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Abstract. Existing arts have shown promising efforts to deal with the
blind deblurring task. However, most of the recent works assume the ad-
ditive noise involved in the blurring process to be simple-distributed (i.e.
Gaussian or Laplacian), while the real-world case is proved to be much
more complicated. In this paper, we develop a new term to better fit
the complex natural noise. Specifically, we use a combination of a dense
function (i.e. l2) and a newly designed enhanced sparse model termed as
le, which is developed from two sparse models (i.e. l1 and l0), to fulfill the
task. Moreover, we further suggest using le to regularize image gradients.
Compared to the widely-adopted l0 sparse term, le can penalize more in-
significant image details (Fig. 1). Based on the half-quadratic splitting
method, we provide an effective scheme to optimize the overall formula-
tion. Comprehensive evaluations on public datasets and real-world im-
ages demonstrate the superiority of the proposed method against state-
of-the-art methods in terms of both speed and accuracy.
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1 Introduction

Assuming the image is degraded by a spatially-invariant blur kernel, the blurry
image y can be obtained by convolving a sharp image x and a blur kernel k:

y = x ∗ k + n, (1)

where n denote the unavoidable noise. We use ∗ to represent the convolution
operator. In the blind deblurring task, we aim to estimate x and k with only y.
In order to solve the highly ill-posed problem, effective priors must be imposed
to regularize the solution space:

{x, k} = argminx,kF (y − x ∗ k) +R1(x) +R2(k), (2)

where the fidelity term F (·) is used to model the noise n in (1); R1(·) and
R2(·) are used as regularization terms for x and k. It can be observed that
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Fig. 1. Average gradient distribution of blurred images and intermediate latent images
obtained from different sparse regularizers. We use the imageset from Köhler et al. [12].
The proposed le model shows stronger sparsity than others.

the deblurring result can benefit from a decent noise modeling step. In fact,
the inappropriate noise modeling step is proved to be a major cause of the
ringing artifacts appeared in the recovered image [25]. Most of former maximum
a posterior (MAP)-based methods [1, 3, 13, 20, 23, 24, 28] assume the noise to
follow the Gaussian or Laplacian distribution. As a result, they adopt l2 or
l1 norm on the basic fidelity term. However, previous study has demonstrated
that the noise model in natural images should be much more complex [32],
assuming the distribution of noise either to follow Gaussian or Laplacian is far
from convincing. Thus, in order to recover sharper images, a more reasonable
noise model is required.

Inspired by the success in previous work [6] that combines a dense and a
sparse model (i.e. l2 and l1) to model unknown noise, we conjecture if it helps to
replace the l1 model with an enhanced one. Presumably, the combination with
the enhanced sparse model should be able to meet wider range of distributions,
thus can better fit the complex natural noise.

To this end, we design an enhanced sparse model termed as le, which is based
on a simple combination of the l1 and l0 sparse models. Surprisingly, a simple
combination of these two models turns out to be sparser than either single one
in practice as shown in Fig. 1, which plots the statics of the gradients of the
intermediate latent images obtained by different regularizers. We observe that
using the le model helps obtain more small gradients than that of l0 and l1,
which demonstrates the sparseness of the proposed model. We further give an
intuitive explanation for the reason in Section 3.1.

By combining the le and l2 models and considering the spatial randomness
of natural noise [25], we can develop a new noise fitting function (please refer
to section 3.2 for detailed description). As shown in Fig. 2, we note that the
proposed noise fitting term performs more effectively than other models, and
the corresponding results contain fewer artifacts as illustrated in the red boxes.

Revisiting the regularization term for the latent image. Recall that sparse
priors are often adopted to penalize fine details [29] which are proved to be
harmful to the deblurring process [28]. In this work, we use the proposed en-
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(a) l1 (b) l2 l2 + l1 [6] (e) Ours

Fig. 2. Comparison between existing noise modeling strategies. The first and second
row show intermediate results and corresponding noise maps from different models. Our
noise map contains fewer image structures, which leads to better deblurring results.

(a) Input (b) Interim x
of l0 regularizer

(c) Interim x
of le regularizer

(d) Results with
l0 regularizer

(e) Results with
le regularizer

Fig. 3. Deblurring results with l0 regularizer and le regularizer on latent image. The
part enclosed in the red box from (b) contain insignificant pixels.

hanced sparse model to regularize the image. Besides the statistical illustration
given in Fig. 1, we provide an example in Fig. 3, which shows that le model is
able to prune more insignificant pixels than that of l0, and the method based on
le also generates a better result.

Optimizing the overall non-convex formulation is challenging. We address
the problem by adopting an effective half-quadratic splitting method. The whole
framework is carried out in a MAP-based coarser-to-fine [3] manner. The follow-
ing analysis illustrates the convergence of our model.

Contributions of this work are three-fold. (1) We propose a novel term to
better fit the unknown natural noise in the blurring process. Specifically, we take
advantage of a dense model (i.e. l2) and a newly designed enhanced sparse model
(i.e. le) to fulfill the task, in which le is developed from two sparse functions (i.e.
l1 and l0). (2) We further propose to use le to regularize image gradients. With
an unnatural representation approach [29], le can better penalize insignificant
edges than other models. (3) Through experimental results on the benchmark
datasets [12,14,16] and real-world images demonstrate that our method performs
favorably against state-of-the-art methods both quantitatively and qualitatively.

2 Related Work

Previous studies demonstrate that imposing sparsity on the image gradient helps
recover blurry images [4, 29]. To better achieve sparsity, some methods use spe-
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cially designed regularizers to promote sparsity. Shan et al. [25] use an l1 norm
on image gradient, and incorporate it with a ringing removal term. Krishnan
et al. [13] adopt a special l1/l2 regularization to model sparse constraint. Fur-
thermore, Xu et al. [29] propose an unnatural l0 sparse regularization on image
gradients, and solve it in an approximation manner. Besides the sparsity of im-
ages, other statistic priors are also developed to solve the problem. For example,
Pan et al. [23] introduce the dark channel prior to deblur natural images. Yan et
al. [30] further propose a combination of dark channel and the opposite bright
channel to improve the performance. Li et al. [18] learned a discriminative prior
for the task, and Chen et al. [1] develop a local maximum gradient prior to reveal
more information hidden in the blurry images.

Instead of exploring the statistical distribution of natural images, some meth-
ods select salient edges for kernel estimation. Specifically, Joshi et al. [11] extract
sharp edges from blurry images by locating step edges first, and they further
propagate the extrema values along the edge profile. Cho and Lee [3] adopt both
bilateral and shock filtering for edge prediction. Xu and Jia [28] suggest that
insignificant edges may have adverse effects on kernel estimation, and they pro-
pose a criterion for selecting informative edges. Lai et al. [14] use both filtering
and data-driven prior to predict sharp edges. However, these methods will fail if
there are few strong edges [23]. Thus, Gong et al. [5] propose to automatically
select a subset of edges by a gradient activation method. Despite the effectiveness
of these methods, they neglect the contribution of a proper noise modeling step.
In this paper, we show that the proposed noise modeling strategy can boost the
accuracy of the estimated kernel.

3 Proposed Method

3.1 Enhanced sparse model

The proposed enhanced sparse model is based on a combination of l0 and l1
sparse models given by,

‖ · ‖e = ‖ · ‖0 + ‖ · ‖1. (3)

We show in the following that the le model can lead to a sparser solution than
the widely-used unnatural l0 approach [29] under the same condition.

Given a corrupted signal A, assuming the latent signal B is sparse which can
be obtained by being imposed with the enhanced sparse model. With a basic
quadratic penalty, the objective energy function can be expressed as following,

min
B

1

4σ2
‖A − B‖22 + ‖B‖e, (4)

where σ is the regularization parameter. Decomposing the above formulation
into a set of independent sub-problems, we can rewrite (4) into,

min
Bi

1

4σ2

∑
i

|Ai − Bi|2 + |Bi|e, (5)
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(a) l2 + l0 (b) l2 +∇l0 (c) l2 + le (d) l2 +∇le

Fig. 4. Example with possible combinations of noise-fitting functions. First and second
rows present deblurring results and corresponding noise maps of each noise modeling
strategies. The model with l2 + ∇le (i.e. proposed) generates better results and the
corresponding noise map contain fewer image structure.

where i denotes the location of an element. The equation above has a closed
form solution,

Bi =


Ai + 2σ2, if Ai + 2σ2 < −2σ

Ai − 2σ2, if Ai − 2σ2 > 2σ

0, Otherwise.

(6)

Proof can be found in our supplementary material. Note that in this case the
value of the latent signal B will be sparser (i.e. more likely to be 0 under the
same conditions) compared to the case when minimizing l0 norm (see our sup-
plementary file for detailed illustration), which explains the reason why le model
is more effective at penalizing fine details. We provide further evaluation of these
two models in Section 6.1.

3.2 Improved noise modeling

Instead of adopting complicate noise modeling skills, such as the mixture of
Gaussian [19] or continuous mixed p norm [10], we suggest a simple combination
of the l2 norm and the enhanced sparse model to fit natural noise distribution.
Empirically, our model can fit any continuous distribution in between. The noise
modeling step can be written as follow,

F (y − x ∗ k) = ‖y − x ∗ k‖22 + β‖∇y −∇x ∗ k‖e, (7)

where ∇ is the derivate operator in vertical and horizontal dimensions (i.e. ∇ =
{∇h,∇v}). For simplicity, we use one order derivative operators to model the
spatial randomness [25] of natural noise. As shown in Fig. 4, the model adopting
both spatial randomness prior and le norm performs the best among possible
combinations, with the result being more visually pleasing and the noise map
containing fewer structures. Further comparisons are presented in Section 6.1.
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3.3 Model and optimization

Analogous to previous works [5, 23, 29], we use an l2 norm to encourage the
smoothness of blur kernels. The overall deblurring model is given by,

min
x,k
‖y − x ∗ k‖22 + β‖∇y −∇x ∗ k‖e + θ‖∇x‖e + γ‖k‖22, (8)

where β, θ and γ are weight parameters. We obtain the solution of (8) by alter-
natively updating x and k with the other one fixed. The sub-problems referring
to x and k are given by, min

x
‖y − x ∗ k‖22 + β‖∇y −∇x ∗ k‖e + θ‖∇x‖e, (9)

min
k
‖y − x ∗ k‖22 + β‖∇y −∇x ∗ k‖e + γ‖k‖22. (10)

Update latent image With the intrusion of l0 in the le norm, (9) becomes
highly non-convex. We thus use the half-quadratic splitting method for the task.
Variables u and g are introduced corresponding to ∇(y− x ∗ k) and ∇x, respec-
tively. Thus, (9) can be transformed into,

min
x,u,g

‖y − x ∗ k‖22 + β‖u‖e + θ‖g‖e + λ1‖u−∇(y − x ∗ k)‖22 + λ2‖g −∇x‖22, (11)

where λ1 and λ2 are penalty parameters. We solve (11) by updating x, u and g
separately.
(1) Solving x. The objective function referring to x is a quadratic problem:

min
x
‖y − x ∗ k‖22 + λ1‖u−∇(y − x ∗ k)‖22 + λ2‖g −∇x‖22. (12)

We can use a Fast Fourier Transform (FFT) to solve the above equation [1].
(2) Solving u. The subproblem referring to u is given by,

min
u
β‖u‖e + λ1‖u−∇(y − x ∗ k)‖22. (13)

Referring to (6), the solution can be written as,

u =


{s1|s1 = ∇(y − x ∗ k)− β

2λ1
}, s1 >

√
β
λ1

{s2|s2 = ∇(y − x ∗ k) + β
2λ1
}, s2 < −

√
β
λ1

0, Otherwise.

(14)

(3) Solving g. With x and u fixed, we can update g by the following equation,

min
g
θ‖g‖e + λ2‖g −∇x‖22. (15)

The solution of (15) is analogous to that of (13), and we omit it here.
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Algorithm 1: Enhanced sparse model for blur kernel estimation

Input: Blurry image y, initialized k from the coarser level.
for iter = 1:maxiter do

repeat
Updating x, u and g using Eq. (12), (13) and (15), respectively;
λ1 ← 2λ1, λ2 ← 2λ2.

until x converges;
repeat

Updating k and p using Eq. (17) and (18); λ3 ← 2λ3.
until k converges;

end
Output: Blur kernel k and latent image x.

Update blur kernel The objective function w.r.t. k also involveing non-convex
optimization. We use the same strategy as (11) by introducing new variable p for
∇(y−x ∗ k). To boost the accuracy of the estimated kernel, we use the gradient
domain instead of the intensity domain [3, 17]. Thus, (10) is reformulated to,

min
k,p
‖∇y −∇x ∗ k‖22 + β‖p‖e + γ‖k‖22 + λ3‖p−∇(y − x ∗ k)‖22, (16)

where λ3 is the weight parameter. We solve (16) by splitting it into two sub-
problems referring to k, p respectively. The solution can be obtained by alterna-
tively updating following formulations,

min
k
‖∇y −∇x ∗ k‖22 + λ3‖p−∇(y − x ∗ k)‖22 + γ‖k‖22, (17)

min
p
β‖p‖e + λ3‖p−∇(y − x ∗ k)‖22. (18)

The solution of (17) can be efficiently obtained by FFT, and the problem in (18)
is similar to (14). Both solutions are uncomplicated and will not be reproduced
here. After obtaining k, we set the negative elements of k to 0, and normalize it
to make it equal to 1. Same to existing methods, the overall kernel estimation
process is implemented in a coarse-to-fine manner using an image pyramid [3].
The main steps from one pyramid level are shown in Algorithm 1.

4 Extension to Non-uniform Deblurring

The proposed model can be directly extended to non-uniform deblurring where
the blur kernel across an image scale is spatially-variant. Based on the geometric
model of camera motion [26,27], the blurry image can be modeled as a weighted
sum of the latent image under geometry transformations,

y =
∑
t

kthtx + n, (19)
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Fig. 5. Quantitative evaluations on benchmark datasets [16] [12] [15]. Our method
performs competitively against existing models.

where y,x and n denote blurry image, latent image and noise in vector form,
respectively; t is the index of camera pose samples, and kt is the corresponding
weight; Ht denotes a homography matrix. Similar to [27], we rewrite (19) as,

y = Hx + n = zk + n, (20)

where H =
∑

t ktht, z = [h1x,h1x, ...,htx], and k = [k1, k2, ..., kt]
T

. Based on
(20), the non-uniform deblurring problem is solved by alternatively minimizing, min

x
‖Hx− y‖22 + β‖H∇x−∇y‖e + θ‖∇x‖e, (21)

min
k
‖zk− y‖22 + β‖∇zk−∇y‖e + γ‖k‖22. (22)

The updating details are similar to the uniform deblurring case, and latent
image x and the weight k are estimated by the fast forward approximation [7].

5 Experimental Results

For the hyper-parameters used in the model, we set β = θ = 0.004 and γ = 2. We
first evaluate our method on three benchmark datasets [12, 15,16] and compare
it with several state-of-the-art algorithms. Then, we examine our method on
domain-specific images including text [22], face [21] and low-illumination [8]
images. Similar to conventional practice, we use a non-blind deblurring method
to recover final images after kernels are obtained, and we use the method from
[22] unless otherwise mentioned. We implement our model in Matlab and assess
the efficiency on an Intel Core i5-7400 CPU with 12GB RAM. More examples
are demonstrated in our supplementary material.

5.1 Evaluation on natural images

We first evaluate our model on the dataset from Levin et al. [16] which contains
32 blurry images generated by 4 images filtered with 8 blur kernels. The images
are all of size 255× 255. We compare our model with 7 generic image deblurring
methods [1,3,4,13,23,29,30] in term of SSD error ratio [16]. As shown in Fig. 5
(a), our method performs favorbly among state-of-the-art methods.
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(a) Input (b) Pan et al. [23] (c) Yan et al. [30] (d) Chen et al. [1] (e)Ours

Fig. 6. A challenging example from dataset [15]. Parts enclosed in red boxes contain
moderate artifacts.

(a) Input (b) Krishnan [13] (c) Xu [29] (d) Pan [22] (e) Chen [1] (f) Ours

Fig. 7. Deblurring results from real-world blur images. Here we use the same non-blind
deconvolution method from [2].

Next, we examine the proposed method on the natural image dataset from
Köhler et al. [12] which contains 12 blur kernels and 4 images. We compare our
result with a total of 7 recent deblurring methods [1,3,13,18,23,29,30] in term of
average PSNR. We compare the PSNR values by using the protocol used in [12].
As shown in Fig. 5 (b), our method performs favorably against state-of-the-art
algorithms.

We also evaluate our method on the dataset from Lai et al. [15], which con-
tains 100 images including face, text, and low-illumination images. We compare
our results to several state-of-the-art methods [1,3,4,17,22,29–31]. For fair com-
parison, we use the same non-blind algorithm from [2] to generate final results
after acquiring blur kernels. The overall error ratios are shown in Fig. 5 (c), and
our method performs the best among compared methods. A challenging example
from the dataset is shown in Fig. 6, in which most state-of-the-art methods gen-
erate results with moderate ringing artifacts. In contrast, our method generates
images with fewer artifacts and clearer details.

We further have our method tested in real-world blur images. In this place,
we use the non-blind deconvolution method from Cho et al. [2] after obtaining
the kernels of each compared method. As shown in Fig. 7, images restored by
state-of-the-art methods [1, 13, 23, 29] contain strong artifacts, while our model
generates clearer edges, and is more visually pleasing.

Table 1. Results on the text dataset [22]. Our method performs favorably among
existing methods.

Cho and Lee Xu and Jia Levin et al. Xu et al. Pan et al. Li et al. Pan et al. Ours
[3] [28] [17] [29] [23] [18] [22]

Avg. PSNR 23.80 26.21 24.90 26.21 27.94 28.10 28.80 28.83
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(a) Input (b) Xu et al. [29] (c) Pan et al. [23] (d) Pan et al. [22] (e) Ours

Fig. 8. Deblurring results of a text blurred image.

(a) Input (b) Chen et al. [1] (c) Hu et al. [8] (d) Ours

Fig. 9. Deblurring results of real-world low-illumination blur image.

5.2 Evaluation on domain-specific images

Text images: We evaluate the effectiveness of our method on text blurry images
by conducting experiments on the dataset provided by Pan et al. [22], which
contains 15 images and 8 blur kernels from [16]. Table 1 shows the average
PSNR values of each method. The proposed method performs favorably against
the method specially designed for text deblurring [22]. Visually, the proposed
model generated comparable results to that by [22] (Fig. 8).
Low-illumination images: As shown in Fig. 9, state-of-the-art method [1]
fails to estimate the kernel due to the saturated regions. Although the method
designed for low-illumination can ease the blur to some extent, their results
contain residuals because the light streak is difficult to extract in this case.
In contrast, our method generates results containing fewer artifacts. Note that
our method is only effective with small saturated regions. Images with large
saturated regions is still a challenging problem to solve.
Face images: Face blurred images are also challenging for methods that are
aimed for natural images, because they often contain fewer edges or structures
[21] which play a vital role in the kernel estimation process. Fig. 10 shows the
final recovered results of a face blurred image by several methods. Our result
has sharper edges and fewer ringing artifacts than the sate-of-the-art methods
[13,23,29,30].

5.3 Non-uniform deblurring

As discussed in Section 4, the proposed model can also be extended to the non-
uniform deblurring task. We provide deblurring results on an image degraded by
spatially-variant blur in Fig. 11. As shown in the figure, the proposed method
can estimate blur kernels in every image tile and produces a comparable result
with sharp edges.
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(a) Input (b) Krishnan [13] (c) Xu [29] (d) Pan [23] (e) Yan [30] (f) Ours

Fig. 10. Deblurring results of a real-world face blur image.

(a) Input (b) Whyte [27] (c) Xu [29] (d) Pan [22] (e) Ours (f) Our kernel

Fig. 11. Deblurring results on a non-uniform blurred image.

6 Analysis and Discussion

6.1 Effectiveness of the proposed model

The novelties of our model lie in two aspects, the le sparse norm and the improved
noise modeling step.

We first evaluate the effectiveness of the le norm. We conduct ablation study
on the dataset from [16]. Note in this step, the fidelity term is fixed as le norm
while the regularization term uses different settings. As shown in Fig. 12 (a), the
model with le imposed on regularization term is more effective than which with
l0 regularized. An example is shown in Fig. 13 (b) and (d). The proposed model
with le (Fig. 13 (d)) generates a more visually pleasing result than that with l0
(Fig. 13 (b)).

In (7), we impose l2 on noise intensity domain and le on noise gradient (abbr.
as l2 +∇le) to fit natural noise while also considering its spatial randomness. We
conduct ablation study on the benchmark dataset [16] to verify the effectiveness
of the proposed strategy. There are a total of 6 combinations that we compare
(i.e. abbr. l2 +∇l0, l2 +∇l1, l2 + le, l2 + l0, l2 + l1 and l2). As shown in Fig. 12
(b), the proposed setting performs the best among different combinations. Note
that the noise modeling step is not as effective as others when uses only l2 term,
while with a sparse model, it performs more effectively. In another view, the
performance has positive correlation with the sparsity of the sparse component
(from l1 to le), this phenomenon validates the rationality of our assumption.
We also show that le on gradient domain can be more effective than that on
intensity domain (black line in Fig. 12 (b)). The noise maps over iterations
shown in Fig. 13 (h) and (i) also illustrate the effectiveness of the proposed noise
modeling step.
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Fig. 12. (a) and (b) are ablation studies for the proposed model on the benchmark
dataset [16]. (a) Effects of different sparse models for the regularization term. (b) Effects
of different noise-fitting models. (c) and (d) are used to show the convergence property
of the model. (c) The energy value of the objective function (9)). (d) Average kernel
similarity [9].

6.2 Parameter analysis

The proposed model involves 3 main parameters, β, θ and γ. We evaluate the
effects of these parameters on image deblurring in the dataset from [16] by
varying one and keeping others fixed. Average PSNR is taken as an evaluation
criterion. The parameter β is used to balance dense and sparse distribution in
the noise model, which can benefit deblurring if it is set in a reasonable range
(from 0.001 to 0.005 as shown in Fig. 14 (a)). Moreover, the best range for θ is
within 0.002 to 0.008, while the value of γ has little effect on the model as shown
in Fig. 14 (b) and (c).

6.3 Convergence property & running time

As our model involves non-convex regularizations, a natural question is whether
our optimization scheme converges. We quantitatively evaluate the convergence
property of our algorithm using the dataset [16]. We measure the values of the
objective function (9), and kernel similarity [9] at finest image scale. The results
are demonstrated in Fig. 12 (c) and (d), which indicates that our algorithm
converges less than 50 iterations.

In addition, we test several models with different sizes of images in term of
running time. The overall result is summarised in Table 2. Our method conducts
one of the fastest running time among these methods.

Table 2. Running time comparisons on varying sizes of images. Codes are implemented
in MATLAB unless mentioned.

Xu (C++) [29] Krishnan [13] Pan [23] Chen [1] Ours

600× 600 3.61 50.02 130.10 649.65 38.51

800× 800 6.90 90.94 233.58 1680.18 70.17

6.4 Limitation

Although our method is effective in deblurring various kinds of blur images, we
find its limitation in directly applying in images with large saturated areas. Fig.
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(a) Blurry image (b) le + l0 (c) l2 + le (d) Proposed

(e) Intermediate results of (b).

(f) Intermediate results of (c).

(g) Intermediate results of (d).

(h) Intermediate noise maps of (c).

(i) Intermediate noise maps of (d).

Fig. 13. Effectiveness of the proposed model. (b) Results from the proposed noise
fitting model and an l0 model to regularize image gradient. (c) Results from an l2
model to fit noise and the proposed sparse term to regularize image gradient. The
noise map using the proposed model containing fewer image structure over iterations
than that without it.
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(c) Effect of γ

Fig. 14. Effects of the parameters used in our model.

(a) Input (b) Our result (c) Hu et al. [8]

Fig. 15. Limitation of the proposed model. The specially designed method [8] can
handle the blurry image with large saturated regions, while our method is ineffective
in this situation.

15 shows an example of deblurring image with multiple saturated regions. Our
method performs poorly when directly applied in this situation, while methods
designed for these tasks [8] generate a clearer result.

7 Conclusion

In this paper, we propose a new perspective for improving the blind deblurring
task. In brief, we first present an enhanced sparse model, and combined it with
an l2 model to fit the complex natural noise. Then, we use the enhanced sparse
model to penalize more insignificant details. To restore images regularized by the
non-convex settings, we develop an effective optimization scheme based on the
half-quadric splitting method. Extensive evaluations on benchmark datasets and
real-world images demonstrate that the proposed method performs favorably
against state-of-the-art methods in terms of both accuracy and speed, and it
works well in most given specific scenarios.
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