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1 Network architectures

The detailed structure of our model is given as follows. We use PCB(k, c, s, d) to de-
note a probabilistic contextual block (PCB) block, as illustrated in Figure 1(a). k, c,
s, and d denote kernel size, filter number, stride size, and dilation rate, respectively.
Similarly, residual block (RB) is defined as RB(k, c, s, d), which is given in Figure
1(b). Let DB(k, c, s) denote a convolution-LeakyReLU(0.2) layer, CB(k, c, s) denote
a convolution-ELU layer, Conv(k, c, s) denote a convolution layer, and ×4 denote
nearest-neighbor upsampling operator. Our visual consistency network consists of mask
prediction network (MPN) and region inpainting network (RIN).
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Fig. 1: The illustration of our computation units.

MPN: RB(5,64,2,1)-RB(3,128,2,1)-RB(3,128,1,2)-RB(3,128,1,4)-MPN-bottleneck-
RB(3, 128, 1, 1)-×4-RB(3, 64, 1,1)-×4-RB(3,32,1,1)-CB(3,16,1)-Conv(3,1,1)-logit-
sigmoid

RIN: PCB(5,32,1,1)-PCB(3,64,2,1)-PCB(3,64,1,1)-PCB(3,128,2,1)-PCB(3,128,1,1)-
PCB(3,128,1,2)-PCB(3,128,1,2)-PCB(3,128,1,4)-PCB(3,128,1,4)-PCB(3,128,1,1)- con-
catenated with MPN-bottleneck-×4-PCB(3,64,1,1)-PCB(3,64,1,1)-×4-PCB(3,32,1,1)-
PCB(3,32,1,1)-Conv(3,3,1)-clipped to [-1,1]

Discriminator: DB(5,64,2)-DB(5,128,2)-DB(5,128,2)-DB(5,256,2)-DB(5,512,2)-FC
(output channel 1)
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2 Implementation details

Baseline methods We use CA [10], GMC [9], PC [6], and AttentiveGAN [8] for com-
parison. The implementations of these baselines are based on the official codes from
their authors. CA, GMC, and PC are trained in the same way as ours. AttentiveGAN is
trained in the author’s given approach with a few data (20 images in 480× 720).

Training data generation Direct blending image O and N using Eq. 1 will lead to
noticeable edges, which are strong indicators for the model distinguish noisy areas.
This will inevitably sacrifice the semantic understanding capability of the used model.
Thus, we dilate the M into M̃ by the iterative Gaussian smoothing in [9] and then apply
M← M̃ in Eq. 1 to generate degradation images for training.

Training strategy There are two training stages. In the first stage, MPN and RIN are
separately trained: optimizing minθFLm(F (I),M), and minθGLg(G(I|M),O) us-
ing Adam solver [4] (β1 = 0.5, β2 = 0.9) with both the learning rates as 1e − 4,
λadv = 0, and batch size as 8. Then after both networks converge (around 80k itera-
tions for FFHQ), we jointly optimize minθF ,θGλmLm(F (I),M) + Lg(G(I|F (I)),O)
using Adam solver (β1 = 0.5, β2 = 0.9) with λm = 2.0, learning rate 1e−5, and batch
size 4. The convergence of this stage takes around another 80k iterations for FFHQ. For
Places2 and ImageNet, the first stage costs at least 140k iterations.

Hyper-parameters tuning Our evaluation results are produced with the following pa-
rameters setting: λr = 1.4, λs = 1e − 4, λf = 1e − 3, and λa = 1e − 3. Reasonable
results could be expected with λr ∈ [0.6, 5], λs ∈ [1e−4, 1e−3], λf ∈ [1e−3, 5e−2],
and λa ∈ [2e− 4, 1e− 3].

Dataset descriptions We use FFHQ1 [3], CelebA-HQ 2 [2], ImageNet3 [1], Places24

[12], and Raindrop removal5 [8] in our experiments.

3 More experiments

3.1 Self-supervised representation learning

Similar to Pathak et al. [7], we train the encoder of a standard AlexNet [5] on ImageNet
from scratch along with a decoder in blind inpainting setting (with only l1 loss, and the
noisy images are randomly chosen from ImageNet as well). The linear classification
accuracy on ImageNet using the trained conv5 features is 16.1%, higher than random
(14.1%) and Pathak et al. (15.5%).

1 https://github.com/NVlabs/ffhq-dataset
2 https://drive.google.com/drive/folders/0B4qLcYyJmiz0TXY1NG02bzZVRGs
3 http://image-net.org/download
4 http://places2.csail.mit.edu/download.html
5 https://drive.google.com/drive/folders/1e7R76s6vwUJxILOcAsthgDLPSnOrQ49K

https://github.com/NVlabs/ffhq-dataset
https://drive.google.com/drive/folders/0B4qLcYyJmiz0TXY1NG02bzZVRGs
http://image-net.org/download
http://places2.csail.mit.edu/download.html
https://drive.google.com/drive/folders/1e7R76s6vwUJxILOcAsthgDLPSnOrQ49K
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(a) (b) (c) (d) (e) (f)

Fig. 2: Applying our blind inpainting to face images (FFHQ) iteratively. (a) Input image.
(b)-(e) our results by applying it iteratively from 1 to 4 times, respectively. (f) Ground
truth.

Fig. 3: Blind inpainting changes by ρ in PCN on FFHQ. From the left to right: the
ground truth, input, and results with ρ from 0 to 1 with step size 0.2. Best viewed with
zoom-in.

3.2 Iterative processing

Fig. 2 shows the visual changes brought by applying our method iteratively to an image.
It will further edit degraded regions for fitting context but compromise image fidelity
as it modifies a few valid regions gradually. Generally, the model transforms the input
image into the one in its learned manifold. We suppose the oil painting effects in Fig.
2(d)-(e) are caused by the used perceptual loss.

3.3 More ablation studies

How the inconsistency pixel ratio of ρ affects PCN is presented in Figure 3. As said
in the paper, increasing ρ makes VCN tend to generate missing parts based on context
instead of blending the introduced ‘noise’.

More visual comparisons on ablation study about different VCN variants are given
in Figure 4.
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3.4 More visual comparisons

Graffiti removal We give more comparisons against other methods [10,9,6] on FFHQ
damaged with graffiti (Figure 5 and 6). The used graffiti patterns are self-built (7 types
with size 256× 256) and not included in the training.

Synthetic degraded images using natural images and random strokes Synthetic ex-
periments on FFHQ (Figure 7 and 8), Places2 (Figure 9 and 10) and ImageNet (Figure
11 and 12) are presented.

Model generalization on raindrop removal More visual evaluations about the severe
raindrop removal are given in Figure 13 and 14.

Model robustness against different filling contents in the missing region Figure 15
and 16 show more examples of the results of our methods for various fillings (not in-
cluded in the training) in blind inpainting.

4 Another face-swap example

Figure 17 gives more examples about face-swap on FFHQ.
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(a) (b) (c) (d) (e) (f)

Fig. 4: Visual comparisons on FFHQ using VCN variants. (a) Input image. (b) VCN
w/o MPN. (c) VCN w/o skip. (d) VCN w/o semantics. (e) VCN-RM. (f) VCN full.
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(a) (b) (c) (d) (e) (f)

Fig. 5: Visual comparisons on FFHQ damaged by graffiti. (a) Input image. (b) CA [10].
(c) GMC [9]. (d) PC [6]. (e) GC [11]. (f) Our results. Best viewed with zoom-in.
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(a) (b) (c) (d) (e) (f)

Fig. 6: Visual comparisons on FFHQ damaged by graffiti. (a) Input image. (b) CA [10].
(c) GMC [9]. (d) PC [6]. (e) GC [11]. (f) Our results. Best viewed with zoom-in.
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(a) (b) (c) (d) (e) (f)

Fig. 7: Visual comparisons on FFHQ damaged by the images from CelebA-HQ testing
set with random strokes. (a) Input image. (b) CA [10]. (c) GMC [9]. (d) PC [6]. (e) GC
[11]. (f) Our results. Best viewed with zoom-in.
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(a) (b) (c) (d) (e) (f)

Fig. 8: Visual comparisons on FFHQ damaged by the images from CelebA-HQ testing
set with random strokes. (a) Input image. (b) CA [10]. (c) GMC [9]. (d) PC [6]. (e) GC
[11]. (f) Our results. Best viewed with zoom-in.
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(a) (b) (c) (d) (e) (f)

Fig. 9: Visual comparisons on Places2 damaged by the images from ImageNet testing
set with random strokes. (a) Input image. (b) CA [10]. (c) GMC [9]. (d) PC [6]. (e) GC
[11]. (f) Our results. Best viewed with zoom-in.
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(a) (b) (c) (d) (e) (f)

Fig. 10: Visual comparisons on Places2 damaged by the images from ImageNet testing
set with random strokes. (a) Input image. (b) CA [10]. (c) GMC [9]. (d) PC [6]. (e) GC
[11]. (f) Our results. Best viewed with zoom-in.



12 Y. Wang et al.

(a) (b) (c) (d) (e) (f)

Fig. 11: Visual comparisons on ImageNet damaged by the images from Places2 testing
set with random strokes. (a) Input image. (b) CA [10]. (c) GMC [9]. (d) PC [6]. (e) GC
[11]. (f) Our results. Best viewed with zoom-in.
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(a) (b) (c) (d) (e) (f)

Fig. 12: Visual comparisons on ImageNet damaged by the images from Places2 testing
set with random strokes. (a) Input image. (b) CA [10]. (c) GMC [9]. (d) PC [6]. (e) GC
[11]. (f) Our results. Best viewed with zoom-in.
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(a) (b) (c)

Fig. 13: Visual evaluations on raindrop removal dataset. (a): Input image. (b): Atten-
tiveGAN [8]. (c): Ours. Best viewed with zoom-in.



VCNet: A Robust Approach to Blind Image Inpainting 15

(a) (b) (c)

Fig. 14: Visual evaluations on raindrop removal dataset. (a): Input image. (b): Atten-
tiveGAN [8]. (c): Ours. Best viewed with zoom-in.
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Fig. 15: Visual evaluations on FFHQ with random masks filled with different contents.
The 1st, 3rd, 5th, 7th, 9th rows: input, the remaining rows: the corresponding results
from our model. The last two images are filled with contents drew from CelebA-HQ
and ImageNet respectively.



VCNet: A Robust Approach to Blind Image Inpainting 17

(a) (b) (a) (b)

Fig. 16: Visual evaluations on Places2-HD (512 × 680) with random masks filled with
different contents. (a): input. (b): the corresponding results from our model. Best viewed
with zoom-in.

Fig. 17: Visual editing (face swap) on FFHQ. The first and third row: images with coarse
editing where a new face is pasted at the image center, the second and fourth row: the
corresponding results from our model. Best viewed with zoom-in.
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