
GATCluster: Self-Supervised Gaussian-Attention
Network for Image Clustering

Chuang Niu1, Jun Zhang2, Ge Wang3, and Jimin Liang1

1 School of Electronic Engineering, Xidian University, Xi’an, Shaanxi 710071, China
2 Tencent AI Lab, Shenzhen, Guangdong 518057, China
3 Rensselare Polytechnic Institute, Troy, NY 12180, US

Abstract. We propose a self-supervised Gaussian ATtention network
for image Clustering (GATCluster). Rather than extracting intermedi-
ate features first and then performing traditional clustering algorithm-
s, GATCluster directly outputs semantic cluster labels without further
post-processing. We give a Label Feature Theorem to guarantee that the
learned features are one-hot encoded vectors and the trivial solutions are
avoided. Based on this theorem, we design four self-learning tasks with
the constraints of transformation invariance, separability maximization,
entropy analysis, and attention mapping. Specifically, the transformation
invariance and separability maximization tasks learn the relations be-
tween samples. The entropy analysis task aims to avoid trivial solutions.
To capture the object-oriented semantics, we design a self-supervised at-
tention mechanism that includes a Gaussian attention module and a soft-
attention loss. Moreover, we design a two-step learning algorithm that is
memory-efficient for clustering large-size images. Extensive experiments
demonstrate the superiority of our proposed method in comparison with
the state-of-the-art image clustering benchmarks.

1 Introduction

Clustering is the process of separating data into groups according to sample
similarity, which is a fundamental unsupervised learning task with numerous
applications. Similarity or discrepancy measurement between samples plays a
critical role in data clustering. Specifically, the similarity or discrepancy is de-
termined by both data representation and distance function.

Before the extensive application of deep learning, handcrafted features, such
as SIFT [30] and HoG [8], and domain-specific distance functions are often used
to measure the similarity. Based on the similarity measurement, various rules
were developed for clustering. These include space-partition based (e.g., k-means
[31] and spectral clustering [34]) and hierarchical methods (e.g., BIRCH [53]).
With the development of deep learning techniques, researchers have been ded-
icated to leverage deep neural networks for joint representation learning and
clustering, which is commonly referred to as deep clustering. Although signifi-
cant advances have been witnessed, deep clustering still suffers from an inferior
performance for natural images (e.g., ImageNet [38]) in comparison with that
for simple handwritten digits in MNIST.
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Fig. 1. Clustering results on STL10. Each column represents a cluster. (a) Sample
images clustered by the proposed model without attention, where the clustering prin-
ciples focus on trivial cues, such as texture (first column), color (second column), or
background (fifth column); and (b) Sample images clustered by the proposed model
with attention, where the object concepts are well captured.

Various challenges arise when applying deep clustering on natural images.
First, many deep clustering methods use stacked auto-encoders (SAE) [2] to ex-
tract clustering-friendly intermediate features by imposing some constraints on
the hidden layer and the output layer respectively. However, pixel-level recon-
struction is not an effective constraint for extracting discriminative semantic fea-
tures of natural images, since these images usually contain much more instance-
specific details that are unrelated to semantics. Recent progress [5][13][45][21] has
demonstrated that it is an effective way to directly map data to label features
just as in the supervised classification task. However, training such a model in
an unsupervised manner is difficult to extract clustering-related discriminative
features. Second, clusters are expected to be defined by appropriate semantics
while current methods tend to group the images by alternative principles (such as
colors, textures, or background), as shown in Fig. 1. Third, the dynamic change
between different clustering principles during the training process tends to make
the model unstable and easily get trapped in trivial solutions that assign all sam-
ples to a single or very few clusters. Fourth, the existing methods were usually
evaluated on small images (32× 32 to 96× 96). This is mainly due to the large
batch of samples required for training the deep clustering model preventing us
from processing large images on memory-limited devices.

To tackle these problems, we propose a self-supervised Gaussian attention
network for clustering (GATCluster) that directly outputs discriminative se-
mantic label features. Theoretically, we introduce a Label Feature Theorem,
ensuring that the learned features are one-hot encoded vectors and the trivial
solutions can be avoided. Accordingly, we design four self-learning tasks with
the constraints of transformation invariance, separability maximization, entropy
analysis, and attention mapping. GATCluster is trained in a completely unsuper-
vised manner, as all the guiding signals for clustering are self-generated during
training. Specifically, 1) the transformation invariance maximizes the similarity
between a sample and its random transformations. 2) The separability maxi-
mization task explores both similarity and discrepancy of each paired samples
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to guide the model learning. 3) The entropy analysis task helps avoid trivial
solutions. 4) To capture object-orientated semantics, an attention mechanism is
proposed based on the observation that the discriminative information of objects
is usually presented on local regions.

For processing large-size images, we develop an efficient two-step learning
algorithm. First, the pseudo-targets over a large batch of samples are computed
statistically in a split-and-merge manner. Second, the model is iteratively trained
on the same batch in a supervised learning manner using the pseudo-targets.
It should be noted that GATCluster is trained by optimizing all loss functions
simultaneously instead of alternately. Our learning algorithm is memory-efficient
and thus easy to process large images.

To summarize, the contributions of this paper include
(1) We introduce a Label Feature Theorem ensuring that the learned features

are one-hot encoded vectors and trivial solutions can be avoided.
(2) We propose an attention module with a Gaussian kernel and a soft-

attention loss to capture object-oriented semantics. To our best knowledge, this is
the first attempt in exploring the attention mechanism for unsupervised learning.

(3) Our two-step learning algorithm that is memory-efficient makes it possible
to perform the clustering on large-size images.

(4) Extensive experimental results demonstrate that the proposed GATClus-
ter significantly outperforms or is comparable to the state-of-the-art methods on
image clustering datasets. Our code has been made publicly available at http-
s://github.com/niuchuangnn/GATCluster.

2 Related work

2.1 Deep Clustering

We divide the deep clustering methods into two categories: 1) intermediate-
feature-based deep clustering and 2) semantic deep clustering. The first category
extracts intermediate features and then conducts conventional clustering. The
second one directly constructs a nonlinear mapping between original data and
cluster labels. By doing so, the samples are clustered just as in the supervised
classification task, without any need for additional processing.

Some intermediate-feature-based deep clustering methods usually employ the
SAE [15][2] or its variants [43][33][32][23] to extract intermediate features, and
then conduct k-means [18][6] or spectral clustering [20]. Instead of performing
representation learning and clustering separately, some studies integrate these
two stages into a unified framework [46][25][47][41][51][10][22][9][55]. However,
as applied to complex natural images, the reconstruction loss of SAE tends
to overestimate the importance of low-level features. In constrast to the SAE-
based methods, some methods [48][17][16] directly use the convolutional neural
network (CNN) or multi-layer perceptron (MLP) for representation learning by
designing specific loss functions. Unfortunately, the high-dimensional nature of
intermediate features are too abundant to effectively reveal the discriminative
semantic information of natural images.
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Semantic deep clustering methods have recently shown a great promise for
clustering. To train such models in the unsupervised manner, various rules have
been designed for supervision. DAC [5] recasts clustering into a binary pairwise-
classification problem, and the supervised labels are adaptively generated by
thresholding the similarity matrix. As an extension to DAC, DCCM [45] inves-
tigates both pair-wise sample relations and triplet mutual information between
deep and shallow layers. However, these two methods are practically susceptible
to trivial solutions. IIC [21] directly trains a classification network by maximizing
the mutual information between original data and their transformations. How-
ever, the computation of mutual information requires a very large batch size in
the training process, which is challenging to apply on large images.

2.2 Self-supervised learning

Self-supervised learning can learn general features by optimizing cleverly de-
signed objective functions of some pretext tasks, in which all supervised pseudo
labels are automatically generated from the input data without manual anno-
tations. Various pretext tasks were proposed, including image completion [37],
image colorization [52], jigsaw puzzle [35], counting [36], rotation [12], cluster-
ing [4][51], etc. For the pretext task of clustering, cluster assignments are often
used as pseudo labels, which can be obtained by k-means or spectral clustering
algorithms. In our study, both the self-generated relation of paired samples and
object attention are used as the guiding signals for clustering.

2.3 Attention

In recent years, the attention mechanism has been successfully applied to various
tasks in machine learning and computer vision, such as machine translation
[42], image captioning and visual question answering [1], GAN [50], person re-
identification [28], visual tracking [44], crowd counting [29], weakly- and semi-
supervised semantic segmentation [26], and text detection and recognition [14].
Given the ground-truth labels, the attention weights are learned to scale-up more
related local features for better predictions. However, it is still not explored for
deep clustering models that are trained without human-annotated labels. In this
work, we design a Gaussian-kernel-based attention module and a soft-attention
loss to learn the attention weights in a self-supervised manner.

2.4 Learning algorithm of deep clustering

Various of learning algorithms are designed for training deep clustering models.
Most existing deep clustering models are alternatively trained between updating
cluster assignments and network parameters [46], or between different clustering
heads [21]. Some of them need pre-training in an unsupervised [46][47][51] or
supervised manner [17][16]. On the other hand, some studies [5][45] directly
train the deep clustering models by optimizing all component objective functions
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simultaneously. However, they do not consider the statistical constraint and
are susceptible to trivial solutions. In this work, we propose a two-step self-
supervised learning algorithm that is memory-efficient for processing the large
batch training with large-size images.

3 Method

3.1 Label Feature Theorem and problem formulation

Given a set of samples X = {xi}Ni=1 and the predefined number of clusters k,
this work aims to automatically divide X into k groups by predicting the label
features li ∈ Rk of each sample xi, where N is the total number of samples.

We first review the theorem introduced by DAC [5]. Clustering can be recast
as a binary classification problem that measures the similarity and discrepancy
between two samples and then determines whether they belong to the same
cluster. For each sample xi, the label feature li = f(xi;w) is computed, where
f(·,w) is a mapping function with parametersw. The parametersw are obtained
by minimizing the following objective function:

min
w

E(w) =

N∑
i,j

L(rij , li · lj),

s.t. ∀i ‖li‖2 = 1, lih ≥ 0, h = 1, · · · , k,

(1)

where rij is the ground-truth relation between samples xi and xj , i.e., rij = 1
indicates that xi and xj belong to the same cluster and rij = 0 otherwise.
In the unsupervised setting, rij can be estimated by thresholding [5][45] or the
approach introduced in Section 3.3; the inner product li · lj is the cosine distance
between two samples as the label feature is constrained with ‖li‖2 = 1; L is a loss
function instantiated by the binary cross entropy; and k is the predefined number
of clusters. The theorem proved in [5] claimed that if the optimal value of Eq.
(1) is attained, the learned label features will be k diverse one-hot vectors. Thus,
the cluster identification ci of image xi can be directly obtained by selecting the
maximum of label features, i.e., ci = argmaxh lih. However, it practically tends
to obtain trivial solutions that assign all samples to a single or a few clusters.
In the supplementary, we give a theoretical analysis of why it will get trapped
in the trivial solutions when optimizing Eq. (1).

Based on the above analysis, we formulate the clustering as the following
optimization problem with a probability and a nonempty cluster constraint:

min
w

E(w) =

N∑
i,j

L(rij ,
li
‖li‖2

· lj
‖lj‖2

)−
N∑
i=1

li · li,

s.t. ∀i ‖li‖1 = 1, 0 ≤ lih ≤ 1, h = 1, · · · , k.(probability)

∀h ph > 0, ph =
1

N

N∑
i=1

lih.(nonempty cluster)

(2)
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Although DCCM [45] also implements the probability constraint, it cannot guar-
antee the trivial solutions being avoided. However, our probability constraint is
necessary for the nonempty cluster constraint and computing the entropy loss
to avoid trivial solutions. In the nonempty cluster constraint, ph denotes the
frequency of assigning N samples into the hth cluster. And we have a Label
Feature Theorem (the proof of this theorem can be found in the supplementary)
as follows:

Label Feature Theorem. If the optimal value of Eq. (2) is attained, for
∀i, j, li ∈ Ek, li 6= lj ⇔ rij = 0, li = lj ⇔ rij = 1, and |{li}Ni=1| = k, where | · |
denotes the cardinality of a set.

Label Feature Theorem ensures that the learned features are one-hot encod-
ed vectors in which each bit represents a cluster, and all predefined k clusters
are nonempty. However, the learned features may focus on various of cues for
clustering as introduced in Section 1. To capture the object-oriented semantics
in the unsupervised setting, we propose a Gaussian attention mechanism with a
soft-attention loss. By incorporating the Label Feature Theorem with the atten-
tion mechanism, we formulate clustering as the following optimization problem,

min
w

E(w) =

N∑
i,j=1

LR(rij , li, lj) +

N∑
i=1

(α1LT (li) + α2LE(li) + α3LA(li, l
a
i )), (3)

where LR and LT correspond to the first and second items in the objective
function of Eq. (2), LE is to satisfy the nonempty cluster constraint, LA rep-
resents the attention loss, which is described in Section 3.3, and α1, α2, α3 are
the hyper-parameters to balance the importance of different losses. In practice,
the probability constraint is always satisfied by setting the label features as the
outputs of the softmax function. To optimize the problem of Eq. (3) for unsuper-
vised clustering, we propose a GATCluster model with four self-learning tasks
as introduced in the following sections.

Fig. 2. GATCluster framework. CNN is a convolutional network, GP means global
pooling, Mul represents channel-independent multiplication, Conv is a convolution
layer, FC is a fully connected layer, and AFG represents an attention feature generator.
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3.2 Framework

GATCluster consists of the following three components: 1) an image feature
module, 2) a label feature module, and 3) an attention module, as shown in
Figure 2. The image feature module extracts convolutional features of images
with a fully convolutional network. The label feature module, which contains a
convolutional layer, a global pooling layer and a fully-connected layer, aims to
map the convolutional features to semantic label features. The attention module
makes the model focus on discriminative local regions automatically, facilitating
the capture of object-oriented semantics. The attention module consists of three
submodules, including a fully connected layer for estimating the parameters of
Gaussian kernel, an attention feature generator, and a global pooling layer fol-
lowed by another fully connected layer for computing the attention label features.
The attention feature generator has three inputs, i.e., the estimated Gaussian
parameters Φ, the convolutional features from the label feature module, and
the two-dimensional coordinates of the attention map that are self-generated
according to the attention map size H and W .

In the training stage, we design four learning tasks driven by the transforma-
tion invariance, separability maximization, entropy analysis and attention map-
ping. Specifically, the transformation invariance and separability maximization
losses are computed with respect to the predicted label features, the attention
loss is evaluated with the attention module outputs, and the entropy loss is used
to supervise both the label feature module and the attention module. For infer-
ence, only the image feature module and label feature module are combined as a
classifier to suggest the cluster assignments. The clustering results in successive
training stages are visualized in Fig. 3.

Fig. 3. Visualization of clustering results in successive training stages (from left to
right) for 13K images in ImageNet-10. The results are visualized based on the predicted
label features, and each point represents an image and the colors are rendered with
the ground-truth label. The corresponding clustering accuracy is presented under each
picture. Details can be found in the supplementary.

3.3 Self-learning tasks

Transformation invariance task An image after any practically reasonable
transformations still reflect the same object. Hence, these transformed images
should have similar feature representations. To learn such a similarity, the label
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feature li of original sample xi is constrained to be close to its transformed coun-
terpart lti of T (xi), where T is a practically reasonable transformation function.
In this work, the transformation function is predefined as the composition of
random flipping, random affine transformation, and random color jittering, see
Fig. 2. Specifically, the loss function is defined as

LT (lti, l̂i) = −lti · l̂i, (4)

where l̂i is the target label feature of an original image xi that is recomputed
as:

l̂ih =
lih/zh∑
h′ lih′/zh′

, zh =

M∑
j=1

ljh, h = 1, 2, · · · , k, (5)

where M is the number of samples, i.e., the batch size used in the training
process. Eq. (5) can balance the sample assignments by dividing the cluster
assignment frequency zh, preventing the empty clusters.

Separability maximization task If the relations between all pairs of samples
are well captured, the label features will be one-hot encoded vectors as intro-
duced in Section 3.1. However, the ground-truth relations cannot be obtained in
the unsupervised learning environment. Therefore, we evaluate the relationships
of a batch of samples as follows:

rij =

{
1, ci = cj or i = j,
0, otherwise,

(6)

where ci = cj indicates that the samples xi and xj belong to the same cluster,
i = j indicates that the similarity of a sample to itself is 1. To get the cluster
identification ci, k-means algorithm is conducted on a set of samples based on
the predicted label features. Instead of estimating rij with a high pre-defined
threshold as in [5][45], our approach can determine it adaptively.

The separability maximization task is to improve the purity of clusters by
encouraging samples that are similar to be closer to each other while dissimilar
samples to be further away from each other. The loss function is defined as:

LR(rij , li, lj) =− rij log(d(li, lj))− (1− rij) log(1− d(li, lj)), (7)

where d(li, lj) = li
‖li‖2 ·

lj
‖lj‖2 is the cosine distance.

Entropy analysis task The entropy analysis task is designed to avoid trivial
solutions by satisfying the nonempty cluster constraint in Eq. (2). We maximize
the entropy of the empirical probability distribution p over k cluster assignments.
Thus, the loss function is defined as
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LE(l1, · · · , lm) =

k∑
h=1

ph log(ph),

ph =
1

m

m∑
i=1

lih, h = 1, · · · , k,
(8)

where p = [p1, · · · , pk] is estimated with the predicted label features of m sam-
ples, which can be a subset of the whole batch. Actually, maximizing the en-
tropy will steer p towards a uniform distribution (denoted by e in Fig. 2), i.e.,
∀h, ph → 1

m > 0, and thus the nonempty constraint is satisfied so that the trivial
solutions are avoided according to the Label Feature Theorem.

Attention mapping task The attention mapping task aims to make the mod-
el recognize the most discriminative local regions concerning the whole image
semantic. The basic idea is that the response to the discriminative local regions
should be more intense than that to the entire image. To this end, there are
two problems to be solved: 1) how to design the attention module for localizing
the discriminative local regions? and 2) how to train the attention module in a
self-supervised manner?

With regard to the first problem, we design a two-dimensional Gaussian
kernel K(u;Φ) to generate an attention map A as:

A(x, y) = K(u;Φ) = e−
1
α (u−µ)TΣ−1(u−µ),

x = 1, · · · , H, and y = 1, · · · ,W,
(9)

where u = [x, y]T denotes the coordinate vector, Φ = [µ, Σ] denotes the param-
eters of the Gaussian kernel, µ = [µx, µy]T is the mean vector that defines the
most discriminative location, Σ ∈ R2×2 is the covariance matrix that defines
the shape and size of a local region, α is a predefined hyper parameter, and H
and W are the height and width of the attention map. In our implementation,
the coordinates are normalized over [0, 1]. Taking CNN features as the input, a
fully connected layer is used to estimate the parameter Φ. Then, the model can
focus on the discriminative local region by multiplying each channel of convo-
lutional features with the attention map. The weighted features are mapped to
the attention label features using a global pooling layer and a fully connected
layer, as shown in Fig. 2. It should be noted that there are also alternative de-
signs of the attention module to generate attention maps, such as a convolution
layer followed by a sigmoid function. However, we obtained better results with
the parameterized Gaussian attention module due to that it has a much less
number of parameters to be estimated, and the Gaussian attention prior fits for
capturing the local object in the unsupervised learning setting.

With regard to the second problem, we define a soft-attention loss as

LA(lai , l̂
a
i ) =

1

k

k∑
h=1

−l̂aih log(laih)− (1− l̂aih) log(1− laih), (10)
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l̂aih =
l2ih/zh∑
h′ l

2
ih′/zh′

, h = 1, · · · , k, (11)

where lai is the output of the attention module, l̂ai is the target label feature for
regression, and zh is the same as in Eq. (5) to balance the cluster assignments. As

defined in Eq. (11), the target label feature l̂ai encourages the current high scores

and suppresses low scores of the whole image label feature li, thus making l̂ai a
more confident version of the whole image label feature li, see Fig. 2 for demon-
stration. By doing so, the local image region, which is localized by the attention
module, is discriminative in terms of the whole image semantics. In practice, the
local region usually presents the expected object or the discriminative part as
shown in Fig. 4.

Algorithm 1: GATCluster learning algorithm.

Input: Dataset X = {xi}
N
i=1, k,M, m1, m2

Output: Cluster label ci of xi ∈ X
1 Randomly initialize network parameters w;
2 Initialize e = 0;
3 while e < total epoch number do

4 for b ∈ {1, 2, . . . , b N
M
c} do

5 Select M samples as Xb from X ;
6 Step-1 :

7 for u ∈ {1, 2, . . . , b M
m1
c} do

8 Select m1 samples as Xu from Xb;
9 Calculate the label features of Xu;

10 end
11 Concatenate all label features of M samples ;

12 Calculate pseudo targets Tb = {(l̂i, rij , l̂
a
i )} of Xb with Eqs. (5), (6), and (11);

13 Step-2 :

14 Randomly transform samples in Xb as Xtb ;

15 for v ∈ {1, 2, . . . , b M
m2
c} do

16 Randomly select m2 samples as [Xv ;Tv ] from [Xtb ; Tb] ;

17 Optimize w on [Xv ;Tv ] by minimizing Eq. (3) using Adam ;

18 end

19 end
20 e := e + 1

21 end
22 foreach xi ∈ X do
23 li := f(li;w) ;
24 ci := arg maxh(lih);

25 end

3.4 Learning algorithm

We develop a two-step learning algorithm that combines all the self-learning
tasks to train GATCluster in an unsupervised learning manner. The total loss
function is defined by Eq. (3), in which the entropy loss is computed with the
label features li and lai predicted by the label feature module and attention
module respectively, i.e., LE = LE(l1, · · · , lM ) + LE(la1 , · · · , laM ).

The proposed two-step learning algorithm is presented in Algorithm 1. Since
deep clustering methods usually require a large batch of samples for training,
it is difficult to process large images with a memory-limited device. To tackle
this problem, we divide the large-batch-based training process into two steps for
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each iteration. The first step is the forward process that statistically calculates
the pseudo-targets for a large batch of M samples using the model trained in
the last iteration. To achieve this with a memory-limited device, we further
split the large batch into sub-batches and calculate the label features for each
sub-batch of m1 samples independently. Then, all label features of M samples
are concatenated for computing their pseudo labels. Given these samples with
pseudo labels, the second step is the supervised training process that trains the
model with a sub-batch of m2 samples iteratively.

4 Experiments and Results

4.1 Data

We evaluated the proposed and the compared deep clustering methods on five
datasets, including STL10 [7] that contains 13K 96 × 96 images of 10 clusters,
ImageNet-10 [5] that contains 13K images of 10 clusters, ImageNet-Dog [5] that
contains 19.5K images of 15 dog subcategories, Cifar10 and Cifar100-20 [24].
The image size of ImageNet-10 and ImageNet-Dog is around 500× 300. Cifar10
and Cifar100-20 both contain 60K 32× 32 images, and have 10 and 20 clusters.

4.2 Implementation details

At the training stage, especially at the beginning, samples tend to be clustered by
color cues. Therefore, we took grayscale images as inputs except for ImageNet-
Dog, as the color plays an important role in differentiating the sub-categories of
dogs. It is noted that the images are converted to grayscale after applying the

random color jittering during training. For simplicity, we assume Σ =

[
δ 0
0 δ

]
,

and there are only three parameters for Gaussian kernel to be estimated, i.e.,
[µx, µy; δ]. We used Adam to optimize the network parameters and the base
learning rate was set to 0.001. We set the batch size M to 1000 for STL10 and
ImageNet-10, 1500 for ImageNet-Dog, 4000 for Cifar10, and 6000 for Cifar100-20.
The sub-batch size m1 in calculating pseudo targets can be adjusted according
to the device memory and will not affect the results. The sub-batch size m2 was
32 for all experiments. Hyper parameters α, α1, α2, and α3 were empirically set
to 0.05, 5, 5, and 3 respectively.

In all experiments, we used the VGG-style convolutional network with batch
normalization to implement the image feature extraction module. The architec-
ture details of different experiments can be found in the supplementary.

4.3 Evaluation metrics

We used three popular metrics to evaluate the performance of the involved clus-
tering methods, including Adjusted Rand Index (ARI) [19], Normalized Mutual
Information (NMI) [40] and clustering Accuracy (ACC) [27].
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Table 1. Comparison with the existing methods. GATCluster-128 resizes input images
to 128×128 for ImageNet-10 and ImageNet-Dog while other models take 96×96 images
as inputs. On Cifar10 and Cifar100, the input size is 32 × 32. The best three results
are highlighted in bold .

Method
STL10 ImageNet-10 ImageNet-dog Cifar10 Cifar100-20

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

k-means [31] 0.192 0.125 0.061 0.241 0.119 0.057 0.105 0.055 0.020 0.229 0.087 0.049 0.130 0.084 0.028

SC [34] 0.159 0.098 0.048 0.274 0.151 0.076 0.111 0.038 0.013 0.247 0.103 0.085 0.136 0.090 0.022

AC [11] 0.332 0.239 0.140 0.242 0.138 0.067 0.139 0.037 0.021 0.228 0.105 0.065 0.138 0.098 0.034

NMF [3] 0.180 0.096 0.046 0.230 0.132 0.065 0.118 0.044 0.016 0.190 0.081 0.034 0.118 0.079 0.026

AE [2] 0.303 0.250 0.161 0.317 0.210 0.152 0.185 0.104 0.073 0.314 0.239 0.169 0.165 0.100 0.048

SAE [2] 0.320 0.252 0.161 0.335 0.212 0.174 0.183 0.113 0.073 0.297 0.247 0.156 0.157 0.109 0.044

SDAE [43] 0.302 0.224 0.152 0.304 0.206 0.138 0.190 0.104 0.078 0.297 0.251 0.163 0.151 0.111 0.046

DeCNN [49] 0.299 0.227 0.162 0.313 0.186 0.142 0.175 0.098 0.073 0.282 0.240 0.174 0.133 0.092 0.038

SWWAE [54] 0.270 0.196 0.136 0.324 0.176 0.160 0.159 0.094 0.076 0.284 0.233 0.164 0.147 0.103 0.039

CatGAN [39] 0.298 0.210 0.139 0.346 0.225 0.157 N/A N/A N/A 0.315 0.265 0.176 N/A N/A N/A

GMVAE [9] 0.282 0.200 0.146 0.334 0.193 0.168 N/A N/A N/A 0.291 0.245 0.167 N/A N/A N/A

JULE-SF [48] 0.274 0.175 0.162 0.293 0.160 0.121 N/A N/A N/A 0.264 0.192 0.136 N/A N/A N/A

JULE-RC [48] 0.277 0.182 0.164 0.300 0.175 0.138 0.138 0.054 0.028 0.272 0.192 0.138 0.137 0.103 0.033

DEC [46] 0.359 0.276 0.186 0.381 0.282 0.203 0.195 0.122 0.079 0.301 0.257 0.161 0.185 0.136 0.050

DAC∗ [5] 0.434 0.347 0.235 0.503 0.369 0.284 0.246 0.182 0.095 0.498 0.379 0.280 0.219 0.162 0.078

DAC [5] 0.470 0.366 0.257 0.527 0.394 0.302 0.275 0.219 0.111 0.522 0.396 0.306 0.238 0.185 0.088

IIC [21] 0.499 N/A N/A N/A N/A N/A N/A N/A N/A 0.617 N/A N/A 0.257 N/A N/A

DCCM [45] 0.482 0.376 0.262 0.710 0.608 0.555 0.383 0.321 0.182 0.623 0.496 0.408 0.327 0.285 0.173

GATCluster 0.583 0.446 0.363 0.739 0.594 0.552 0.322 0.281 0.163 0.610 0.475 0.402 0.281 0.215 0.116

GATCluster-128 N/A N/A N/A 0.762 0.609 0.572 0.333 0.322 0.200 N/A N/A N/A N/A N/A N/A

4.4 Comparison with existing methods

Table 1 presents a comparison with the existing methods. Under the same condi-
tions, the proposed method significantly improves the clustering performance by
8%, 7%, and 10% approximately compared with the best of the others in terms of
ACC, NMI and ARI on STL10. On ImageNet-10, ACC is improved by 5% com-
pared with the strong baseline that is set by the most recently proposed DCCM
[45]. On the sub-category dataset ImageNet-Dog, our method achieves results
comparable to that of DCCM. Moreover, our method is capable of processing
large images, and in that case the clustering results are further improved. On the
small image datasets, i.e., Cifar10 and Cifar100-20, the proposed method also
achieves comparable performance relative to the state-of-the-art. Importantly,
our GATCluster has the interpretability to the learned cluster semantics by pre-
senting the corresponding local regions. The above results strongly demonstrate
the superiority of our proposed method.

4.5 Ablation study

To validate the effectiveness of each component, we conducted the ablation s-
tudies as shown in Table 2. Similar to [13], each variant was evaluated ten times
and the best accuracy, average accuracy and the standard deviation are report-
ed. Table 2 demonstrates that the best accuracy is achieved when all learning
tasks are used with grayscale images. Particularly, the attention mapping (AP)
improves the accuracy by up to 4.4 percent for the best accuracy and 4.3 per-
cent for average accuracy. This is attributed to that the attention module has
the ability to localize the discriminative regions with respect to the whole image
semantic, and thus it can well capture the expected object-oriented semantics,
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Fig. 4. Visualization of GATCluster on STL10 and ImageNet10. For each class, an
example image, the predicted label feature, and the attention map overlaid on the
image are shown from left to right.

as shown in Figure 4. In addition, the color information is a strong distraction
for object clustering, and better clustering results can be obtained after the color
images are changed to grayscale. We do not show the results of ablated entropy
loss, as it is easy to get trapped at trivial solutions in our experiments.

Table 2. Ablation studies of GATCluster on STL10.

Method
ACC NMI ARI

Best Mean Std Best Mean Std Best Mean Std

Color 0.556 0.517 0.034 0.427 0.402 0.022 0.341 0.298 0.031

No TI 0.576 0.546 0.016 0.435 0.417 0.012 0.347 0.325 0.014

No SM 0.579 0.529 0.029 0.438 0.412 0.019 0.356 0.310 0.024

No AM 0.539 0.494 0.020 0.416 0.383 0.015 0.316 0.282 0.013

Full setting 0.583 0.537 0.033 0.446 0.415 0.022 0.363 0.315 0.032

4.6 Effectiveness of image size

The biggest image size used by most of the existing unsupervised clustering
methods is not larger than 96 × 96 (e.g., in STL10). However, images in the
modern datasets usually have much larger sizes, which are not effectively ex-
plored by unsupervised deep clustering methods. With the proposed two-step
learning algorithm, we are able to process large images. An interesting ques-
tion then arises: will large images help produce a better clustering accuracy?
To answer this question, we explored the effect of image size on clustering re-
sults. Specifically, we evaluated four input image sizes, i.e., 96 × 96, 128 × 128,
160×160, and 192×192 by simply resizing the original images on ImageNet-10.
We conducted five experimental trails for each image size and report the best
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and average accuracies as well as the standard deviation in Table 3. The results
show that the clustering performance is significantly improved when the image
size is increased from 96 × 96 to 128 × 128. It is demonstrated that taking the
larger images as inputs can benefit the clustering.

Practically, our proposed methods can be performed on much larger size of
images. The clustering results are not further improved when the image size is
larger than 128 × 128. It may be due to that networks become deepened with
an increased image size, and thus there is a trade-off between the number of
network parameters and the size of the training dataset. However, it is valuable
to explore larger size of images for clustering in the future.

Table 3. Clustering results of different
image sizes on ImageNet-10.

Size
ACC NMI ARI

Best Mean Std Best Mean Std Best Mean Std

96 0.739 0.708 0.031 0.594 0.581 0.012 0.552 0.529 0.019

128 0.762 0.735 0.020 0.609 0.592 0.013 0.572 0.544 0.023

160 0.712 0.669 0.033 0.567 0.511 0.043 0.500 0.453 0.039

192 0.738 0.608 0.067 0.612 0.474 0.071 0.559 0.405 0.079

Table 4. Clustering results of different at-
tention map sizes on ImageNet-10.

Size
ACC NMI ARI

Best Mean Std Best Mean Std Best Mean Std

2 0.746 0.666 0.050 0.625 0.538 0.050 0.569 0.477 0.045

4 0.706 0.678 0.017 0.539 0.528 0.012 0.486 0.473 0.014

6 0.762 0.735 0.020 0.609 0.592 0.013 0.571 0.544 0.023

8 0.742 0.719 0.018 0.618 0.594 0.019 0.561 0.536 0.018

10 0.671 0.645 0.020 0.549 0.520 0.021 0.478 0.450 0.020

4.7 Effectiveness of attention map size

A high-resolution attention map will provide precise location but weaken the
global semantics. We evaluated the effect of the attention map size on the clus-
tering results for ImageNet-10. We set the size of input image in this experiment
to 128 × 128, and evaluate five sizes of attention map (in pixels): 2 × 2, 4 × 4,
6× 6, 8× 8, and 10× 10 as shown in Table 4. It shows that the 6× 6 attention
map achieves the best results.

5 Conclusion

For deep unsupervised clustering, we introduce a Label Feature Theorem that
guarantees the learned features are one-hot encoded and all pre-defined clusters
are nonempty. Based on this theorem, we formulate the clustering problem with
four self learning tasks. Particulary, the attention mechanism can facilitate the
formation of object semantics during the training process. We design a memory-
efficient learning algorithm for processing large images. GATCluster model has a
great potential for clustering the images with complex contents and discovering
discriminative local regions in the unsupervised setting.

6 Acknowledgments

The research was supported by the National Natural Science Foundation of
China (61976167, U19B2030, 61571353) and the Science and Technology Projects
of Xian, China (201809170CX11JC12).



Self-Supervised Gaussian-Attention Network for Image Clustering 15

References

1. Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., Zhang,
L.: Bottom-up and top-down attention for image captioning and visual question
answering. In: CVPR (2018)

2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., Montreal, U.: Greedy layer-
wise training of deep networks. NeurIPS 19, 153–160 (2007)

3. Cai, D., He, X., Wang, X., Bao, H., Han, J.: Locality preserving nonnegative matrix
factorization. In: IJCAI. pp. 1010–1015 (2009)

4. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised
learning of visual features. In: ECCV. vol. 11218, pp. 139–156 (2018)

5. Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering.
In: ICCV. pp. 5880–5888 (2017)

6. Chen, D., Lv, J., Zhang, Y.: Unsupervised multi-manifold clustering by learning
deep representation. In: AAAI Workshops. AAAI Workshops, vol. WS-17. AAAI
Press (2017)

7. Coates, A., Ng, A.Y., Lee, H.: An analysis of single-layer networks in unsupervised
feature learning. In: AISTATS. vol. 15, pp. 215–223 (2011)

8. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
CVPR. vol. 1, pp. 886–893 vol. 1 (2005)

9. Dilokthanakul, N., Mediano, P.A.M., Garnelo, M., Lee, M.C.H., Salimbeni, H.,
Arulkumaran, K., Shanahan, M.: Deep unsupervised clustering with gaussian mix-
ture variational autoencoders. ArXiv abs/1611.02648 (2017)

10. Dizaji, K.G., Herandi, A., Deng, C., Cai, W., Huang, H.: Deep clustering via
joint convolutional autoencoder embedding and relative entropy minimization. In:
ICCV. pp. 5747–5756 (2017)

11. Franti, P., Virmajoki, O., Hautamaki, V.: Fast agglomerative clustering using a
k-nearest neighbor graph. IEEE Transactions on Pattern Analysis and Machine
Intelligence 28(11), 1875–1881 (2006)

12. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by
predicting image rotations. In: ICLR. OpenReview.net (2018)

13. Haeusser, P., Plapp, J., Golkov, V., Aljalbout, E., Cremers, D.: Associative deep
clustering: Training a classification network with no labels. In: Brox, T., Bruhn,
A., Fritz, M. (eds.) Pattern Recognition. pp. 18–32 (2019)

14. He, T., Tian, Z., Huang, W., Shen, C., Qiao, Y., Sun, C.: An end-to-end textspotter
with explicit alignment and attention. In: CVPR (2018)

15. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

16. Hsu, C., Lin, C.: Cnn-based joint clustering and representation learning with fea-
ture drift compensation for large-scale image data. IEEE Transactions on Multi-
media 20(2), 421–429 (2018)

17. Hu, W., Miyato, T., Tokui, S., Matsumoto, E., Sugiyama, M.: Learning discrete
representations via information maximizing self-augmented training. In: ICML.
vol. 70, pp. 1558–1567 (2017)

18. Huang, P., Huang, Y., Wang, W., Wang, L.: Deep embedding network for cluster-
ing. In: ICPR. pp. 1532–1537 (2014)

19. Hubert, L., Arabie, P.: Comparing partitions. Journal of classification 2(1), 193–
218 (1985)

20. Ji, P., Zhang, T., Li, H., Salzmann, M., Reid, I.: Deep subspace clustering networks.
In: NeurIPS. pp. 23–32 (2017)



16 C. Niu et al.

21. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsuper-
vised image classification and segmentation. In: ICCV (2019)

22. Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H.: Variational deep embedding:
An unsupervised and generative approach to clustering. In: IJCAI. pp. 1965–1972
(2017)

23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013)
24. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.,

University of Toronto (2009)
25. Li, F., Qiao, H., Zhang, B.: Discriminatively boosted image clustering with fully

convolutional auto-encoders. Pattern Recognition 83, 161 – 173 (2018)
26. Li, K., Wu, Z., Peng, K.C., Ernst, J., Fu, Y.: Tell me where to look: Guided

attention inference network. In: CVPR (2018)
27. Li, T., Ding, C.H.Q.: The relationships among various nonnegative matrix factor-

ization methods for clustering. In: ICDM. pp. 362–371. IEEE Computer Society
(2006)

28. Li, W., Zhu, X., Gong, S.: Harmonious attention network for person re-
identification. In: CVPR (2018)

29. Liu, J., Gao, C., Meng, D., Hauptmann, A.G.: Decidenet: Counting varying den-
sity crowds through attention guided detection and density estimation. In: CVPR
(2018)

30. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV (1999)
31. Macqueen, J.: Some methods for classification and analysis of multivariate observa-

tions. In: In 5-th Berkeley Symposium on Mathematical Statistics and Probability.
pp. 281–297 (1967)

32. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.J.: Adversarial autoencoders.
CoRR abs/1511.05644 (2015)
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