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1 Experiment Details

Neural Architecture Search: Similar to previous approaches, we use a single LSTM
layer with 100 hidden units as the trainable policy, πθ. It takes an empty embedding
as input and generates a sequence of l outputs, where l is the number of decisions to
make in order to decide about a generator’s structure. Each element of the sequence
at position i is then passed through the following composition of functions, including
a tanh constant of 2.5 and a sampling logit temperature of 5.0, in order to reduce its
dimensionality and produce a probability distribution:

softmax ◦ 2.5 · tanh ◦ 0.2 · linear ◦ li (1)

Each search is ran on five servers, totalling to 40 NVIDIA GeForce GTX 1080 Ti,
and each GPU can fit up to three models which are trained in parallel depending on the
sampled model’s memory usage at each step. Our generator search took 2 days and our
discriminator search took 10 days due to the memory requirement needed for the pre-
trained generator, sampled discriminator, and two VGG networks to compute Lvgg and
LPIPS respectively in each training pipeline. Due to the huge resource needed to run
discriminator search, we limit the number of mult-add operations and run a constrained
search for a generator, as mentioned in the paper. The performance of our generator for
the discriminator search is listed in Table 1.

Each training pipeline is run by a separate process/worker and each worker asyn-
chronously samples the probability distribution (Eq (1)), trains the resulting model, and
returns the result (PSNR for generator search and LPIPS for discriminator search) from
the validation set, V̂ , of the proxy task. The result would then be normalized using a
minmax normalization, N , to scale it from 0 to 1 with a exponential moving average
baseline,EMA, (decay of 0.95) to obtain the reward. We then add the sampled entropy,
H , (ζ = 0.0001) to the reward and use it to update πθ via REINFORCE using an Adam
optimizer (β1 = 0.9, β2 = 0.999, ε = 10−8) with learning rate of 3.5e−4. The training
process is detailed in Eq. 2 where M̃ is the metric of choice (PSNR, LPIPS, etc), and L̃
is the training loss (LG and LD for generator and discriminator search respectively).
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Table 1. Our TPSR-NOGAN model serves as a good basis for the ×4 upscaling discriminator
search as it is the most computationally efficient and has performance that is comparable with
other distortion-driven models in the literature within the same computational regime. Given that
our goal is to build a perceptual-based model, we do not optimize our base model further. Higher
is better for distortion metrics. red/blue represents best/second best respectively

Scale Model
Params

(K)
Mult-Adds

(G)
Set5

PSNR/SSIM
Set14

PSNR/SSIM
B100

PSNR/SSIM
Urban100

PSNR/SSIM
FSRCNN [3] 12 6.0 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020

×2 MOREMNAS-C [2] 25 5.5 37.06/0.9561 32.75/0.9094 31.50/0.8904 29.92/0.9023
TPSR-NOGAN 60 14.0 37.38/0.9583 33.00/0.9123 31.75/0.8942 30.61/0.9119
FSRCNN [3] 12 4.6 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280

×4 FEQE-P [7] 96 5.6 31.53/0.8824 28.21/0.7714 27.32/0.7273 25.32/0.7583
TPSR-NOGAN 61 3.6 31.10/0.8779 27.95/0.7663 27.15/0.7214 24.97/0.7456

Super-resolution: The set of hyper-parameters chosen for both the proxy task and the
full task is summarized in Table 2.

Table 2. Hyper-parameters for the searching (proxy-task) and training (full-task) of the generator
and discriminator. The generator search is done on ×2 upscaling and the discriminator is done on
×4 upscaling. We use the features before activations in the pre-trained VGG19 network provided
by PyTorch to computeLvgg . Each input patch is an RGB image. We used the same model in both
proxy and full task to closely align the performance between both tasks. For speed ups during the
search, we use lower fidelity estimates, lower patch size etc, that have been shown in previous
works such as ESRGAN to preserve the ranking of the model.

Search Hyper-parameter Proxy-task Full-task
Generator Epochs 50 450

Batch size 64 16
Input patch size 12×12 96×96

LG (α) 1 1

Discriminator Epochs 50 450
Batch size 32 16

Input patch size 24×24 48×48
VGG19 Features 22 54
LG (α, λ, γ) (0.01, 1, 0.005) (0.01, 1, 0.005)
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For all experiments, we use 800 images for training and 100 images for validation
from the DIV2K dataset. We train for the stated number of epochs in Table 2 using an
Adam optimizer (β1 = 0.9, β2 = 0.999, ε = 10−8) with learning rate of 1e − 4 at
the beginning and 5e − 5 after 200 epochs for the full task. All training patches are
randomly flipped, both horizontally and vertically, rotated 90◦, and subtracted by the
mean RGB values of the DIV2K dataset. All operations in the generator is followed by
a PReLU and all operations in the discriminator is followed by batch normalization and
PReLU.

Finally, all experiments are built on top of EDSR’s [5] code base4 using PyTorch
1.2. PSNR and SSIM [9] were evaluated on each image’s Y-channel and NIQE [6] and
PI [1] were evaluated using the official code for the PIRM 2018 SR Challenge5 on
Matlab R2018b. As mentioned in the main paper, all images are shaved by their scaling
factor before evaluation apart from that of LPIPS (version 0.1), which we evaluate using
the linear calibration of the features in the provided VGG network6. In order to compare
to previous works, the number of Mult-Add operations are calculated by upscaling to an
1280 * 720 image. Images from state-of-the-art models are taken from Wang et al. [8]7

and Thang et al. [7]8 or generated using provided model by Dong et al. [4]9.

4 https://github.com/thstkdgus35/EDSR-PyTorch
5 https://github.com/roimehrez/PIRM2018
6 https://github.com/richzhang/PerceptualSimilarity
7 https://github.com/xinntao/ESRGAN
8 https://github.com/thangvubk/FEQE
9 https://github.com/tensorlayer/srgan
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