. [14]

(b) Results from Dong et al. [4]

(b) Results from the extension of Cho et al. [3]

(b) Results of OID

Fig. 6. Deblurring results of blurry images with increasing densities of outliers.
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An example with multiple outliers is shown in Fig. 7. Note that outliers detected by
OID are more precise than that by the extension of [3] over iterations, which leads to
a more clearer image. The final results validates the superiority of the proposed latent
image updating strategy.

(a) Input (b) Pan et al. [14] (c) Dong et al. [4] (d) Cho et al. [3] (e) Ours (f) GT

(g) intermediate latent images and kernels of the extension of Cho et al. [3]

(h) intermediate weight maps of latent images correspond to (g)

(i) intermediate weight maps of blur kernels correspond to (g)

(j) intermediate latent images and kernels of OID

(k) intermediate weight maps of latent images correspond to (j)

(l) intermediate weight maps of blur kernels correspond to (j)

Fig. 7. Comparison with several outlier handling methods.
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Our non-blind deblurring method is a direct extension of the proposed blind deblur-
ring method. To demonstrate the effectiveness of our non-blind deblurring method, we
compare it with state-of-the-art outlier handling methods [3, 14] on dataset [10] with
increasing impulsive noise. As shown in Fig. 8, OID performs more robust than [3,14].
Examples are shown in Fig. 9;
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Fig. 8. Quantitative evaluation of our non-blind method and other robust non-blind methods [3,
14] on the dataset [10] with increasing impulsive noise (density from 0 to 0.95).

(a) Examples with increasing noise (density from 0.1 to 0.9)

(b) Results of [14]. PSNR values (left to right) are 37.17, 36.94, 36.77, 33.55, 29.21, 24.46, 19.62, 13.84, 10.03.

(c) Results of [3]. PSNR values (left to right) are 37.28, 37.07, 36.87, 33.56, 29.87, 26.33, 24.12, 21.36, 16.61.

(d) Our results. PSNR values (left to right) are 37.28, 37.08, 36.89, 36.58, 36.05, 35.20, 33.75, 30.92, 25.59.

Fig. 9. Comparison of several non-blind deblurring methods with blurry images contaminated by
significant impulsive noise.
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1.7 Comparisons of OID conducted on different image scales
As depicted in the manuscript, the proposed algorithm is implemented in a coarse-to-
fine manner, while OID is only conducted in the finest image pyramid for the sake of
efficiency [21]. Questions may be raised whether it will benefit the algorithm if OID
is conducted from the first to the last image scale. We use examples to examine the
effectiveness of different strategies. As shown in Fig. 10, differences between results
generate with these two strategies are subtle, while the processing time with OID con-
ducted on all image pyramids is greater than that on the last pyramid. We further use
the benchmark dataset (from Levin et al. [10]) with 10% density of outliers to verify
the difference of these two schemes. Average PSNR for OID conducted on all image
pyramids is 29.179, and the corresponding result for OID conducted on the last image
pyramid is 29.183. The overall results show that conduct OID in all image pyramids is
not necessary.

(a) Input (b) PSNR: 23.71
Running time: 512.99 s

(c) PSNR: 23.69
Running time: 301.80 s

(d) Input (e) PSNR: 25.50
Running time: 353.81 s

(f) PSNR: 25.51
Running time: 205.79 s

Fig. 10. Comparisons of OID conducted on different image scales. (b) and (e) are results of OID
conducted on all image scales. (c) and (f) are results of OID conducted on the finest image scale.
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Table 2. Comparison on the dataset with impulse noise in terms of average PSNR and SSIM.

Cho and Lee Xu and Jia Xu et al. Zhong et al. Pan et al. Dong et al. Ours GT kernels
[2] [18] [19] [21] [14] [4]

PSNR 21.81 18.77 24.39 24.10 25.95 28.03 30.01 32.92
SSIM 0.5926 0.5464 0.6778 0.6860 0.7654 0.7983 0.8469 0.8993

2 Further comparison
In this section, we first provide detail comparison results on our dataset with impul-
sive noise (details and results about other used datasets can be found in the main
manuscript), dataset with saturated images [13] and the dataset without outliers [10],
then we show more comparison examples against state-of-the-art methods.

As shown in Fig. 11, our dataset consists of 15 800 × 800 sharp images and 8 blur
kernels from [10]. We add the impulse noise (as it is one of the most common non-
Gaussian noise) to each image. The noise density is set to be 0.1. Average SSIM and
PSNR values are shown in Table 2. PSNR values from different methods of each image
are shown in Fig. 12. OID consistently outperforms state-of-the-art methods [2, 4, 14,
18, 19, 21]. Access to the ground truth data will be released soon.

Fig. 11. Images and kernels we used to generate our dataset.
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Fig. 12. Quantitative evaluation on the proposed dataset with impulsive noise.

We also test OID on an provided dataset with saturated images [13]. We show the
average SSIM values of state-of-the-art methods in Table 3 (average PSNR values are
presented in the manuscript). As depicted in the table, OID leads among state-of-the-art
methods.

Table 3. Comparison on the dataset with saturated pixels [13] in term of average SSIM.

Cho and Lee Xu et al. Pan et al. Chen et al. Pan et al. Dong et al. Ours GT kernels
[2] [19] [13] (text) [1] [14] (outlier) [4]

SSIM 0.6860 0.8149 0.7609 0.8108 0.8407 0.8269 0.8456 0.8717

OID is also effective with images without outliers. Beside the dataset provided in
[8], we also test OID on a benchmark dataset provided by Levin et al. [10]. The average
PSNR values are presented in Table 4. Our model performs favorably among state-of-
the-art methods. The results illustrate the effectiveness of the proposed method.

Table 4. Quantitative evaluation on the dataset [10] without outliers in term of average PSNR.

Fergus et al. Shan et al. Xu and Jia Krishnan et al. Cho and Lee Xu et al. Pan et al. Yan et al. Dong et al. Ours
[5] [16] [18] [9] [2] [19] [13] [20] [4]

PSNR 29.46 30.68 30.75 29.04 30.79 30.86 30.35 32.27 31.78 32.34

2.1 More comparison examples
We show more comparison results by OID and the state-of-the-art methods. Results are
directly provided by the authors using default parameters. We use the same parameter
settings in all experiments.
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(a) Input (b) Cho and Lee [2] (c) Xu and Jia [18]

(d) Krishnan et al. [9] (e) Levin et al. [11] (f) Zhong et al. [21]

(g) Xu et al. [19] (h) Pan et al. [13] (text) (i) Pan et al. [15] (dark)

(j) Yan et al. [20] (k) Chen et al. [1] (l) Pan et al. [14]

(m) Dong et al. [4] (n) Extension of [3] (o) Ours

Fig. 13. Blurry image with impulsive noise. Here we use our non-blind deblurring method after
kernels are acquired. Results generated by OID contain less artifacts and more textures. Also note
that the extension of [3] generates results with less sharp details than ours as shown in the red
boxes.
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(a) Input (b) Hu et al. [7] (c) Xu and Jia [18]

(d) Krishnan et al. [9] (e) Levin et al. [11] (f) Michaeli et al. [12]

(g) Xu et al. [19] (h) Pan et al. [13] (text) (i) Pan et al. [15] (dark)

(j) Yan et al. [20] (k) Chen et al. [1] (l) Pan et al. [14]

(m) Dong et al. [4] (n) Extension of [3] (o) Ours

Fig. 14. Blurry image with saturated regions. Here we use our non-blind deblurring method after
kernels are acquired. Results generated by OID contain clearer details.
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(a) Input (b) Cho and Lee [2] (c) Xu and Jia [18]

(d) Krishnan et al. [9] (e) Xu et al. [19] (f) Pan et al. [13] (text)

(g) Pan et al. [15] (dark) (h) Yan et al. [20] (i) Chen et al. [1]

(j) Pan et al. [14] (k) Dong et al. [4] (l) Ours

Fig. 18. Real-world blurry image with saturated pixels. Here we use the same non-blind deblur-
ring method [17] after kernels are acquired. OID generates comparable results with shaper edges
than the outlier handling methods [4, 14] (better viewed on high resolution with zoom-in).
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(a) Input (b) Cho and Lee [2] (c) Xu and Jia [18]

(d) Levin et al. [11] (e) Krishnan et al. [9] (f) Xu et al. [19]

(g) Zhong et al. [21] (h) Michaeli et al. [12] (i) Pan et al. [13] (text)

(j) Pan et al. [15] (dark) (k) Chen et al. [1] (l) Dong et al. [4]

(m) Pan et al. [14] (n) Hu et al. [7] (o) Ours

Fig. 15. Real-world blurry image with saturated pixels. Here we use the same non-blind deblur-
ring method [17] after kernels are acquired. OID generates a more accurate blur kernel. Please
zoom-in for a better view.
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(a) Input (b) Xu and Jia [18] (c) Krishnan et al. [9]

(d) Xu et al. [19] (e) Pan et al. [15] (dark) (f) Yan et al. [20]

(g) Pan et al. [13] (text) (h) Chen et al. [1] (i) pan et al. [14]

(j) Dong et al. [4] (k) Hu et al. [7] (l) Ours

Fig. 16. Real-world blurry image with massive saturated pixels. Here we use the same non-blind
deblurring method [7] after kernels are acquired. OID generates a more accurate blur kernel.
Please zoom-in for a better view.
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(a) Input (b) Cho and Lee [2] (c) Xu and Jia [18] (d) Krishnan et al. [9]

(e) Xu et al. [19] (f) Michaeli et al. [12] (g) Yan et al. [20] (h) Chen et al. [1]

(i) Pan et al. [14] (j) Dong et al. [4] (k) Hu et al. [7] (l) Ours

Fig. 17. Real-world blurry image with saturated pixels. Here we use the same non-blind deblur-
ring method [17] after kernels are acquired. State-of-the-art methods fail to estimate correct ker-
nels in this situation, including recent outlier handling methods [4, 14]. Moreover, kernel esti-
mated by OID is visually similar to that of [7], and from which the light streak is manually
extracted.
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(a) Input (b) Fergus et al. [5] (c) Ours

(d) Input (e) Krishnan et al. [9] (f) Ours

(g) Input (h) Cho and Lee [2] (i) Ours

Fig. 19. Comparison with state-of-the-art methods on real-world examples, OID performs com-
parable or even better than these methods.
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(a) Input (b) Shan et al. [16] (c) Ours

(d) Input (e) Xu and Jia [18] (f) Ours

(g) Input (h) Xu et al. [19] (i) Ours

(j) Input (k) Zhong et al. [21] (l) Ours

Fig. 20. Comparison with state-of-the-art methods on real-world examples, OID performs com-
parable or even better than these methods.
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(a) Input (b) Hu et al. [7] (c) Ours

Fig. 21. Comparison with state-of-the-art methods on real-world saturated examples, OID per-
forms comparable or even better than the method tailored to this scenario [7].
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