
GroSS: Group-Size Series Decomposition for
Grouped Architecture Search

Henry Howard-Jenkins[0000−0003−3914−5883], Yiwen Li[0000−0002−7794−9391], and
Victor Adrian Prisacariu[0000−0002−0630−6129]

Active Vision Laboratory, University of Oxford, UK
{henryhj, kate, victor}@robots.ox.ac.uk

Abstract. We present a novel approach which is able to explore the con-
figuration of grouped convolutions within neural networks. Group-size
Series (GroSS) decomposition is a mathematical formulation of tensor
factorisation into a series of approximations of increasing rank terms.
GroSS allows for dynamic and differentiable selection of factorisation
rank, which is analogous to a grouped convolution. Therefore, to the
best of our knowledge, GroSS is the first method to enable simultaneous
training of differing numbers of groups within a single layer, as well as all
possible combinations between layers. In doing so, GroSS is able to train
an entire grouped convolution architecture search-space concurrently. We
demonstrate this through architecture searches with performance objec-
tives on multiple datasets and networks. GroSS enables more effective
and efficient search for grouped convolutional architectures.

Keywords: Group Convolution, Network Acceleration, Architecture Search

1 Introduction

In recent years, there has been a flurry of deep neural networks (DNNs) produc-
ing remarkable results on a broad variety of tasks. In particular, grouped convo-
lution has become a widely used tool in some prevalent networks. ResNeXt [28]
used grouped convolution for improved accuracy over the analogous ResNets [7].
On the other hand, Xception [3], MobileNet [8], and various others [29, 19] have
used depthwise convolutions, which are the special case of grouped convolutions
where the number of groups is equal to the number of in channels, in a for ex-
tremely low-cost inference. With these architectures, grouped convolution has
proven to be a valuable design tool for high-performance and low-cost design
alike. But, its application to these contrasting performance profiles has so far,
to the best of our knowledge, remained relatively unexplored.

Finding a heuristic or intuition for how combinations of grouped convolu-
tions with varying numbers of groups interact within a network is challenging.
Grouped convolution, therefore, is presents itself as an ideal candidate for Neural
Architecture Search (NAS), which has provided an alternative to hand designed
networks. NAS allows for the search and even direct optimisation of the net-
work’s structure. But, the search space for architectures is often vast, with po-
tentially limitless design choices. Furthermore, each configuration must undergo



2 H. Howard-Jenkins et al.

some training or fine-tuning for its efficacy to be determined. This has led to the
development of methods which lump multiple design parameters together, which
reduce the search space in a principled manner [23], as well as creating the need
for sophisticated search algorithms [17, 27], which can more quickly converge to
an improved design. Both techniques reduce the number of search iterations and
ultimately reduce the number of required training/fine-tuning stages.

In this work, however, we do not wish to make assumptions about the grouped
convolution manifold. We achieve this with the introduction of a Group-size Se-
ries (GroSS) decomposition. GroSS allows us to train the entire search space of
architectures simultaneously. In doing so, we shift the expense of architecture
search with respect to groups away from decomposition and training, and to-
wards cheaper test-time sampling. This allows for the exploration of possible
configurations, while significantly reducing the need for imparting bias on the
group design hyperparameter selection.

The contributions of this paper can be summarised as follows:

1. We present GroSS decomposition – a novel formulation of tensor decomposi-
tion as a series of rank approximations. This provides a mathematical basis
for grouped convolution as a series of increasing rank terms.

2. GroSS provides the apparatus for differentiably switching between grouped
convolution ranks. Therefore, to the best of our knowledge, it is the first
simultaneous training of differing numbers of groups within a single layer,
as well as the all possible configurations between layers. This makes feasible,
for the first time, a search for rank selection for network compression.

3. We explore this concurrently-trained architecture space in the context of
network acceleration. We factorise a small network, as well VGG-16 and
ResNet-18, and propose exhaustive and breadth-first searches on CIFAR-10
and ImageNet. We demonstrate the efficacy of the GroSS for rank selection
search over a more conventional approach of partial training schedules.

2 Related Work

Grouped convolution has had a wide impact on neural network architectures,
particularly due to its efficiency. It was first introduced in AlexNet [14] as an
aid for the single network to be trained over multiple GPUs. Since then, it has
had a wide impact on DNN architecture design. Deep Roots [9] was the first
to introduce group convolution for efficiency, while ResNeXt [28] used grouped
convolutions synonymously with concept of cardinality, ultimately exploiting the
efficiency of grouped convolutions for high-accuracy network design. The reduced
complexity of grouped convolution allowed for ResNeXt to incorporate deeper
layers within the ResNet-analogous residual blocks [7]. In all, this allowed higher
accuracy with a similar inference cost as an equivalent ResNet. The efficiency of
grouped convolution has also led to several low-cost network designs. Sifre [20]
first introduced depthwise separable convolutions, which were later utilised by
Xception [3]. MobileNet [8] utilised a ResNet-like bottleneck design with depth-
wise convolutions for an extremely efficient network with mobile applications



GroSS Decomposition 3

in mind. ShuffleNet [29] was also based on a depthwise bottleneck, however,
pointwise layers were also made grouped convolutions.

Previous works [10, 5, 15, 25] have applied low-rank approximation of con-
volution for network compression and acceleration. Block Term Decomposition
(BTD) [4] has recently been applied to the task of network factorisation [2],
where it was shown that the BTD factorisation of a convolutional weight was
equivalent to a grouped convolution within a bottleneck architecture. Wang et
al. [26] applied this equivalency for network acceleration. Since decomposition
is costly, these methods have relied on heuristics and intuition to set hyperpa-
rameters such as the rank of successive layers within the decomposition. In this
paper, we present a method for decomposition which allows for exploration of
the decomposition hyperparameters and all the combinations.

Existing architecture search methods have overwhelmingly favoured rein-
forcement learning. Examples of this include, but are not limited to, NAS-
Net [30], MNasNet [22], ReLeq-Net [6]. In broad terms, these methods all set a
baseline structure, which is manipulated by a separate controller. The controller
optimises the structure through and objective based on network performance.
There has also been work in differentiable architecture search [27, 17] which
makes the network architecture manipulations themselves differentiable. In ad-
dition, work such as [23] aims to limit the network scaling within a performance
envelope to a single parameter.

These methods all have a commonality: the cost of re-training or fine-tuning
at each stage motivates the recovery of the optimal architecture in as few training
steps as possible, whether this is achieved through a trained controller, direct
optimisation or significantly reducing the search space. In this work, however,
GroSS allows efficient weight-sharing between varying grouped architectures,
thus enabling them to be trained at once. This is similar to the task of one-shot
architecture search. SMASH [1] use a hypernetwork to predict weights for each
architecture. The work of Li et al. [16] bares most resemblance to this paper,
where randomly sampled architectures are used to train shared-weights.

3 Method

In this section, we will first introduce Block Term Decomposition (BTD) and
detail how its factorisation can be applied to a convolutional layer. After that,
we will introduce GroSS decomposition, where we formulate a unification of a
series of ranked decompositions so that they can dynamically and differentially
be combined. We detail the training strategy for training the whole series at once.
Finally, we detail the methodology of our exhaustive and breadth-first search.

3.1 General Block Term Decomposition

Block Term Decomposition (BTD) [4] aims to factorise a tensor into the sum
of multiple low rank-Tuckers [24]. That is, given an N th order tensor X ∈



4 H. Howard-Jenkins et al.

Rd1×d2×...×dN , BTD factorises X into the sum ofR terms with rank (d′1, d
′
2, ..., d

′
N ):

X =

R∑
r=1

Gr ×1 A
(1)
r ×2 A

(2)
r ×3 ...×N A(N)

r

where

{
G ∈ Rd′1×d

′
2×...×d

′
N

A(n)
r ∈ Rdn×d′n , n ∈ {1, ..., N}

(1)

In the above, G is known as the core tensor and we will refer to A as factors
matrices. We use the usual notation ×n to represent the mode-n product [4].

3.2 Converting a Single Convolution to a Bottleneck Using BTD

Here, we can restrict discussion from a general, N-mode, tensor to the 4-mode
weights of a 2D convolution as follows: X ∈ Rt×u×v×w, where t and u represent
the number of input and output channels, and v and w the spatial size of the
filter kernel. Typically the spatial extent of each filter is small and thus we only
factorise t and u. To eliminate superscripts, we define B = A(1) and C = A(2).
Therefore, the BTD for convolutional weights is expressed as follows:

X =

R∑
r=1

Gr ×1 Br ×2 Cr

where


G ∈ Rt′×u′×v×w

B ∈ Rt×t′

C ∈ Ru×u′

(2)

This factorisation of the convolutional weights into R groups forms a three-
layer bottleneck-style structure [2]: a pointwise (1×1) convolution P ∈ Rt×(Rt′)×1×1,
formed from factor B; followed by a grouped convolution R ∈ Rt′×(Ru′)×v×w,
formed from core G and with R groups; and finally another pointwise convo-
lution Q ∈ R(Ru′)×u×1×1, formed from factor C. With careful selection of the
BTD parameters, the bottleneck approximation can be applied to any standard
convolutional layer. This is visualised in Figure 1.

In Table 1, we detail how the dimensions of the bottleneck architecture are
determined from its corresponding convolutional layer, and indicate how prop-
erties such as stride, padding and bias are applied within the bottleneck for

•	•	•

•	•	•

C1

Cr
t

Rt'

P R Q

Ru'

u

t'

u'
B1 Br

G1

Gr

≈

X

t

u

Fig. 1: Formation of bottleneck layers P, R and Q from BTD cores and factors.



GroSS Decomposition 5

Table 1: Convolution to grouped bottleneck. The table states how the convolu-
tional parameters are used in the equivalent bottleneck

Filter Size Cin Cout Groups Bias Stride Padding

Convolution v × w t u 1 B S P

1× 1 t Rt′ 1 - 1 0
Bottleneck v × w Rt′ Ru′ R - S P

1× 1 Ru′ u 1 B 1 0

equivalency with the original layer. It is worth noting that we often refer to
the quantities t′ or u′ as the group-size; this quantity determines the number of
channels in each group and is equivalent to the rank of the decomposition.

3.3 Group-size Series Decomposition

Group-size Series (GroSS) decomposition unifies multiple ranks of BTD factori-
sations. This is achieved by defining each successive factorisation relative to the
lower order ranks. Thus we ensure that higher rank decompositions only contain
information that was missed by the lower order approximations. Therefore the
ith approximation of X is given as follows:

X =

Ri∑
r=1

[(gr)i + (G′r)i−1]×1 [(br)i + (B′r)i−1]×2 [(cr)i + (C′r)i−1]

where


(gr)i, (G′r)i−1 ∈ Rt′i×u

′
i×v×w

(br)i, (B′r)i−1 ∈ Rt×t′i

(cr)i, (C′r)i−1 ∈ Ru×u′i

(3)

Omitting r from the notation, gi, bi and ci represent the additional informa-
tion captured between the (i− 1)th and ith rank of approximation, and G′(i−1),

B′(i−1) and C′(i−1) to represent total approximation from lower rank approxima-
tions in the form of cores and factors. However, both the core and factors must
be recomputed so that the dimensions match the ranks required Ri, which is not
a trivial manipulation.

Instead, we introduce a function, Ψg→h(), which allows the weights of a
grouped convolution to be “expanded”. The expanded weight from a convo-
lution with group-size g can be used in a convolution with group-size h, where
h > g, giving identical outputs:

Wg ∗g F ≡ Ψg→h(Wg) ∗h F (4)

where Wg is the weight for a grouped convolution, ∗g refers to convolution with
group-size g, and F is the feature map to which the convolution is applied. We
provide an example visualisation of Ψ() in Figure 2. This allows us to conve-
niently reformulate the GroSS decomposition in terms of the successive convo-
lutional weights obtained from BTD, rather than within the cores and factors



6 H. Howard-Jenkins et al.

in out in out in out

W1 Ψ1→2(W1) Ψ1→4(W1)

Zero

Weight

✱1 ✱2 ✱4

Fig. 2: Visualisation of a depthwise weight, W1, expanded for convolutions with
groups of size 2 and 4.

directly. More specifically, we define the bottleneck weights for the N th order
GroSS decomposition with group-sizes, S = {s1, ..., sN}, as follows:

RN = Ψs1→sN (R1) +

N∑
i=2

Ψsi→sN (ri)

PN = P1 +

N∑
i=2

pi, QN = Q1 +

N∑
i=2

qi

(5)

R1, P1 and Q1 represent the weights obtained from the lowest rank decom-
position present in the series. ri, pi and qi represent the additional information
that the ith rank decomposition contribute to the bottleneck approximation:

pi = Pi − P(i−1), ri = Ri − Ψs(i−1)→si(R(i−1)), qi = Qi −Q(i−1). (6)

This formulation involving only manipulation of the convolutional weights is
exactly equivalent to forming the bottleneck components ri, pi and qi from gi,
bi and ci, as in the general BTD to bottleneck case.

Further, the grouped convolution weight expansion, Ψ(), enables us to dy-
namically, and differentiably, change the group-size of a convolution. In itself,
this is not particularly useful: a convolution with a larger group-size is requires
more operations and more memory, while yielding identical outputs. However,
it allows for direct interaction between differently ranked network decomposi-
tion and, therefore, the representation of one rank by the combination of lower
ranks. Thus, GroSS treats the decomposition of the original convolution as the
sum of successive order approximations, with each order contributing additional
representational power.

Training GroSS Simultaneously The expression of a group-size si decom-
position as the combination of lower rank decompositions is useful because it
enables the group-size to be dynamically changed during training. The expan-
sion and summation of convolutional weights is differentiable and so training at
a high rank, also optimises the lower rank approximations simultaneously. To
the best of our knowledge GroSS is the first method that allows weight-sharing
between, and training of, convolutions with varying numbers of groups.



GroSS Decomposition 7

We leverage the series form of the factorisation during training, by randomly
sampling a group-size for each decomposed layer at each iteration. We sample a
group-size si for each decomposed layer uniformly. Through uniform sampling,
we are able to train each network configuration equally.

3.4 Search

The objective for all the searches performed within in this paper is: given a base
configuration, we aim to find an alternative configuration which is more accurate,
but offers the same or cheaper inference. We implement two forms of search to
achieve this leveraging GroSS decomposition: exhaustive and breadth-first.

Exhaustive. Within the exhaustive search, all possible configurations are evalu-
ated. In this search, we simply filter any configuration with multiply accumulates
(MACs) above the respective base configuration. After filtering, we can select
the highest accuracy remaining.

Breadth-first Search. Where an exhaustive search is not feasible due to the
sheer number of possible configurations, we use a greedy breadth-first search. We
first randomly select a configuration which requires fewer operations for inference
than the base configuration. We evaluate all neighbouring configurations—those
which only require one layer to have it’s group-size changed—of the currently
selected configuration. We select the neighbour with the highest accuracy that
does not exceed the number of MACs as the base configuration for the next
step. We repeat this step for a maximum of 25 times, or until there are no more
accurate neighbours not exceeding the cost of the base configuration.

This is repeated 20 times. The most accurate configuration from all of the 20
runs is considered the result of the search. Since the search for a base configura-
tion with fewer MACs is contained within the search-space with a higher limit,
we perform them incrementally. This results in the same search process, but the
first 10 runs are initialised using the top-10 highest accuracy results from the
smaller search. We found that this generally led to faster stopping.

4 Application of GroSS

In this section, we explain how we apply GroSS to a several models across
datasets. We first detail the dataset on which evaluation is conducted. Next,
we describe the network architecture on which perform GroSS decomposition.
Finally, we list the procedure for the decomposition and fine-tuning.

4.1 Datasets

We perform our experimental evaluation on CIFAR-10 [13] and ImageNet [14].
CIFAR-10 is a dataset consisting of 10 classes. The size of each image is 32×32. In



8 H. Howard-Jenkins et al.

total there are 60,000 images, which are split into 50,000 train images and 10,000
testing images. We further divide the training set into a training and validation
splits with 40,000 and 10,000 images, respectively. ImageNet consists of 1000
classes, with 1.2 million training images and 50,000 validation images. Since the
test annotations are not available, we report our accuracy on the validation set.

4.2 Models

In this paper, we perform on three general network architectures: a custom 4-
layer network, VGG-16 [21], and ResNet-18 [7]. Here, we provide an overview of
the network definitions, with more details in the supplementary material.

Our 4-layer network has four convolutional layers, with output channel di-
mensions of 32, 32, 64 and 64, followed by two fully-connected layers of size 256
and 10. In our ImageNet experiments, we use a standard VGG-16 and ResNet-18,
identical to those in [21] and [7], respectively. However, we make some changes
to the fully connected structure in VGG-16 for training and inference on CIFAR-
10. The convolutional layers instead followed by a 2 × 2 max-pooling and two
fully-connected layers of size 512 and 10, respectively. A ReLU layer and dropout
with probability of 0.5 is applied between the fully-connected layers.

4.3 Decomposition

We perform GroSS decomposition on our small 4-layer network, as well as VGG-
16 [21]. In each case we decompose all convolutional layers in the network aside
from the first. Unless otherwise stated, we set the bottleneck width equal to
the number of input channels. For the 4-layer network, group-sizes are set to all
powers of 2 which do not exceed the bottleneck width for that respective layer.
This leads to a total of 252 configurations represented by our decomposition.
We decompose each layer in VGG-16 and ResNet-18 into 4 group-sizes: (1, 4,
16, 32). This leads to a total of 412 and 416 configurations represented by the
decomposed VGG-16 and ResNet-18, respectively.

Our formulation of GroSS decomposition as a series of convolutional weight
differences (expanded weights in the case of the grouped convolution), as detailed
by Equation 5 means that we are able to use an off-the-shelf BTD framework [12].
For each group-size, we set the stopping criteria for BTD identically: when the
decrease in approximation error between steps is below 1× 10−6 for the 4-layer
network and 1 × 10−5 for VGG-16, or 5 × 105 steps have elapsed. We define
approximation error as the Frobenius norm between the original tensor and the
product of the BTD cores and factors divided by the Frobenius norm of the
original tensor. For the 4-layer network, we perform this decomposition 5 times.

4.4 Fine-tuning

CIFAR-10. After we have performed GroSS decomposition on the network,
we then fine-tune on the classification task. For the 4-layer network, we tune



GroSS Decomposition 9

for 150 epochs with a batch-size of 256, an initial learning rate of 0.0001 and
momentum 0.9. We decay the learning rate by a factor of 0.1 after both 80
and 120 epochs. For VGG-16, we fine-tune with the same SGD parameters and
batch-size, however we train for 200 epochs, and decay the learning rate after
100 and 150 epochs. All network parameters are frozen aside from the GroSS
decomposition weights. During training, there is a 0.5 probability of horizontal
flipping, zero-padding of size 2 is applied around all borders and a random 32×32
crop is taken from the resulting image.

ImageNet. We decompose VGG-16 and ResNet-18 before funetuning on Ima-
geNet. For VGG-16, we train using SGD for a total of 4 epochs with a batch-size
of 128, leading to approximately 104 iterations. The initial learning rate is set
to 10−5, which is decayed by a factor of 0.1 after 2 epochs. Momentum is set
to 0.9. Again, all the network parameters are frozen, aside from the decomposi-
tion weights. For ResNet-18, we train for 8 epochs in total with a batch size of
512. The initial learning rate is set to 5× 10−5, with decay every 2 epochs The
images are resized so that the smallest side is of size 256. During training, the
resized images are flipped horizontally with a probability of 0.5 and a random
224 × 224 crop is taken. During testing, we simply take a centre crop from the
resized image, hence evaluating 1-crop accuracy.

Individual Configurations. For the decomposition in the conventional man-
ner, i.e. a singular group-size configuration, we decompose using exactly the same
routine as with GroSS. However, the fine-tuning schedules are slightly modified.
On CIFAR-10, we reduce the schedule for our 4-layer network and our CIFAR
VGG-16 to 100 epochs. The initial learning rate is increased to 0.001, and de-
cayed at 80 epochs. On Imagenet, we do not freeze the non-decomposed layers.
The VGG-16 configurations have a schedule of 6 epochs, with learning rate de-
cay occurring after every 2 epochs. The initial learning rate is kept at 10−4. For
ResNet-18 configurations, we increase batch size to 512 and again unfreeze all
layers. We run for a total of 12 epochs, with initial learning rate 10−3 and decay
after 8 and 10 epochs. Due to this being the conventional BTD factoristation
strategy, we often refer to this as the true accuracy of a configuration.

5 Results

In this section, we demonstrate the effectiveness of GroSS. First, we explore
group-size selection for network acceleration through search on our GroSS de-
composition. Secondly, we justify the design of GroSS over a more simply using
partial training schedules for group configurations.

5.1 Group-size Search

Here, we evaluate the performance of our search. We split our results by dataset,
with our CIFAR-10 results being followed by our results on ImageNet.



10 H. Howard-Jenkins et al.

Fig. 3: Exhaustive search for the 4-layer network on CIFAR-10. Each search is
colour coded. The circles and stars mark the performance of the baseline and
found configuration, respectively.

For each search, we report the change in accuracy of the found configuration
over the baseline, as well as the percentage reduction in MACs compared to the
baseline. We are primarily concerned with exploring the impact of the number of
groups on the performance of the network, rather than other design parameters
such as the bottleneck dimensions. In our experimental setup, the inference cost
between configurations varies only in the number of groups in each bottleneck.
However, there is significant overhead from other layers in the network that
remains constant between configurations. Therefore, we report the reduction
in total MACs, as well as the contribution from the group layers alone. This
provides greater insight into grouped architecture design and the performance
of the searches using GroSS.

Table 2: Exhaustive search for our 4-layer network on CIFAR-10

4-Layer Network Accuracy ∆MACs
Configuration MACs GroSS True ∆Acc. Total G.Conv

Full 5.13M - 83.99 (0.53) - - -

Baseline: 32 32 32 5.09M 82.55 (0.07) 83.70 (0.05) - - -
32 16 64 5.09M 82.87 (0.14) 84.05 (0.07) ↑ 0.35 0.00% 0.00%

Baseline: 16 16 16 3.47M 82.22 (0.10) 82.94 (0.06) - - -
VBMF [18]: 16 8 16 3.33M 81.76 (0.10) 82.83 (0.10) ↓ 0.11 ↓ 4.25% ↓ 9.09%

8 16 64 3.33M 82.66 (0.11) 83.88 (0.10) ↑ 0.94 ↓ 4.25% ↓ 9.09%

Baseline: 8 8 8 2.66M 81.44 (0.16) 82.86 (0.10) - - -
2 16 32 2.59M 82.12 (0.16) 83.50 (0.07) ↑ 0.64 ↓ 2.77% ↓ 9.09%

Baseline: 4 4 4 2.26M 80.66 (0.13) 82.37 (0.11) - - -

1 8 16 2.22M 81.32 (0.16) 82.45 (0.15) ↑ 0.08 ↓ 1.63% ↓ 9.09%

Depthwise: 1 1 1 1.95M 79.34 (0.14) 81.70 (0.32) - - -



GroSS Decomposition 11

Table 3: Breadth-first search on our VGG-16 network on CIFAR-10

VGG-16 (CIFAR) Accuracy ∆MACs
Configuration MACs GroSS True ∆Acc. Total G.Conv

Full 314M - 91.52 - - -

32 32 32 32 32 32 32 32 32 32 32 32 121M 90.97 91.57 - - -
VBMF [18] 118M 90.97 91.31 ↓ 0.26 ↓ 2.68% ↓ 6.18%

32 4 16 32 16 16 32 16 4 16 32 1 103M 91.31 91.41 ↓ 0.16 ↓ 14.6% ↓ 33.7%

16 16 16 16 16 16 16 16 16 16 16 16 94.6M 91.13 91.19 - - -
4 4 16 32 16 16 1 32 4 32 16 1 86.7M 91.28 91.31 ↑ 0.12 ↓ 8.36% ↓ 30.2%

4 4 4 4 4 4 4 4 4 4 4 4 74.9M 90.43 90.90 - - -

1 1 1 16 16 4 1 1 4 4 1 4 74.1M 90.97 91.14 ↑ 0.24 ↓ 1.11% ↓ 12.6%

1 1 1 1 1 1 1 1 1 1 1 1 70.0M 90.24 90.66 - - -

CIFAR-10. The results of the exhaustive search on the 4-layer network are
shown in Table 2, where the decomposition and tune is performed 5 times for each
configuration and the mean and standard deviation are reported decompositions
with uniform rank values across layers (4, 8, 16, and 32) are chosen as the baseline
configurations for the search, such that we perform search across the range of
possible configurations. For each baseline configuration we are able to find an
alternative that is more accurate whilst requiring fewer operations. The results
of the search are also visualised in Figure 3.

In the case of our CIFAR-10 VGG-16 network, the 412 configurations pro-
duced by our GroSS decomposition are too many to feasibly enable exhaustive
evaluation. We, therefore, perform a breadth-first search. The full details of how
this search is performed are described in Section 3.4. Results for this search on
VGG-16 are shown in Table 3.

For the searches on the 4, 8 and 16 baselines, we are able to find configura-
tions which meet the objective. However, in the case of the search below the 32
baseline, the found configuration’s true accuracy is less than that of the baseline.
We speculate that this is because 32 is the maximum rank in the decomposition.
Therefore, the rank of each layer can never be increased above that of the base-
line. This means that configurations have less room to manoeuvre in targeting
more heavy-duty layers at key stages of the network.

We also include a configuration found through Variational Bayesian Matrix
Factorisation (VBMF) [18], which is used for one-shot rank selection in [11]. For
both networks, we were able to find more accurate configurations which require
fewer or the same number of operations than the VBMF rank selection. In fact,
Kim et al. [11] note that, although they achieve good network compression results
with the result of VBMF, they had not investigated whether this method of rank
selection was optimal. The results in Table 2 demonstrate that VBMF is not
optimal in this case, and GroSS is an effective tool to determine this.



12 H. Howard-Jenkins et al.

Table 4: Breadth-first search for VGG-16 and ResNet-18 on ImageNet. * denotes
the configuration is using the decomposition structure from [26]

ImageNet Accuracy ∆MACs
Configuration MACs GroSS True ∆Acc. Total G.Conv

VGG-16 (Full) 15.49B - 71.59 - - -

16 16 16 16 16 16 16 16 16 16 16 16 4.75B 70.25 70.77 - - -
1 32 32 32 16 1 32 16 32 4 32 16 4.70B 70.40 70.82 ↑ 0.04 ↓ 0.99% ↓ 3.65%

4 4 4 4 4 4 4 4 4 4 4 4 3.78B 69.73 70.51 - - -

1 1 4 4 4 4 32 16 1 1 32 1 3.78B 69.97 70.63 ↑ 0.12 ↓ 0.14% ↓ 1.69%

1 1 1 1 1 1 1 1 1 1 1 1 3.54B 68.98 70.28 - - -

[26]: 11 10 14 9 15 16 16 29 33 56 56 56 * 1.16B 62.64 66.85 - - -

11 10 14 9 15 32 64 58 3 56 7 7 * 1.16B 63.11 67.22 ↑ 0.37 ↓ 0.39% ↓ 4.89%

ResNet-18 (Full) 1.82B - 69.76 - - -

Baseline 16s 738M 60.77 65.80 - - -
16 16 4 32 32 32 32 32 16 32 32 32 16 4 32 16 715M 61.25 65.84 ↑ 0.04 ↓ 3.18% ↓ 11.5%

Baseline 4s 586M 60.02 65.46 - - -

1 4 4 1 16 4 1 4 32 4 4 4 16 4 4 4 585M 60.31 65.44 ↑ 0.18 ↓ 0.08% ↓ 0.88%

1 1 1 1 1 1 1 1 1 1 1 1 547M 58.61 65.16 - - -

ImageNet. We now move to a larger, more complex dataset in ImageNet. We
perform the same GroSS decomposition and breadth-first search on conventional
VGG-16 and ResNet-18 structures. We search against baseline configurations of
uniform 4s and 16s. The results are listed in Table 4 and we provide visualisation
of the search on VGG-16 in Figure 4.

We also include results for an alternative decomposition structure and group
configuration identical to that used in [26], which we detail in the supplementary
material. This decomposition structure aggressively reduces widths in bottleneck
layers to achieve a large compression ratio. In our search, we are able to show
that the original configuration of groups within this structure is not optimal,

Fig. 4: Visualisation of the VGG-16 breadth-first search on ImageNet. (Left)
and (Right) are the searches against the 4s and 16s baselines, respectively.



GroSS Decomposition 13

with our found configuration leading to a significant improvement in accuracy
as well as a slight speed up.

The results show that exploration of group selection with GroSS generalises
well across datasets and architectures. In every search performed, we found con-
figurations that met the objective of increased accuracy with lower inference
cost.

Fig. 5: Search-space vs true validation accuracy for our 4-layer network on
CIFAR-10. Here we plot the accuracy of 45 random configurations of our 4-
layer network for 3 different methods of obtaining a search-space. The accuracy
of each configuration is plotted against its true validation accuracy.

5.2 GroSS Vs. Conventional Fine-tuning

In this section, we justify the need for GroSS by evaluating it against using a
partial fine-tuning strategy for each individual configuration. For this, we select
45 random group-size configurations of our 4-layer network and fine-tine accord-
ing to our individual schedule, which is outlined in Sec. 4.4, giving us a true
validation accuracy for each configuration. We can then evaluate the validation
accuracy of these same configurations in our GroSS search-space. This procedure
allows us to visualise how representative GroSS is of the true accuracy.

For comparison, we also include the validation accuracy of the same config-
urations with no fine-tuning, as well as with a shortened schedule of 5 epochs.
The partial fine-tune could be considered a reasonable solution to reducing the
burden of training while performing a configuration search.

We visualise the search-space against the true validation accuracies in Fig-
ure 5. Qualitatively, it can be seen that the validation accuracies produced by
GroSS produce a significantly more consistent search space. The points appear
to be more tightly distributed and closer to the ideal distribution (y = x). To
measure this quantitatively, we compute the top-5 average precision of the search
spaces. We simulate searches across the entire range of configurations by evaluat-
ing the average precision at multiple slices through the search-space. This allows
for comparison across the space, not just the most accurate group configurations.



14 H. Howard-Jenkins et al.

Table 5: Average precision across the range of the search space. We compute the
average precision using the top 5 true validation accuracies as positive recalls.
“X ↓” refers to the average precision computed after the top-X configurations
have been removed from the search

Fine-tune Average Precision (Top 5)
Strategy All 10 ↓ 20 ↓ 30 ↓ Mean

No Fine-tuning 43.0 43.8 86.3 69.8 60.7
Partial Fine-tuning 35.2 64.0 42.5 66.4 52.0
GroSS 44.1 63.8 94.3 82.5 71.2

Table 5 lists the results of this average precision computation. GroSS is con-
sistently as good or better than no fine-tuning and the partial schedule at each
slice. This leads to a significant improvement in search performance across the
range of configurations which is highlighted by the mean average precision.

When making the comparison between GroSS and a partial training strat-
egy, it is worth considering the computational requirements of each. Running
inference for a new configuration in either of the conventional decompositions
requires a new network to be initialised, and weights to be loaded. However, since
group-sizes are handled dynamically within a GroSS decomposition, switching
between them is essentially free, with no structure change or weight loading. This
leads to GroSS having a significant speed improvement for running inference (7s
vs 287s) over the 45 configurations. This only increases with more configurations
tested. For example, the inference for the exhaustive search on the GroSS decom-
position of the 4-layer network took only 9s for 252 configurations. Similarly, the
total number of training epochs for the partial training strategy increase linearly
with the number of configurations, but remain constant for GroSS. With larger
search-spaces, such as those visualised in Figure 4, the accuracy and performance
benefits of GroSS combine to make grouped architecture search feasible where
it might not have been before.

6 Conclusions

In this paper, we have presented GroSS, a series BTD factorisation which allows
for the dynamic assignment and simultaneous training of differing numbers of
groups within a layer. We have shown how GroSS-decomposed layers can be com-
bined to train an entire grouped convolution search space at once. We confirmed
the value of these configurations through an exhaustive search and a breadth-
first search. We further demonstrate that, without GroSS, these searches would
be less effective and dramatically less efficient.

Acknowledgements We gratefully acknowledge the European Commission
Project Multiple-actOrs Virtual Empathic CARegiver for the Elder (MoveCare)
for financially supporting the authors for this work.



GroSS Decomposition 15

References

1. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: SMASH: One-shot model architec-
ture search through hypernetworks. arXiv Preprint arXiv:1708.05344 (2017)

2. Chen, Y., Jin, X., Kang, B., Feng, J., Yan, S.: Sharing residual units through
collective tensor factorization to improve deep neural networks. In: IJCAI. pp.
635–641 (2018)

3. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 1251–1258 (2017)

4. De Lathauwer, L.: Decompositions of a higher-order tensor in block terms—part
II: Definitions and uniqueness. SIAM Journal on Matrix Analysis and Applications
30(3), 1033–1066 (2008)

5. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear
structure within convolutional networks for efficient evaluation. In: Advances in
Neural Information Processing Systems. pp. 1269–1277 (2014)

6. Elthakeb, A.T., Pilligundla, P., Yazdanbakhsh, A., Kinzer, S., Esmaeilzadeh, H.:
ReLeQ: A reinforcement learning approach for deep quantization of neural net-
works. arXiv Preprint arXiv:1811.01704 (2018)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 770–778 (2016)

8. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: MobileNets: Efficient convolutional neural networks for
mobile vision applications. arXiv Preprint arXiv:1704.04861 (2017)

9. Ioannou, Y., Robertson, D., Cipolla, R., Criminisi, A.: Deep roots: Improving cnn
efficiency with hierarchical filter groups. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1231–1240 (2017)

10. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. arXiv Preprint arXiv:1405.3866 (2014)

11. Kim, Y.D., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of deep
convolutional neural networks for fast and low power mobile applications. arXiv
Preprint arXiv:1511.06530 (2015)

12. Kossaifi, J., Panagakis, Y., Anandkumar, A., Pantic, M.: Tensorly: Tensor learning
in python. The Journal of Machine Learning Research 20(1), 925–930 (2019)

13. Krizhevsky, A., Nair, V., Hinton, G.: The CIFAR-10 dataset. Online: Http://www.
Cs. Toronto. Edu/Kriz/Cifar. HTML 55 (2014)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems. pp. 1097–1105 (2012)

15. Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., Lempitsky, V.: Speeding-up
convolutional neural networks using fine-tuned CP-decomposition. arXiv Preprint
arXiv:1412.6553 (2014)

16. Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture
search. arXiv Preprint arXiv:1902.07638 (2019)

17. Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable architecture search. arXiv
Preprint arXiv:1806.09055 (2018)

18. Nakajima, S., Sugiyama, M., Babacan, S.D., Tomioka, R.: Global analytic solution
of fully-observed variational Bayesian matrix factorization. Journal of Machine
Learning Research 14(Jan), 1–37 (2013)



16 H. Howard-Jenkins et al.

19. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: In-
verted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 4510–4520 (2018)

20. Sifre, L., Mallat, S.: Rigid-motion scattering for image classification (2014)
21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. arXiv Preprint arXiv:1409.1556 (2014)
22. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.:

MnasNet: Platform-aware neural architecture search for mobile. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2820–2828
(2019)

23. Tan, M., Le, Q.V.: EfficientNet: Rethinking model scaling for convolutional neural
networks. arXiv Preprint arXiv:1905.11946 (2019)

24. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31(3), 279–311 (1966)

25. Vanhoucke, V., Senior, A., Mao, M.Z.: Improving the speed of neural networks on
CPUs (2011)

26. Wang, P., Hu, Q., Fang, Z., Zhao, C., Cheng, J.: DeepSearch: A fast image search
framework for mobile devices. ACM Transactions on Multimedia Computing, Com-
munications, and Applications (TOMM) 14(1), 6 (2018)

27. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia,
Y., Keutzer, K.: FBNet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 10734–10742 (2019)

28. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 1492–1500 (2017)

29. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: An extremely efficient convolu-
tional neural network for mobile devices. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 6848–6856 (2018)

30. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 8697–8710 (2018)


