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Here we give proofs of all results from the main paper

Duff, T., Kohn, K., Leykin, A., Pajdla, T.: PL1P - Point-line minimal problems
under partial visibility in three views. In: European Conference on Computer Vi-
sion (ECCV), 2020,

some additional results for camera registration, and other details. On the last
page, we provide a glossary of assumptions, properties and concepts used through
the whole article; see Section 14. Our code is available at https://github.com/
timduff35/PL1P.

10 Note on partial visibility in two views

Let us recall that we consider reduced minimal and reduced camera-minimal
PL1Ps in three views, since there is only one such PL1P in two views, namely
the five-points problem.

To argue this, we first notice that free lines cannot occur in a reduced PL1P
in two views. Indeed, if there was a free line – no matter if it is observed in both
views, one view, or not at all – we could forget the free line both in 3D and in
the images to reduce the PL1P (i.e. forgetting the free line satisfies Definition 5
of reducibility).

Secondly, we argue that pins cannot appear in a reduced PL1P in two views.
To see this we distinguish several cases, depending on how often a hypothetical
pin is observed in the views.

– If there exists a pin in 3D that is not observed in any of the two views, then
the PL1P would be reducible by simply forgetting that pin.

– If a pin in 3D is observed in exactly one of the two views, it could either
appear as a pin or as a free line in that view (i.e. depending on if that view
also observes the point of the pin or not).
1. If the single view seeing the pin also observes its point, the PL1P is

reducible by forgetting the pin.
2. If the single view seeing the pin does not observe its point, that view

cannot observe any of the other pins of that point either (due to our
assumptions on O at the end of Definition 1). Hence, no matter how the
other view observes that point and its other pins, the PL1P is reducible
by forgetting the point together with all of its pins.

https://github.com/timduff35/PL1P
https://github.com/timduff35/PL1P
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– If a pin in 3D is observed in both views, it could appear as either a pin or a
free line in either of the views.
1. If both views also observe the point of the pin, the PL1P is reducible by

forgetting the pin.
2. If at least one of the two views does not observe the point of the pin, then

we may argue as in case 2 above that such a view cannot observe any of
the other pins of that point either. Once again, the PL1P is reducible by
forgetting the point together with all of its pins.

Finally, a PL1P which observes a point without pins in at most one of its
views is reducible by forgetting that point. All in all, we conclude that reduced
PL1Ps in two views can only consist of points without pins which are observed in
both views. The only such (camera-)minimal problem is the five-points problem.

11 Note on registration problems

Among the minimal problems we discovered that there are extensions of the
classical five-point problem in two views that can be interpreted as camera reg-
istration problems; see Table 4.

Remark 4. Extension of reduced camera-minimal problems by means of camera
registration problems is one simple construction for (camera-)minimal problems
in arbitrarily many views.

12 Proofs

12.1 Theorems 1 and 4

We start by investigating the implications of the two conditions in Definition 5
of reducibility. When obtaining a new PL1P (p′, l′, I ′,O′) from a given PL1P
(p, l, I,O) by forgetting some of its points and lines, the induced projections Π
and π between the domains and codomains of the joint camera maps yield the
commutative diagram in Figure 1. We call Π the forgetting map, and note that
the map π between the image varieties is completely determined by the forgetting
map Π. If the forgetting map Π satisfies the first condition in Definition 5 (i.e.
for each forgotten point, at most one of its pins is kept), we say that it is feasible.
The second condition in Definition 5 we refer to as the lifting property.

Lemma 3. If the forgetting map Π is feasible, then both Π and π are surjective
and have irreducible fibers13 of equal dimension.

Proof. We first show that Π is surjective and has irreducible fibers of the same
dimension. We may assume that Π forgets either a single point or a single line,
as a every feasible forgetting map is the composition of several feasible forgetting

13 A fiber of a map is the preimage over a single point in its codomain.
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Table 4. Camera registration: minimal problems that can be determined as relative
pose problems for two views appended with a minimal registration problem for the
third camera.

maps which forget either one point or one line. Moreover, the composition of sev-
eral surjective maps with irreducible fibers of equal dimension is again surjective
and has irreducible fibers of the same dimension.

Let us first assume that Π forgets a single line. If this line is the pin of a
point, each fiber of Π is the set of lines in P3 through that point; this set is
isomorphic to P2. If Π forgets a free line, its fibers are isomorphic to G1,3. In
both cases, the forgetting map Π is surjective.

Now let us assume that Π forgets a single point. As Π is feasible, this point
is incident to at most one line in space. Depending on if it is incident to one or
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Xp,l,I × Cm Yp,l,I,O

Xp′,l′,I′ × Cm Yp′,l′,I′,O′

Φ = Φp,l,I,O

Π π

Φ′ = Φp′,l′,I′,O′

Fig. 1. Two PL1Ps and their joint camera maps related by a forgetting map Π. The
upper PL1P is reducible to the lower PL1P iff the forgetting map Π is feasible and
satisfies the lifting property.

zero lines, the fibers of Π are isomorphic to either P1 or P3. In either case, Π is
surjective.

To show that π is surjective with irreducible fibers of equal dimension, we
apply a nearly-identical proof as above to the m factors of π corresponding to
the different views. ut

For a feasible forgetting map Π, we write dim(fiber(Π)), resp. dim(fiber(π)),
for the dimensions of the fibers ofΠ, resp. π. Moreover, we denote by cdeg(p, l, I,O)
the camera-degree of a point-line problem (p, l, I,O). We will also use this no-
tation for point-line problems which are not camera-minimal: in that case, the
camera-degree is either zero (if the joint camera map is not dominant) or ∞.

Lemma 4. Consider Figure 1 with a feasible forgetting map Π.

1. If the upper joint camera map Φ is dominant, so is the lower one Φ′.
2. cdeg(p′, l′, I ′,O′) ≥ cdeg(p, l, I,O).
3. If (p, l, I,O) is minimal, then dim(fiber(Π)) ≤ dim(fiber(π)).

Proof. For a generic image (x′, `′) ∈ Yp′,l′,I′,O′ of the lower PL1P, we consider
a generic image (x, `) ∈ π−1(x′, `′) of the upper PL1P. Every solution S ∈
Φ−1(x, `) of the upper PL1P yields a solution Π(S) of the lower PL1P with the
same cameras. This shows the first two parts of the assertion.

For the third part, since the joint camera map Φ of a minimal PL1P is
dominant, we use part 1 to see that the lower joint camera map Φ′ is also
dominant. This implies:

dim(Xp′,l′,I′ × Cm) ≥ dim(Yp′,l′,I′,O′)
|| ||

dim(Xp,l,I × Cm)− dim(fiber(Π)) dim(Yp,l,I,O)− dim(fiber(π))

Since each minimal PL1P is balanced, i.e. dim(Xp,l,I ×Cm) = dim(Yp,l,I,O), this
concludes the proof. ut

Lemma 5. Consider Figure 1 with a feasible forgetting map Π that satisfies the
lifting property.

1. Φ is dominant ⇔ Φ′ is dominant.
2. cdeg(p′, l′, I ′,O′) = cdeg(p, l, I,O).
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3. dim(fiber(Π)) ≥ dim(fiber(π)).

Proof. We can pick a generic image of the upper PL1P, by first choosing a
generic image (x′, `′) ∈ Yp′,l′,I′,O′ of the lower PL1P and then considering a
generic image (x, `) ∈ π−1(x′, `′) in its fiber. If Φ′ is dominant, a generic solution
S′ ∈ Φ′−1(x′, `′) of the lower PL1P can be lifted to a solution S ∈ Φ−1(x, `) of
the upper PL1P with the same cameras. Together with Lemma 4, this shows the
first two parts of the assertion.

For the third part, we consider a generic element S′ ∈ Xp′,l′,I′ × Cm. By the
lifting property, we have that

dim(fiber(Π)) = dim(Π−1(S′)) ≥ dim(π−1(Φ′(S′))) = dim(fiber(π)). ut

Proof of Lemma 1. Let (p, l, I,O) be a minimal PL1P with camera-degree d.

Fix (x, `) ∈ Yp,l,I,O generic and let γ
(
Φ−1
p,l,I,O(x, `)

)
= {P1, . . . , Pd}. We may

assume that Φ−1
p,l,I,O(x, `) is a nonempty finite set; we wish to show it contains d

elements. We begin by lifting P1, . . . , Pd to partial solutions in Gl1,3×Cm, i.e. by
reconstructing lines in 3D. Our first observation is that each of the l world lines
must be viewed at least twice. Indeed, if a line was observed at most once, then
even if it is a pin (i.e. it passes though a point in 3D) there would be an at
least one-dimensional family of world lines yielding the same view (and possibly
passing through the pin point). This contradicts our assumption that the PL1P
(p, l, I,O) is minimal.

Now since each world line is observed in at least two views, it can be uniquely
recovered from fixed cameras; in other words, each camera solution Pi extends
uniquely to a partial solution (Li, Pi) ∈ Gl1,3 × Cm. To conclude that there are
exactly d lifts

((X1, L1), P1) , . . . , ((Xd, Ld), Pd) ∈ Φ−1
p,l,I,O(x, `),

we note that the condition that each Xi is a lifted solution of the partial solution
(Li, Pi) is given by linear equations depending on Pi and Li. Thus, there is either
a unique or infinitely many such Xi, but since the PL1P (p, l, I,O) is minimal,
the latter cannot hold. ut

Example 1. Lemma 1 does not hold for point-line problems in general. Here we
present a minimal PL4P whose degree is double its camera-degree.

Consider the variety X9,5,I of point-line arrangements consisting of five free
points (red in Figure 2) and five lines (and four additional black points) where
one of the lines (in black) intersects the other four (colorful) lines (in the four
black extra points), i.e.

I = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 5), (2, 5), (3, 5), (4, 5)}.

We are interested in the PL4P in two views where both views observe the five
free points and the first four (colorful) lines, but not the fifth (black) line and
none of the (black) extra points; see Figure 2.
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An arrangement of 5 lines and 9 points
in 3D space. The grey line is not part
of the arrangement.

A projection to two images that forgets
all black features.

Fig. 2. The five-point problem in two views can be combined with the classical Schubert
four-line problem to obtain a minimal PL4P with degree 40 and camera-degree 20.

Clearly this point-line problem contains the classical five-point problem as a
subproblem. In fact, it is reducible to the five-point problem by forgetting all five
lines plus the four extra points. To see this we have to check the lifting property:
for fixed camera poses, adding the first four lines to their views uniquely recovers
these four lines in space. For generic four lines L1, . . . , L4 (shown in blue, green,
orange and pink in Figure 2) in 3D, there are two lines (the black one and the
grey one) which intersect L1, . . . , L4.14 Hence, every solution to the five-point
problem can be lifted to a solution of the PL4P in Figure 2 in two ways.

By Lemma 5, we see that the PL4P is camera-minimal and has the same
camera-degree as the five-point problem, namely 20. Moreover, the PL4P is bal-
anced since its reduction to the balanced five-point problem removes 16 degrees
of freedom both in 3D and in the views. Hence, the PL4P we constructed is
indeed minimal. Since each of the 20 solutions of the five-points problem can be
lifted to two solutions of the PL4P, we have shown that its degree is 40.

Proof of Theorems 1 and 4. Theorem 4 immediately follows from parts 1
and 2 of Lemma 5. To complete the proof of Theorem 1, suppose the upper
PL1P (p, l, I,O) is minimal. From parts 3 of lemmas 4 and 5, we have that Π
and π have equal fiber dimensions. It follows that the lower PL1P (p′, l′, I ′,O′)
is balanced, since

dim(Xp′,l′,I′ × Cm) = dim(Xp,l,I × Cm)− dim(fiber(Π))

= dim(Yp,l,I,O)− dim(fiber(π))

= dim(Yp′,l′,I′,O′).

14 Sottile, F.: Enumerative real algebraic geometry. In: Algorithmic and Quantitative
Aspects of Real Algebraic Geometry in Mathematics and Computer Science. (2001)
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Moreover, from part 1 of Lemma 4 we have that Φ′ is dominant; so (p′, l′, I ′,O′)
is minimal.

For generic image data (x′, `′) ∈ Yp′,l′,I′,O′ and (x, `) ∈ π−1(x′, `′), it remains
to show that the finite sets Φ−1(x, `) and (Φ′)−1(x′, `′) have the same cardinality.
By Theorem 4, we already know this for the camera solutions γ

(
Φ−1(x, `)

)
and

γ
(
(Φ′)−1(x′, `′)

)
. Since both problems are minimal, we are done by Lemma 1.

ut

12.2 Theorems 2, 3, 5, and 7

In this subsection, we give full details on how the local features appearing in
Theorems 2, 3, 5, and 7 are derived. The first Lemma 6 explains why unobserved
features cannot occur in neither minimal nor reduced problems. The next two
Lemmas 7 and 8 give reduction rules for pins.

Lemma 6. Consider a PL1P in three views. If some point or line in space is
not observed in any view, then the PL1P is reducible and not minimal.

– For an unobserved line, the reduction forgets the line.
– For an unobserved point with at most one pin, the reduction forgets the point.
– For an unobserved point with at least two pins, the reduction forgets the point

and all its pins.

Proof. For each bullet we check that the associated forgetting map Π satisfies
the conditions in the definition of reducibility. Feasibility holds vacuously for the
first two bullets and is also easily seen for the third. Lifting solutions in the first
two bullets is also trivial since Π only forgets what is not observed at all. This
argument also shows that dim(fiber(Π)) > 0 = dim(fiber(π)), so by part 3 of
Lemma 4 the PL1P cannot be minimal in the first two bullets.

To verify the lifting property for the third bullet, we note that at most one of
the pins can occur in each of the three views. By the first bullet, we may assume
that all pins are visible. With these assumptions, it follows that the point has
at most three pins. Hence, we are left with the following three cases:

3-space views dim(fiber(Π)) dim(fiber(π))

point with 2 pins 7 4

point with 2 pins 7 6

point with 3 pins 9 6

Now we can easily check that the lifting property is satisfied in each of these three
cases. For instance, for the last row (i.e. a point with three pins), the preimage of

any three pins viewed like under fixed cameras is three planes in space
which necessarily intersect in a point. Thus we can pick that point plus any
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three lines passing through that point and contained in the respective planes to
lift solutions. This shows that the PL1P is reducible as described in the third
bullet. Moreover, we see that dim(fiber(Π)) > dim(fiber(π)) holds in all three
cases depicted above, so the PL1P cannot be minimal by part 3 of Lemma 4. ut

Lemma 7. Consider a PL1P in three views. If some pin is observed in exactly
one view such that the view also observes the point of the pin, then the PL1P is
not minimal and it is reducible by forgetting the pin.

Proof. The forgetting map Π which forgets the pin is clearly feasible. It also
satisfies the lifting property: for a fixed arrangement of cameras that view the
point X of the pin, no matter how the pin is viewed in its single view, there is
in fact a pencil of lines through X yielding that view. This shows that the PL1P
is reducible. Moreover, this reduction satisfies that

dim(fiber(Π)) = 2 > 1 = dim(fiber(π));

so by part 3 of Lemma 4 the PL1P cannot be minimal. ut

Lemma 8. Consider a PL1P in three views. If some pin is observed in exactly
two views such that both views also observe the point of the pin, then the PL1P
is reducible by forgetting the pin.

Proof. The forgetting map Π which forgets the pin is clearly feasible. Is also
satisfies the lifting property: for a fixed arrangement of cameras that view the
point X of the pin, no matter how the pin is viewed in its two views, since it
also passes through X in both views, there is a unique line in 3D through X
yielding these two views. This shows that the PL1P is reducible. ut

With the above lemmas in hand, we are able to enumerate a finite list of local
features that may appear in a reduced (camera-)minimal PL1P in three views
as well as a finite list of reduction rules to obtain such a PL1P. To aid in this
task, we list all possible ways in which free lines and points with 0, 1 or 2 pins
are viewed, and classify them according to whether or not a) they may appear
in a minimal problem and b) they are reducible.

Lemma 9 below dispenses with cases involving local features with free lines
and points with up to two pins that are already handled by Lemma 6, 7, or 8.
The remaining cases are shown in Table 6. For each of these local features, we
may forget either a point and/or some number of lines. Table 6 lists all feasible
forgetting maps Π for each observed local feature. From this, we classify which
observations of local features a) may appear in minimal problems and b) are
reducible.

To determine reducibility of an observed local feature, we simply have to
check if one of the listed feasible forgetting maps satisfies the lifting property.
Finding out if a local feature can be observed in a certain way in a minimal
problem, is more subtle. We use the following two rules to exclude observed
local features from appearing in minimal problems:
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– By Part 3 of Lemma 4, if dim(fiber(Π)) > dim(fiber(π)) for some feasi-
ble forgetting map Π, then the observed local feature cannot occur in any
minimal PL1P.

– A dangling pin (i.e. a pin in 3D which is observed in a single view) cannot
occur in any minimal PL1P.

All observations of local features which we cannot exclude from minimal prob-
lems using the two rules described above, we allow a priori to be part of minimal
PL1Ps. We mark this in Table 6 with a “yes” in the column “minimal”15.

Finally, depending on the outcome of the reducibilty and minimality checks,
we assign each observed local feature listed in Table 6 to one of the Theo-
rems 2,3,5, or 7. This assignment is summarized in Table 5.

can occur in
a minimal
problem?

YES NO

reduced
Theorem 3 Theorem 5

reducible
Theorem 2 Theorem 7

Table 5. Local features observed in three views pertaining to Theorems 2, 3, 5, and 7
with examples.

Lemma 9. All possibilities of how free lines and points with at most two pins
are observed in three views are either treated by Lemmas 6, 7, 8 or appear in
Table 6.

Proof. By Lemma 6, we only have to record the cases where each point and line
is observed at least once. All such cases for free points and free lines are depicted
in rows 1–6 of Table 6. So we are left to discuss points with one or two pins.

Points with one pin: We are distinguishing the different cases by how
often the pin and its point are observed in the three views. We use the short
notation λ : ρ to denote that the pin resp. its point is viewed λ resp. ρ times.
By Lemma 6, we have that λ, ρ ∈ {1, 2, 3}.

1:1 By Lemma 7, we are left with the case where the pin and its point do not
appear in the same view; see row 7 of Table 6.

1:2 By Lemma 7, we can exclude the cases where one view sees the pin together
with its point. Hence, we get that one view sees the pin and the other two
views observe its point; see row 8 of Table 6.

15 Our computations described in Section 7 verify that actually all observed features
marked as minimal in Table 6 do appear in some minimal PL1Ps.
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1:3 Here all three views observe the point and one of them also sees the pin.
This is already handled by Lemma 7 and thus does not appear in Table 6.

2:1 Both such cases are shown in rows 9 and 10 of Table 6.
2:2 By Lemma 8, we may assume that the two views which see the pin do not

both observe its point; see row 11 of Table 6.
2:3 Here all three views observe the point and two of them also see the pin. This

is already handled by Lemma 8 and thus does not appear in Table 6.
3:1 – 3:3 These cases are depicted in rows 12, 13 and 14 of Table 6.

Points with two pins: We are distinguishing the different cases by how
often each pin is observed in the three views. We use the short notation λ1 : λ2

to denote that the first resp. second pin is viewed λ1 resp. λ2 times. By Lemma 6,
we have that λ1, λ2 ∈ {1, 2, 3}.

1:1 By Lemma 7, we can exclude the cases where a view that sees one of the
pins also observes the point. So we get that each view observing one of the
pins does neither see the point nor the other pin; see row 15 of Table 6.

1:2 By Lemma 7, we are left with the cases where the view observing the first
pin does not see the point. So that view cannot see the other pin either. The
other two views both observe the second pin, and at least one of them has to
view the point. By Lemma 8, we may assume that the point is not observed
by both of these views; see row 16 of Table 6.

1:3 Here all three views observe the second pin and one of them also sees the
first pin, so also the point. This is already handled by Lemma 7 and does
not appear in Table 6.

2:2 By Lemma 8, we can exclude the cases where two views observe both pins.
Hence, we are left with the situation where one view sees both pins (and
their point), and the other two views see one pin each. Again by Lemma 8,
we may assume that none of the latter two views observes the point; see
row 17 of Table 6.

2:3 There are exactly two views where both pins, and hence the point are seen.
We apply Lemma 8 to see that this does not appear in Table 6.

3:3 See row 18 of Table 6. ut

Next, we prove Lemmas 10, 12, and 13, which address the cases involving
three or more pins. Along the way, we prove Lemma 11, which will also be useful
in establishing Theorem 6.

Lemma 10. Consider a PL1P in three views. If a point with at least three pins
is not completely observed in the views (i.e. at least one view does not see at
least one pin), then the PL1P is reducible by one of the cases in Lemmas 6, 7,
8.

Proof. If the point X or one of its pins is not observed in any view, then we
are in the setting of Lemma 6. Hence, we assume that the point X and each of
its pins is viewed at least once. Let us first assume that the point X is viewed
by exactly one camera. The other two views can each see at most one of its
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pins. Since X has at least three pins in 3D, at least one of its pins must be only
viewed by the same camera which sees the point X. This situation is handled
by Lemma 7.

It is left to consider the cases when X is viewed by at least two cameras.
Let us assume that the point X is observed in exactly two views. As above, at
least one of its pins is not observed by the view not seeing X. So this pin has to
be observed in either one or both of the views which observe the point X. This
shows that the PL1P is reducible by either Lemma 7 or Lemma 8.

Finally, we assume that the point X is observed in all three views. Since
the point X and its pins are (by our assumption in Lemma 10) not completely
observed, one of its pins is seen in either one or two views. This is reducible by
either Lemma 7 or Lemma 8. ut

Lemma 12 shows that a point with 8 pins cannot occur in any reduced
camera-minimal problem; for minimal problems in complete visibility, this is
already a result in [14]. In the generality of camera-minimal problems, this re-
sult does not follow immediately from Lemma 10. However, the next lemma lets
us get around this, and also proves part of Theorem 6.

Lemma 11. Applying any of the following replacements in images of a PL1P
in three views preserves camera-minimality, camera-degrees, and reducedness:

↔ , ↔ , ↔

Proof. The three replacements have in common that they fixate a dangling pin
(when read from left to right) or create a dangling pin (when read from right
to left). We prove the assertions in Lemma 11 for all three replacement rules at
once. For this, we consider a PL1P (p, l, I,O) in three views that views one of
its local features as depicted on the left of any of the three replacement rules.
After applying that replacement rule (from left to right) once, we obtain a new
PL1P (p′, l′, I ′,O′). Clearly, every solution of (p′, l′, I ′,O′) is also a solution of
(p, l, I,O). Moreover, for every solution (X,P ) of (p, l, I,O), there is in fact a
one-dimensional set {(X̃, P )} of solutions of (p, l, I,O) with the same camera
poses P , where the 3D arrangements X̃ differ from the fixed 3D arrangement
X exactly by the dangling pin involved in the replacement rule. Hence, one of
these solutions (X̃, P ) is also a solution of (p′, l′, I ′,O′). This shows

cdeg(p, l, I,O) = cdeg(p′, l′, I ′,O′);

in particular, (p, l, I,O) is camera-minimal if and only if (p′, l′, I ′,O′) is camera-
minimal.

Furthermore, local features, which are observed in one of the five different
ways present in the three replacement rules, are not reducible; see also rows 8,
11, 15, 16, and 17 in Table 6. This means that the reducibility / reducedness of
a point-line problem in three views does not depend on the appearance of local
features observed as in the three replacement rules. More precisely, (p, l, I,O) is
reduced if and only if (p′, l′, I ′,O′) is reduced. ut
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Lemma 12. A reduced camera-minimal PL1P in three views cannot have a
point in 3D with eight pins.

Proof. We assume by contradiction that there is a reduced camera-minimal
PL1P (p, l, I,O) in three views which has a point with eight pins in its 3D
arrangement. By Lemma 10, this point and all its pins are observed in all views.
Since (p, l, I,O) is camera-minimal, its joint camera map is dominant. In par-
ticular, we have that dim(Xp,l,I × C3) ≥ dim(Yp,l,I,O), i.e.

11 ≥ dim(Yp,l,I,O)− dim(Xp,l,I). (3)

If the 3D arrangement of (p, l, I,O) consists only of the point with its eight pins,
then (3) is actually an equality, so (p, l, I,O) is a minimal PL1P completely
observed by three calibrated views. However, in [14] it is shown that this point-
line problem is not minimal, a contradiction.

Hence, we see that the PL1P (p, l, I,O) has to contain at least one other local
feature. By Lemma 9, the only possible local features are either points with at
least three pins or the local features listed in Table 6 which are not reducible
(rows 3,5,6,8,9,11,13–18). Since points with k ≥ 3 pins have to be completely
observed by Lemma 10, they have more degrees of freedom in the 2D images
(= 3(2 +k)) than in the 3D arrangement (= 3 + 2k). Similarly, all non-reducible
features in Table 6, except rows 15 and 16, have more degrees of freedom in the
2D images than in the 3D arrangement. Since the inequality (3) has to hold for
the PL1P (p, l, I,O) and the point with eight pins already makes this inequality
tight, we have shown the following:

If the 3D arrangement of a reduced camera-minimal PL1P in three views (?)
contains a point with eight pins and at least one additional local feature,

then it contains a point with two pins which is either viewed like

(row 15 in Table 6) or (row 16 in Table 6).

In particular, the PL1P (p, l, I,O) has to contain a point with two pins viewed

like or . We apply the replacements in Lemma 11 to obtain a new
reduced camera-minimal PL1P in three views containing a point with eight pins

and a point with two pins viewed like , such that none of its points with

two pins is observed like nor . This contradicts (?). ut

Finally, we combine everything we have learned so far about pins to bound
the maximum number of pins per point and the maximum number of points
with many pins in reduced camera-minimal PL1Ps in three views. Afterwards
we are ready to summarize our findings to provide proofs for Theorems 2, 3, 5,
and 7.

Lemma 13. A reduced camera-minimal PL1P in three views has at most one
point with three or more pins. If such a point exists,

– it has at most seven pins,
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– and the point and all its pins are observed in all three views.

Proof. By Lemma 10, every point with three or more pins has to be completely
observed in a reduced PL1P in three views. Hence, it is left to show that 1) at
most one such point with many pins exists, and that 2) it has at most seven
pins.

For the first assertion, we denote by ρ the number of points in 3D which have
three or more pins. We consider the forgetting map Π which forgets everything,
except these ρ points with exactly three of their pins each. We obtain a diagram
as in Figure 1. Since this forgetting map Π is feasible and the given (upper)
PL1P is camera-minimal, Lemma 4 implies that the joint camera map of the
resulting (lower) PL1P is dominant. In particular, the resulting PL1P satisfies

9ρ+ 11 = dim(Xp′,l′,I′ × C3) ≥ dim(Yp′,l′,I′,O′) = 15ρ,

i.e. 11 ≥ 6ρ. Thus, we see that ρ ≤ 1, which means that the given (upper) PL1P
has at most one point in 3D with three or more pins.

Finally, we show that such a point has at most seven pins, if it exists. We
assume ρ = 1 and denote by λ ≥ 3 the number of pins at that point. We consider
the forgetting map Π which forgets everything, except that single point with its
λ pins. As before, we see that the joint camera map of the resulting lower PL1P
is dominant, which yields that

3 + 2λ+ 11 = dim(Xp′,l′,I′ × C3) ≥ dim(Yp′,l′,I′,O′) = 3(2 + λ),

so 8 ≥ λ. By Lemma 12, we have that λ ≤ 7, which concludes the proof. ut

Proof of Theorems 2 and 7. We first show that each PL1P in three views is
reducible to a unique reduced PL1P. For this, we notice that a PL1P is reducible
if and only if one of the local features in its 3D arrangement is reducible. Hence,
we only have to check that each possible local feature is reducible to a unique
reduced local feature. By Lemmas 9 and 10, this assertion follows from examining
the reducible cases in Table 6 together with Lemmas 6,7,8.

Moreover, we obtain all reduction rules listed in Theorem 7 by collecting the
forgetting maps described in Lemmas 6,7,8, as well as the reducible observed
features in Table 6. Among those, Lemma 8 as well as rows 2, 10, and 12 of
Table 6 are applicable for minimal problems; thus these reduction rules are
listed in Theorem 2.

Finally, we address the last assertion in Theorem 2. Considering a commu-
tative diagram as in Figure 1 which is obtained from one of the four reduction
rules listed in Theorem 2, we assume that the lower PL1P is minimal and aim to
prove that the upper PL1P is minimal as well. Since the lower PL1P is minimal,
it is balanced and its joint camera map is dominant. By Lemma 5, the joint cam-
era map of the upper PL1P is also dominant. Furthermore, the four forgetting
maps Π listed in Theorem 2 satisfy that dim(fiber(Π)) = dim(fiber(π)). Since
the lower PL1P is balanced, we see from Lemma 3 that

dim(Xp,l,I × C3) = dim(Xp′,l′,I′ × C3) + dim(fiber(Π))
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= dim(Yp′,l′,I′,O′) + dim(fiber(π)) = dim(Yp,l,I,O).

So the upper PL1P is also balanced, hence minimal. ut

Proof of Theorems 3 and 5. The parts of Theorem 3 (and Theorem 5)
addressing points with three or more pins have already been proven in Lemma 13.
To find all ways of how free lines and points with at most two pins can be observed
by reduced camera-minimal PL1Ps in three views, it is enough (by Lemma 9)
to gather the non-reducible observed features in Table 6. Among those, the ones
marked as minimal are listed in Theorem 3, the others in Theorem 5. ut

12.3 Theorem 6 and its corollaries

Proof of Theorem 6. The nature of the four replacements is to introduce
another image of the dangling pin into one of the views. This makes this pin re-
constructable in 3D in the resulting PL1P, but produces no additional constraint
on the cameras.

Formally, since the initial problem is reduced and camera-minimal, Lemma 11
tells us that the resulting PL1P is also reduced and camera-minimal, with the
same camera-degree. It is left to show that the resulting PL1P is indeed minimal.
By Theorem 5, we see that the resulting PL1P only has local features as listed in
Theorem 3, i.e. points with three or more pins completely observed in all views
plus some of the features shown in Table 1. All of these features can be uniquely
recovered in 3D for a fixed camera solution. ut
Proof of Corollary 1. By Lemma 11, replacing a single occurrence of

in a minimal problem with , yields a camera-minimal problem with the

same camera-degree. Now we can replace with to obtain another
camera-minimal PL1P of the same camera-degree. As argued above, this result-
ing PL1P is actually minimal. By Lemma 1, it has the same degree as the initial
minimal problem. ut
Proof of Corollary 2. Starting from a terminal camera-minimal PL1P in three
views, the lift in Theorem 6 produces possibly several reduced minimal PL1Ps:
these only differ depending on whether the third or the fourth replacement in

Theorem 6 is applied to each point with one dangling pin viewed like
(up to relabeling the views). So all of the resulting minimal problems lie in the
same swap&label-equivalence class.

Starting from a reduced minimal PL1P in three views, we apply the replace-

ments in Lemma 11, read from right to left, until , , and
do not appear any longer. This, by Definition 6, results in a terminal prob-
lem. Moreover, all reduced minimal PL1Ps which are related via the swaps in
Corollary 1 yield the same resulting terminal problem.

This explains the one-to-one correspondence in Corollary 2. It preserves
camera-degrees by Lemma 11. ut



PL1P - Point-line Minimal Problems, Partial Visibility in 3 Views 33

13 Computations

13.1 Swap&label-equivalence classes of signatures

As noted in Section 5, each reduced minimal PL1P in three views can be encoded
as a signature, which is an integer solution to the dimension-count equation (2).
Thus, a signature is simply an integer vector of length 27. In general, we can
enumerate all nonnegative integer solutions (k1, . . . , kl) to a1k1 + · · ·+ alkl = n
by recursively solving a2k2 +. . .+alkl = n−ja1 for j = bn/a1c, . . . , 0. The result
of this enumeration procedure is a list of solutions that is sorted decreasingly
with respect to the usual lexicographic order on Z27. This is how we computed
all 845161 solutions of (2).

For each signature, we find all PL1Ps which are the same up to relabeling of
the views—that is, we mod out the action of the permutation group S3 that
permutes the three views. Note that if we take one representative of each orbit
of this action in the order they appear in the solution list from above, this en-
sures that the lex order from this step is preserved.

The procedure above gives us 143494 label-equivalence classes of reduced PL1Ps.
It remains to extract a representative of each swap&label-equivalence class from
this list. Recall that a swap operation exchanges orderered local features of the

form and , and that two PL1Ps are swap&label-equivalent if they
differ only by some sequence of swaps and S3-permutations of the views. In our
implementation, the coordinates of the signature vectors which participate in
swaps are indexed from 12 to 17 inclusive. They are arranged such that 12 resp.

13 index the ordered local features resp. —similarly for 14, 15
and 16, 17. Thus, we may restrict attention to those signatures whose coordinates
13, 15, and 17 equal zero; if any of these coordinates is nonzero, then we may
find a swap&label-equivalent representative earlier in the list. To see this, note
that if we swap 13 to 12, 15 to 14, and 17 to 16, we get a lexicographically larger
signature; moreover, the signature is also lex-maximal in its label-equivalence
class, and hence occurs in the list of 143494 representatives.

The previous paragraph identifies ≈ 40, 000 swap&label-equivalent pairs, but
does not yet yield a unique representative for each class. To do this, we iterate
over the list of remaining signatures in order, maintaining a single representa-
tive per swap&label-equivalence class encountered so far. For each signature, we
enumerate its S3-orbit and perform the swaps 13 to 12, 15 to 14, and 17 to 16
to each element in this orbit. This operation produces 5 additional signatures,
and we must delete any that appear later in the list. In the end, we are left with
76446 signatures.

13.2 Checking minimality

As mentioned in Section 7, our rank check over the finite field Fq may be sus-
ceptible to false negatives—in other words, it is possible that we may incorrectly
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conclude that a problem is not minimal due to unlucky random choices made
during the computation. On the other hand, false positives are impossible—we
now explain this in detail. Let (p, l, I,O) be any balanced point-line problem. If
we parametrize cameras by a rational map P : C11 → C3, then the exceptional
set of complex (X, t) such that the Jacobian of Φp,l,I,O at (X,P (t)) drops rank
is Zariski-closed. It follows that there is a point (X0, t0) with integer coordinates
outside of this exceptional set. Passing to residues modulo some prime q, the
rank of the Jacobian at this point can only drop. Thus if we find a point with
av Jacobian of full rank modulo q, then we may conclude that the joint camera
map Φp,l,I,O is dominant, i.e. that the balanced (p, l, I,O) is minimal.

13.3 Computing degrees

The main results of Section 8, namely Results 9, 10 and 11, are based on our
computation of degrees for minimal and camera-minimal problems using mon-
odromy. In this context, the term “monodromy” refers to a paradigm of nu-
merical continuation methods for solving parametrized polynomial systems that
collect solutions for random parameter values in a one-by-one manner. We refer
to [13] for a detailed description of the ideas involved and discussion of imple-
mentation issues. Most relevant for our purposes is that this computation can be
aborted early; ignoring numerical subtleties, we can then say that the number
of solutions obtained at this point is a lower bound on the degree.

Our implementation of degree computation has the option of using one of
two formulations. In the first, we solve explicitly for world features as well as
camera matrices. In the second, eliminated formulation, we only solve for camera
matrices using determinantal constraints as in [14, Sec 6]. Our computational
results use the eliminated formulation for efficiency. As a sanity check for some
problems of interest, we ran monodromy until it stabilized for both world and
eliminated formulations to confirm the conclusion of Lemma 1.

Since our degree computations are randomized and susceptible to the pos-
sible failures of numerical continuation methods, our operational definition of
“success” requires that all algebraic constraints are satisfied by the solutions
collected and that either some target degree was exceeded (eg. 300 in Result 9)
or that monodromy has stabilized in the sense that the random problem in-
stances have collected the same number of solutions with no further progress
after several iterations. We note that more sophisticated stopping criteria are
available for monodromy [41,24] but are generally much more expensive. For
problems of interest (eg. those appearing in [28,14] and Table 3), the stabiliza-
tion heuristic allowed us to recover all previously known degrees, though some
problems needed to be run more than once due to numerical failures. We also
reran several cases appearing in Table 2 according to this criteria in order to
gain more confidence in the reported degree.
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13.4 Finding subfamilies

As noted in Section 8, there are several subfamilies of minimal and camera-
minimal PL1Ps that are of interest: namely, the PL0Ps occuring in Result 11, the
PL1Ps with at most one pin per point in Result 10, and the extensions of the five-
point problem from Result 12. We point out that the signature vectors described
in Section 13.1 give a complete combinatorial description of each problem; in
particular, in which views certain points and lines are seen and which incidences
they have. Thus, it is straightforward to enumerate these subfamilies starting
from the lists of reduced minimal and terminal camera-minimal problems.
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3D 2D dim. of dim. of lifting
feature views forget fiber(Π) fiber(π) property reducible minimal Thm.

free line
1) L 4 2 yes yes no 7

2) L 4 4 yes yes yes 2

3) L 4 6 no no yes 3

point
4) P 3 2 yes yes no 7

5) P 3 4 no no yes 3

6) P 3 6 no no yes 3

point+
1 pin

7)
L 2 2 no
P 1 2 no yes no 7

P+L 5 4 yes

8)
L 2 2 no
P 1 4 no no no 5

P+L 5 6 no

9)
L 2 4 no
P 1 2 no no yes 3

P+L 5 6 no

10)
L 2 3 no
P 1 1 yes yes yes 2

P+L 5 5 yes

11)
L 2 3 no
P 1 3 no no yes 3

P+L 5 7 no

12)
L 2 5 no
P 1 1 yes yes yes 2

P+L 5 7 no

13)
L 2 4 no
P 1 2 no no yes 3

P+L 5 8 no

14)
L 2 3 no
P 1 3 no no yes 3

P+L 5 9 no

point+
2 pins

15)

L 2 2 no
L+L 4 4 no no no 5
P+L 3 4 no

P+L+L 7 6 no

16)

L 2 2 no
L 2 3 no

L+L 4 5 no no no 5
P+L 3 3 no
P+L 3 5 no

P+L+L 7 7 no

17)

L 2 3 no
L+L 4 6 no no yes 3
P+L 3 4 no

P+L+L 7 8 no

18)

L 2 3 no
L+L 4 6 no no yes 3
P+L 3 6 no

P+L+L 7 12 no

Table 6. All ways to observe free lines and points with ≤ 2 pins in 3 views (modulo
cases treated by Lemmas 6,7,8) and their appearance in Theorems 2, 3, 5 or 7. For each
observed feature, all possible feasible forgetting maps Π are listed, distinguished by
the column “forget”: “P” resp. “L” denotes a forgotten point resp. line.
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14 Glossary of assumptions, properties and concepts

Here we provide a glossary of assumptions, properties and concepts used in the
paper. Our aim is to give a concise and intuitive exposition of concepts used.

1. Realizability of I – the incidence relations are realizable by some point-line
arrangement in R3.

2. Completeness of I – every incidence which is automatically implied by the
incidences in I must also be contained in I.

3. Completeness of O – if a camera observes two lines that meet according to
I, then it observes their point of intersection.

4. Genericity of Cm – the points and lines in the views are in generic positions
with respect to the specified incidences I, i.e. random noise in image mea-
surements does not change the number of solutions when the incidences from
3D are not broken by noise in images.

5. Complete visibility – all points and lines are observed in all images and all
observed information is used to formulate minimal problems.

6. Partial visibility – some points and lines may be forgotten when projecting
into images.

7. PLkP – each line in 3D is incident to at most k points.
8. Dominant – “almost all” 2D images have a solution (i.e. a 3D arrangement

and cameras yielding the images)
9. Balanced – the number of DOF (i.e. the dimensions of varieties) describing

cameras and preimages in 3D are equal to the number of DOF describing
image measurements.

10. Minimal – balanced and dominant. This is equivalent to that “almost all”
images in 2D have a positive finite number of solutions.

11. Camera-Minimal – the number of solutions in camera parameters is finite and
positive (despite that infinitely many solutions may exist for 3D structures).

12. Reduced problem – a problem where all viewed features imply nontrivial
constraints on the cameras

13. Degree of a minimal problem – the number of point-line configurations and
camera poses consistent with generic image data

14. Camera-degree of a camera-minimal problem – the number of camera poses
consistent with generic image data
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57. Rocco, I., Cimpoi, M., Arandjelović, R., Torii, A., Pajdla, T., Sivic, J.: Neighbour-
hood consensus networks (2018)

58. Salaün, Y., Marlet, R., Monasse, P.: Robust and accurate line- and/or point-
based pose estimation without manhattan assumptions. In: European Conference
on Computer Vision (ECCV) (2016)

http://openaccess.thecvf.com/content_cvpr_2018/html/Larsson_Beyond_Grobner_Bases_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Larsson_Beyond_Grobner_Bases_CVPR_2018_paper.html
https://doi.org/10.1109/ICCV.2001.10072
http://doi.ieeecomputersociety.org/10.1109/ICCV.2001.10072
http://doi.ieeecomputersociety.org/10.1109/ICCV.2001.10072


PL1P - Point-line Minimal Problems, Partial Visibility in 3 Views 41

59. Sattler, T., Leibe, B., Kobbelt, L.: Efficient & effective prioritized matching for
large-scale image-based localization. IEEE Trans. Pattern Anal. Mach. Intell.
39(9), 1744–1756 (2017)

60. Saurer, O., Pollefeys, M., Lee, G.H.: A minimal solution to the rolling shutter pose
estimation problem. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on. pp. 1328–1334. IEEE (2015)

61. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference
on Computer Vision and Pattern Recognition (CVPR) (2016)

62. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in
3D. In: ACM SIGGRAPH (2006)

63. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo col-
lections. International Journal of Computer Vision (IJCV) 80(2), 189–210 (2008)

64. Stewenius, H., Engels, C., Nistér, D.: Recent developments on direct relative ori-
entation. ISPRS J. of Photogrammetry and Remote Sensing 60, 284–294 (2006)

65. Taira, H., Okutomi, M., Sattler, T., Cimpoi, M., Pollefeys, M., Sivic, J., Pajdla, T.,
Torii, A.: InLoc: Indoor visual localization with dense matching and view synthesis.
In: CVPR (2018)

66. Trager, M., Ponce, J., Hebert, M.: Trinocular geometry revisited. International
Journal Computer Vision pp. 1–19 (March 2016)

67. Trager, M.: Cameras, Shapes, and Contours: Geometric Models in Computer Vi-
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