
GroSS: Group-Size Series Decomposition for
Grouped Architecture Search

A Appendix

A.1 Network Definitions

In this section, we will provide the explicit definitions of the networks used for our
experiments. In Table 1, we detail the structure of our 4-layer network. Table 2
lists the non-standard classifier structure used for VGG-16 on CIFAR-10. All
convolutional and fully-connected layers are followed by a ReLU non-linearity,
with the exception of the final fully-connected layers in the classifiers.

Table 1: Architecture of our 4-layer network. Each convolution has a 3×3 kernel
and is followed by a ReLU non-linearity and a 2 × 2 max pooling layer

Conv 1 Conv 2 Conv 3 Conv 4 Classifier

conv(3 −→ 32) conv(32 −→ 32) conv(32 −→ 64) conv(64 −→ 64) fc(256−→256)
fc(256−→10)

Table 2: VGG-16 classifier structure for CIFAR-10 and ImageNet

Dataset Layers

CIFAR-10
fc(512−→512)
fc(512−→10)

fc(25088−→4096)
ImageNet fc(4096−→4096)

fc(4096−→1000)

A.2 Training From Scratch

4-layer Network. Convolutional weights in the network are initialised with the
He initialisation [1] in the “fan out” mode with a ReLU non-linearity. The weights
of the fully-connected layers are initialised with a zero-mean, 0.01-variance nor-
mal distribution. All bias terms in the network are initialised to 0. The network
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is trained from scratch on our CIFAR-10 training split for 100 epochs using
stochastic gradient descent (SGD). We adopt a initial learning rate of 0.1 and
momentum of 0.9. The learning rate is decayed by a factor of 0.1 after 50 and 75
epochs. We train the network 5 times and use the weights with median accuracy
for further experiments.

VGG-16. For our CIFAR-10 variant of VGG-16, the weights are initialised
with identical strategy to the 4-layer network. We train this full network on
CIFAR-10 for a total of 200 epochs, again using stochastic gradient descent.
The initial learning rate is set to 0.05 and momentum to 0.9. The learning rate
is decayed by a factor of 0.1 after 100 and 150 epochs. For ImageNet, we take
the pretrained model from the Pytorch (Torchvision) [2] model zoo. Specifically,
we take the variant without batch-normalisation layers.

ResNet-18. We again make use of the Torchvision model zoo, and use their
ResNet-18 model trained on ImageNet.

A.3 High-Compression Decomposition Structure

We recreate the exact structure used for VGG-16 acceleration in [3] with GroSS,
which is listed in 3. The constraint that is used in our other experiments, where
bottlenecks should be constant width, is relaxed. Since the group-size must be
a factor of both bottleneck dimensions (in and out), the bottleneck dimensions
chosen by Wang et al.do limit the choice of ranks in GroSS. We perform decom-
position as with our other VGG-16 experiments, without any bells or whistles.
We found that a longer fine-tuning schedule was required to best recover accu-
racy. Therefore, finetuning consists of 14 epochs with a learning rate of 5× 10−4

and decay after 8 and 12 epochs. This led to an accuracy consistent with [3].

Table 3: Decomposition structure as used in [3]. Group-sizes marked with *
represent the original choice

Bottleneck
Layer (in → out) Group-sizes

conv1_2 11 → 18 11*

conv2_1 10 → 24 5 10*

conv2_2 28 → 28 1 7 14* 28

conv3_1 36 → 48 3 9* 18

conv3_2 60 → 48 15* 30 60

conv3_3 64 → 56 16* 32 64

conv4_1 64 → 100 16* 32 64

conv4_2 116 → 100 29* 58 116

conv4_3 132 → 132 3 33* 66

conv5_1 224 → 224 7 28 56* 112

conv5_2 224 → 224 7 28 56* 112

conv5_3 224 → 224 7 28 56* 112
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