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Abstract. We present a complete classification of minimal problems for
generic arrangements of points and lines in space observed partially by
three calibrated perspective cameras when each line is incident to at most
one point. This is a large class of interesting minimal problems that allows
missing observations in images due to occlusions and missed detections.
There is an infinite number of such minimal problems; however, we show
that they can be reduced to 140616 equivalence classes by removing su-
perfluous features and relabeling the cameras. We also introduce camera-
minimal problems, which are practical for designing minimal solvers, and
show how to pick a simplest camera-minimal problem for each minimal
problem. This simplification results in 74575 equivalence classes. Only
76 of these were known; the rest are new. To identify problems having
potential for practical solving of image matching and 3D reconstruction,
we present several natural subfamilies of camera-minimal problems as
well as compute solution counts for all camera-minimal problems which
have less than 300 solutions for generic data.
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1 Introduction

Minimal problems [47,62,32,9,54,15,46,29,21,31,30,58,66,10,56,35,37,38,1,8,6,7]
and [45], which we study, are 3D reconstruction problems recovering camera
poses and world coordinates from given images such that random input instances
have a finite positive number of solutions. They are important basic computa-
tional tasks in 3D reconstruction from images [60,61,59], image matching [55],
visual odometry and localization [48,5,57,63]. Recently, a complete characteri-
zation of minimal problems for points, lines and their incidences in calibrated
multi-view geometry appeared for the case of complete multi-view visibility [14].
In this paper, we extend the characterization to an important class of problems
under partial multi-view visibility.

We provide a complete classification of minimal problems for generic ar-
rangements of points and lines in space observed partially by three calibrated
perspective cameras when each line is incident to at most one point. There is an
infinite number of such minimal problems; however, we show that they can be
reduced to 140616 equivalence classes of reduced minimal problems by removing
superfluous features and relabeling the cameras. We compute a full description
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of each class in terms of the incidence structure in 3D and visibility of each 3D
feature in images. All problems in every equivalence class have the same algebraic
degree, i.e. the number of solutions over the complex numbers.

When using minimal solvers to find correct image matches by RANSAC
[19,52], we often aim to recover camera parameters only. We name such re-
construction problems camera-minimal and reserve “minimal” for when we aim
to recover 3D structure as well. Note that minimal problems are also camera-
minimal but not vice versa. For instance, 50 out of the 66 problems given in [27]
are non-minimal yet they all are camera-minimal. As an example, consider the
problem from [27] with 3 PPP and 1 PPL correspondences. It is camera-minimal,
i.e. there are 272 (in general complex) camera solutions, but it is not minimal
since the line of the PPL correspondence cannot be recovered uniquely in 3D:
there is a one-dimensional pencil of lines in 3D that project to the observed line
in one of the images.

For each minimal problem, we delete additional superfluous features in im-
ages that can be removed without loosing camera-minimality to obtain a simplest
camera-minimal problem. Thus, we introduce terminal camera-minimal prob-
lems. We show that, up to relabeling cameras, there are 74575 of these. They
form the comprehensive list worth studying, as a solver for any camera-minimal
problem can be derived from a solver for some problem on this list. Only 76 of
the 74575 terminal camera-minimal problems were known — 66 problems listed
in [27] plus 10 additional cases from [14] — the remaining 74499, to the best of
our knowledge, are new! We find all terminal camera-minimal problems with less
than 300 solutions for generic data and present other interesting cases that might
be important for practical solving of image matching and 3D reconstruction.

Characterizing minimal problems under partial visibility, which allows for
missing observations in images due to occlusions and missed detections, is very
hard. Previous results in [14] treat the case of full visibility with no restrictions
on the number of cameras and types of incidences, resulting in 30 minimal prob-
lems. By contrast, we construct a long list of interesting problems under partial
visibility, even with our restrictions, i.e. having exactly three cameras and hav-
ing each line incident to at most one point1. These restrictions make the task
of enumerating problems tractable while making it still possible to account for
very practical incidence cases where several existing feature detectors are appli-
cable. For instance, SIFT [40] and LAF [42] provide quivers (points with one
direction attached), which can be interpreted as lines through the points and
used to compute relative camera poses [4].

2 Previous work

A large number of minimal problems appeared in the literature. See references
above and [39,33,27,14] and references therein for work on general minimal prob-

1 Under this restriction, in two cameras, the only reduced (camera-)minimal problem
is the five-point problem; see Supplementary Material (SM) for an explanation.
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lems. Here we review the most relevant work for minimal problems in three views
related to point-line incidences and their classification.

Correspondences of non-incident points and lines in three uncalibrated views
are considered in early works on the trifocal tensor [23]. Point-line incidences in
the uncalibrated setup are introduced in [24] as n-quivers (points incident with n
lines) and minimal problems for three 1-quivers in three affine views and three 3-
quivers in three perspective views are derived. General uncalibrated multi-view
constraints for points, lines and their incidences are presented in [41]. Non-
incident points and lines in three uncalibrated images also appear in [50,26,51].
The cases of four points and three lines, two points and six lines, and nine
lines are studied; [36] constructs a solver for nine lines. Works [17,18,16] look at
lines incident to points which arise from tangent lines to curves and [4] presents a
solver for that case. Results [25,1,2,3,65,64,14] introduced some of the techniques
that are useful for classifying classes of minimal problems.

Work [27] classifies camera-minimal problems in 3 calibrated views that can
be formulated with linear constraints on the trifocal tensor [22]. It presents 66
camera-minimal problems, all covered in our classification as terminal camera-
minimal problems. Among them are 16 reduced minimal problems, out of which
2 are with full visibility and 14 with partial visibility. The remaining 50 problems
are not minimal.

A complete characterization of minimal problems for points, lines and their
incidences in calibrated multi-view geometry for the case of complete multi-
view visibility is presented in [14]. It gives 30 minimal problems. Among them,
17 problems include exactly three cameras but only 12 of them (30021, 30022,
30100, 20053, 20054, 20055, 20132, 20133, 20211, 10244, 10322, 10400 in Tab. 1
of [14]) meet our restrictions on incidences. These 12 cases are all terminal
camera-minimal as well as reduced minimal. Notice that the remaining 5 prob-
lems (31000, 21031, 21032, 21033, 21111 in Tab. 1 of [14]) are not considered in
this paper because collinearity of more than two points cannot be modeled in
the setting of this paper.

This paper can be seen as an extension of [27] and [14] to a much larger class
of problems in three calibrated views under partial multi-view visibility.

3 Problem Specification

Our results apply to problems in which points, lines, and point-line incidences
are partially observed. We model intersecting lines by requiring that each inter-
section point of two lines has to be one of the points in the point-line problem.

Definition 1. A point-line problem is a tuple (p, l, I,O) specifying that p points
and l lines in space satisfy a given incidence relation

I ⊂ {1, . . . , p} × {1, . . . , l},
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where (i, j) ∈ I means that the i-th point is on the j-th line, and are projected
to m = |O| views with

O = ((P1,L1), . . . , (Pm,Lm))

describing which points and lines are observed by each camera — view v contains
exactly the points in Pv ⊂ {1, . . . , p} and the lines in Lv ⊂ {1, . . . , l}.

For I we assume realizability (the incidence relations are realizable by some
point-line arrangement in R3) and completeness (every incidence which is auto-
matically implied by the incidences in I must also be contained in I).

For O we assume that if a camera observes two lines that meet according to
I then it observes their point of intersection.

Note that, for instance, the realizability assumption implies that two distinct
lines cannot have more than one point in common. Our assumption on O is
natural — the set I of incidences describes all the knowledge about which lines
intersect in space, as well as in the images. An instance of a point-line problem
is specified by the following data:

(1) A point-line arrangement in space consisting of p points X1, . . . , Xp and
l lines L1, . . . , Ll in P3 which are incident exactly as specified by I. Hence, the
point Xi is on the line Lj if and only if (i, j) ∈ I. We write

Xp,l,I =
{

(X,L) ∈
(
P3
)p × (G1,3)

l | ∀(i, j) ∈ I : Xi ∈ Lj
}

for the associated variety of point-line arrangements. Note that this variety also
contains degenerate arrangements, where not all points and lines have to be
pairwise distinct or where there are more incidences between points and lines
than those specified by I.

(2) A list of m calibrated cameras which are represented by matrices

P1 = [R1 | t1], . . . , Pm = [Rm | tm]

with R1, . . . , Rm ∈ SO(3) and t1, . . . , tm ∈ R3.
(3) The joint image consisting of the projections {xv,i | i ∈ Pv} ⊂ P2 of

the points X1, . . . , Xp and the projections {`v,j | j ∈ Lv} ⊂ G1,2 of the lines
L1, . . . , Ll by the cameras P1, . . . , Pm to the views v = 1, . . . ,m. We denote by
ρ =

∑m
v=1 |Pv| and λ =

∑m
v=1 |Lv| the total numbers of observed points and

lines, and write

Yp,l,I,O =

{
(x, `) ∈

(
P2
)ρ × (G1,2)

λ

∣∣∣∣ ∀v = 1, . . . ,m ∀i ∈ Pv ∀j ∈ Lv :
(i, j) ∈ I ⇒ xv,i ∈ `v,j

}
for the image variety which consists of all m-tuples of 2D-arrangements of the
points and lines specified by O which satisfy the incidences specified by I. We
note that an m-tuple in Yp,l,I,O is not necessarily a joint image of a common
point-line arrangement in P3.

Given a joint image, we want to recover an arrangement in space and cameras
yielding the given joint image. We refer to a pair of such an arrangement and
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such a list of m cameras as a solution of the point-line problem for the given
joint image.

To fix the arbitrary space coordinate system [22], we set P1 = [I | 0] and the
first coordinate of t2 to 1. So our camera configurations are parameterized by

Cm =

{
(P1, . . . , Pm) ∈

(
R3×4

)m ∣∣∣∣ Pi = [Ri | ti], Ri ∈ SO(3), ti ∈ R3,
R1 = I, t1 = 0, t2,1 = 1

}
.

We will always assume that the camera positions in an instance of a point-line
problem are sufficiently generic such that the points and lines in the views are
in generic positions with respect to the specified incidences I.

We say that a point-line problem is minimal if a generic image tuple in
Yp,l,I,O has a nonzero finite number of solutions. We may phrase this formally:

Definition 2. Let Φp,l,I,O : Xp,l,I × Cm 99K Yp,l,I,O denote the joint camera
map, which sends a point-line arrangement in space and m cameras to the re-
sulting joint image. We say that the point-line problem (p, l, I,O) is minimal if
• Φp,l,I,O is a dominant map2, i.e. a generic element (x, `) in Yp,l,I,O has a
solution, so Φ−1

p,l,I,O(x, `) 6= ∅, and

• the preimage Φ−1
p,l,I,O(x, `) of a generic element (x, `) in Yp,l,I,O is finite.

Remark 1. We require the joint camera map in Definition 2 to be dominant
because we want solutions to minimal problems to be stable under perturbation
of the image data that preserves the incidences I. A classical example of a
problem which is not stable under perturbation in images is the problem of four
points in three calibrated views [49].

Over the complex numbers, the cardinality of the preimage Φ−1
p,l,I,O(x, `) is

the same for every generic joint image (x, `) of a minimal point-line problem
(p, l, I,O). We refer to this cardinality as the degree of the minimal problem.

In many applications, one is only interested in recovering the camera poses,
and not the points and lines in 3D. Hence, we say that a point-line problem is
camera-minimal if, given a generic image tuple in Yp,l,I,O, it has a nonzero finite
number of possible camera poses. Formally, this means:

Definition 3. Let γ : Xp,l,I × Cm → Cm denote the projection onto the second
factor. We say that the point-line problem (p, l, I,O) is camera-minimal if
• its joint camera map Φp,l,I,O is dominant, and
• γ(Φ−1

p,l,I,O(x, `)) is finite for a generic element (x, `) in Yp,l,I,O.

The cardinality over C of a generic γ(Φ−1
p,l,I,O(x, `)) is the camera-degree of

(p, l, I,O).

Remark 2. Every minimal point-line problem is camera-minimal, but not nec-
essarily the other way around. In the setting of complete visibility (i.e. where
every camera observes all points and all lines), both notions coincide [14, Cor. 2].

2 In birational geometry, dominant maps are analogs of surjective maps.
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In [14], all minimal point-line problems with complete visibility are described,
including their degrees. It is a natural question if one can extend the classification
in [14] to all point-line problems with partial visibility. A first obstruction is that
there are minimal point-line problems for arbitrarily many cameras3, whereas
the result in [14] shows that minimal point-line problems with complete visibility
exist only for at most six views. Moreover, as we see in the following sections,
deriving a classification for partial visibility seems more difficult and involves
more elaborate tools. Hence, in this article, we only aim for classifying point-line
problems in three views4. We also restrict our attention to point-line problems
satisfying the following assumption:

Definition 4. We say that a point-line problem is a PL1P if each line in 3D is
incident to at most one point.

This assumption makes our analysis easier, since the point-line arrangement in
space of a PL1P is a collection of the following independent local features:
• free line (i.e. a line which is not incident to any point), and
• point with k pins where k = 0, 1, 2, . . . (i.e. a point with k incident lines).

In the following, we shortly write pin for a line passing through a point. We
stress that a pin refers only to the line itself, rather than the incident point.
A first consequence of restricting our attention to PL1Ps is the following fact,
which fails for general point-line problems5.

Lemma 1. The degree and camera-degree of a minimal PL1P coincide.

Proof. Proofs of all lemmas, theorems and justification of results are in SM.

We will see that there are infinitely many (camera-)minimal PL1Ps in three
views. However, we can partition them into finitely many classes such that all
PL1Ps in the same class are closely related; in particular, they have the same
(camera-)degree. For this classification, we pursue the following strategy:
Step 1: We introduce reduced PL1Ps as the canonical representatives of the
finitely many classes of minimal PL1Ps we aim to find (see Section 4).
Step 2: Basic principles from algebraic geometry brought up in [14] imply

Lemma 2. A point-line problem (p, l, I,O) is minimal if and only if
• it is balanced, i.e. dim(Xp,l,I × Cm) = dim(Yp,l,I,O), and
• its joint camera map Φp,l,I,O is dominant.

We identify a finite list of reduced balanced PL1Ps in three views that contains
all reduced minimal PL1Ps (see Section 5).
Step 3: We explicitly describe the relation of reduced camera-minimal problems
to reduced minimal ones, which implies that there are only finitely many reduced
camera-minimal PL1Ps in three views (see Section 6).

3 See SM discussion of camera registration.
4 See SM for a discussion on two views.
5 See SM for an example.
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Step 4: For each of the finitely many balanced PL1Ps identified in Step 2, we
check if its joint camera map is dominant. This provides us with a complete
catalog of all reduced (camera-)minimal PL1Ps in three views (see Section 7).

In addition to the classification, we compute the camera-degrees of all reduced
camera-minimal PL1Ps in three views whose camera-degree is less than 300 (see
Section 8 for this and related results on natural subfamilies of PL1Ps.)

4 Reduced PL1Ps

From a given PL1P (p, l, I,O) we can obtain a new PL1P by forgetting some
points and lines, both in space and in the views. Formally, if P ′ ⊂ {1, . . . , p} and
L′ ⊂ {1, . . . , l} are the sets of points and lines which are not forgotten, the new
PL1P is (p′, l′, I ′,O′) with p′ = |P ′|, l′ = |L′|, I ′ = {(i, j) ∈ I | i ∈ P ′, j ∈ L′},
and O′ = ((P ′1,L′1), . . . , (P ′m,L′m)), where P ′v = Pv ∩P ′ and L′v = Lv ∩L′. This
induces natural projections Π and π between the domains and codomains of the
joint camera maps which forget the points and lines not in P ′ and L′.

Xp,l,I × Cm Yp,l,I,O

Xp′,l′,I′ × Cm Yp′,l′,I′,O′

Φ = Φp,l,I,O

Π π

Φ′ = Φp′,l′,I′,O′

In the following, we shortly write Φ = Φp,l,I,O and Φ′ = Φp′,l′,I′,O′ .

Definition 5. We say that (p, l, I,O) is reducible to (p′, l′, I ′,O′) if
• for each forgotten point, at most one of its pins is kept, and
• a generic solution S′ = ((X ′, L′), P ) ∈ Xp′,l′,I′ × Cm of (p′, l′, I ′,O′) can be

lifted to a solution of (p, l, I,O) for generic input images in π−1(Φ′(S′)).
In other words, for a generic S′ = ((X ′, L′), P ) ∈ Xp′,l′,I′ × Cm and a generic
(x, `) ∈ π−1(Φ′(S′)), there is a point-line arrangement (X,L) ∈ Xp,l,I such
that Φ((X,L), P ) = (x, `) and Π((X,L), P ) = S′.

Theorem 1. If a PL1P is minimal and reducible to another PL1P, then both
are minimal and have the same degree.

We can partition all (infinitely many) minimal PL1Ps in three views into finitely
many classes using this reduction process. Each class is represented by a unique
PL1P that is reduced, i.e. not reducible to another PL1P.

Theorem 2. A minimal PL1P (p, l, I,O) in three views is reducible to a unique
reduced PL1P (p′, l′, I ′,O′). The corresponding projection Π forgets:
• every pin that is observed in exactly two views such that both views also observe

the point of the pin (it does not matter if the third view observes the point or

not, but it must not see the line), e.g. is reduced to
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ca2,1 ca1,1 ca1,2 ca1,3 ca0,1
# c2,0 cb2,1 c1,0 cb1,1

... cb1,3 c0,0 cb0,1 f

cc2,1 cc1,1 cf1,2 cc1,3 cc0,1
3D 7 7 5 5 5 5 3 3 4
2D 12 8 9 8 7 6 6 4 6

Table 1. How points with two / one / zero pins and free lines can be observed in the
three views of a reduced minimal PL1P (up to permuting the views). The rows “3D”
and “2D” show the degrees of freedom of each local feature in 3-space and in the three
views. The row “#” fixes notation for a signature introduced in Section 5.

• every free line that is observed in exactly two views to reduce to

• every point that has exactly one pin and is viewed like to get

• every point together with its single pin if it is viewed like to get
In addition, applying inverses of these reductions to a minimal PL1P in three
views results in a minimal PL1P.

Hence, it is enough to classify all reduced minimal PL1Ps. We will see that there
are finitely many reduced minimal PL1Ps in three views. To count them, we
need to understand how they look.

Theorem 3. A reduced minimal PL1P in three views has at most one point with
three or more pins. If such a point exists,
• it has at most seven pins,
• and the point and all its pins are observed in all three views.
All other local features are viewed as in Table 1.

5 Balanced PL1Ps

A reduced minimal PL1P in three views is uniquely determined by a signature,
a vector consisting of 27 numbers (c7, . . . , c3, c2,0, c

a
2,1, . . . , f), that specifies how

often each local feature occurs in space and how often it is observed in a certain
way by the cameras. By Theorem 3, the local features in such a PL1P are free
lines or points with at most seven pins. We denote by f the number of free lines
and write c3, c4, . . . , c7 for the numbers of points with three, four, . . ., seven pins.
By Theorem 3, these local features are completely observed by the cameras. The
row “#” in Table 1 shows our notation for the numbers of points with zero,
one or two pins that are viewed in a certain way. For instance, c2,0 counts how
many points with two pins are completely observed by the cameras. Moreover,



PL1P - Point-line Minimal Problems, Partial Visibility in 3 Views 9

ca2,1, c
b
2,1, c

c
2,1 are the numbers of points with two pins that are partially observed

like or or . Here the upper index a, b, c distinguishes the
three different permutations of this local feature in the three views (note: as
the two pins can be relabeled, there are only three and not six permutations).
Similarly, upper indices distinguish different permutations of partially viewed
points with at most one pin; see Table 1. We also note that assigning arbitrary 27
non-negative integers to c7, . . . , f describes a unique PL1P in three views, which
is reduced by construction (see Thm. 2 and 3) but not necessarily minimal.

Due to Lemma 2, every minimal PL1P (p, l, I,O) is balanced, i.e. it satisfies
dim(Xp,l,I × Cm) = dim(Yp,l,I,O). To compute the dimension of Xp,l,I , we need
to know the degrees of freedom of each local feature in 3-space. For free lines
and points with at most two pins, this is given in the row “3D” in Table 1. More
generally, a point in space with k pins has 3 + 2k degrees of freedom. Hence, a
reduced minimal PL1P in three views satisfies

dim(Xp,l,I) = 17c7 + 15c6 + 13c5 + 11c4 + 9c3 + 7(c2,0 + ca2,1 + cb2,1 + cc2,1)

+ 5(c1,0 + ca1,1 + cb1,1 + cc1,1 + ca1,2 + . . . + cf1,2 + ca1,3 + cb1,3 + cc1,3)

+ 3(c0,0 + ca0,1 + cb0,1 + cc0,1) + 4f.

Similarly, the degrees of freedom of each local feature in the three views are
shown in row “2D” in Table 1. For instance, if a point with two pins is viewed

like , then it has eight degrees of freedom in the three views: 2+1+1 in
the first view, 2 in the second view, and 2 in the third view. Since a point with
k pins for k = 3, . . . , 7 is completely observed by the cameras, it has 3(2 + k)
degrees of freedom in the three views. Therefore, we have

dim(Yp,l,I,O) = 27c7 + 24c6 + 21c5 + 18c4 + 15c3 + 12c2,0 + 8(ca2,1 + cb2,1 + cc2,1)

+ 9c1,0 + 8(ca1,1 + cb1,1 + cc1,1) + 7(ca1,2 + . . . + cf1,2) + 6(ca1,3 + cb1,3 + cc1,3)

+ 6c0,0 + 4(ca0,1 + cb0,1 + cc0,1) + 6f.

(1)

As dim(C3) = 11, the balanced equality dim(Xp,l,I × Cm) = dim(Yp,l,I,O) for a
reduced minimal PL1P in three views is 11 = dim(Yp,l,I,O)− dim(Xp,l,I), i.e.

11 = 10c7 + 9c6 + 8c5 + 7c4 + 6c3 + 5c2,0 + (ca2,1 + cb2,1 + cc2,1)

+ 4c1,0 + 3(ca1,1 + cb1,1 + cc1,1) + 2(ca1,2 + . . . + cf1,2) + (ca1,3 + cb1,3 + cc1,3)

+ 3c0,0 + (ca0,1 + cb0,1 + cc0,1) + 2f.

(2)

The linear equation (2) has 845161 non-negative integer solutions6. Each of
these is a signature that represents a PL1P in three views which is reduced and
balanced. Thus, it remains to check which of the 845161 signatures represent
minimal PL1Ps.

Some of the 845161 solutions of (2) yield label-equivalent PL1Ps, i.e. PL1Ps
which are the same up to relabeling the three views. It turns out that there

6 See SM for details on how to solve it.



10 T. Duff, K. Kohn, A. Leykin, T. Pajdla

143494 such label-equivalence classes of PL1Ps given by solutions to (2)7. So all
in all, we have to check 143494 PL1Ps for minimality, namely one representative
for each label-equivalence class.

6 Camera-Minimal PL1Ps

As in the case of minimal problems, we can understand all camera-minimal
PL1Ps from the reduced ones (see also Theorem 7).

Theorem 4. If a PL1P is reducible to another PL1P, then either none of them
is camera-minimal or both are camera-minimal. In the latter case, their camera-
degrees are equal.

In order to understand how reduced camera-minimal PL1Ps look, in comparison
to reduced minimal PL1Ps as described in Theorem 3, we define a pin to be
dangling if it is viewed by exactly one camera. Dangling pins are not determined
uniquely by the camera observations, and hence they appear in PL1Ps that are
camera-minimal but not minimal.

Theorem 5. The local features of a reduced camera-minimal PL1P in three
views are viewed as described in Theorem 3 plus as in the following three ad-
ditional cases:

point with two pins, point with two pins, point with one pin,
both are dangling one of which is dangling which is dangling

Remark 3. For a dangling pin L of a reduced camera-minimal PL1P, the point
X incident to the pin L is uniquely reconstructible. Since L is viewed by exactly
one camera, it belongs to the planar pencil of lines which are incident to X and
have the same image as L. Thus we see that L is not uniquely reconstructible
from its image.

The next theorem relates minimal and camera-minimal PL1Ps. By adding more
constraints to images, we make configurations in space uniquely reconstructible.

Theorem 6. The following replacements in images lift a reduced camera-minimal
PL1P in three views to a reduced minimal PL1P (cf. Thm. 5 and Table 1):

7→ , 7→ , 7→ or 7→
Moreover, the camera-degrees of both PL1Ps are the same.

This has two important implications for classifying (camera-)minimal PL1Ps.
First, reversing the replacements in Theorem 6 transforms each reduced camera-
minimal PL1P in three views into a terminal PL1P of the same camera-degree.

7 See SM for details on how to compute this.
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(a)
camera-degree 64 80 144 160 216 224 240 256 264 272 288

# problems 13 9 3 547 7 2 159 2 2 11 4

(b)

camera-degree 80 160 216 240 256 264 272 288 304 312 320 352 360 368 376

# problems 9 173 4 80 2 2 2 1 5 2 213 3 9 3 1

camera-degree 384 392 400 408 416 424 432 448 456 464 472 480 488 496

# problems 2 9 14 2 6 10 2 7 11 4 1 96 12 9

Table 2. Distribution of camera-degrees of terminal camera-minimal PL1Ps in three
calibrated views with: (a) camera-degree less than 300, (b) at most one pin per point
and camera-degree less than 500.

Definition 6. We say that a camera-minimal PL1P in three views is terminal

if it is reduced and does not view local features like or or .

Hence, to classify all camera-minimal PL1Ps in three views, it is enough to find
the terminal ones. Secondly, Theorem 6 implies for minimal PL1Ps the following.

Corollary 1. Consider a minimal PL1P in three views. After replacing a single

occurrence of with (or the other way around), the resulting PL1P
is minimal and has the same degree.

At the end of Section 5, we defined two PL1Ps to be label-equivalent if they
are the same up to relabeling the views. We note that the swap described in
Corollary 1 does not preserve the label-equivalence class of a PL1P. Instead,
we say that two PL1Ps in three views are swap&label-equivalent if one can be
transformed into the other by relabeling the views and applying (any number of
times) the swap in Corollary 1. We conclude that either all PL1Ps in the same
swap&label-equivalence class are minimal and have the same degree, or none of
them is minimal. Moreover, the lift in Theorem 6 yields the following.

Corollary 2. The swap&label-equivalence classes of reduced minimal PL1Ps in
three views are in a camera-degree preserving one-to-one correspondence with the
label-equivalence classes of terminal camera-minimal PL1Ps in three views.

Hence, we do not have to check minimality for all 143494 label-equivalence classes
of PL1Ps given by solutions to (2), that we found at the end of Section 5. Instead
it is enough to consider the swap&label-equivalence classes of the solutions to (2).
It turns out that there are 76446 such classes8. So to find all (camera-)minimal
PL1Ps in three views, we only have to check 76446 PL1Ps for minimality, namely
one representative for each of the swap&label-equivalence classes.

Finally, we present the analog to Theorem 2 and describe how all camera-minimal
PL1Ps are obtained from the reduced camera-minimal ones.

8 See SM for details on how to compute this.
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Theorem 7. A camera-minimal PL1P in three views is reducible to a unique
reduced PL1P. The corresponding projection forgets:
• everything that is forgotten in Theorem 2
• every line (free or pin) that is not observed in any view

• every free line that is observed in exactly one view to reduce to
• every pin that is observed in exactly one view such that the view also observes

the point of the pin (it does not matter if the other two views observe the point

or not, but they must not see the line), e.g. is reduced to

• every point without pins that is observed in at most one view, e.g. is

reduced to
• every point that has exactly one pin if the point is not observed in any view,

e.g. a pin viewed like becomes a free line viewed like

• every point together with its single pin if it is viewed like to get
• every point together with all its pins if the point has at least two pins and the

point is not observed in any view, e.g. is reduced to

7 Checking minimality

To show that a balanced point-line problem (p, l, I,O) is minimal, it is equiva-
lent to show that the Jacobian of the joint camera map Φp,l,I,O at some point
(X,P ) ∈ Xp,l,I×Cm has full rank, i.e. rank given by the formula in equation (1).
This follows from Lemma 2, as explained in [14]. On the implementation level,
this minimality criterion requires writing down local coordinates for the various
projective spaces and Grassmannians. To take advantage of fast exact arithmetic
and linear algebra, we ran each test with random inputs (X,P ) over a finite field
Fq for some large prime q. We observe that false positives9 for these tests are
impossible. To guard against false negatives, we re-run the test on remaining
non-minimal candidates for different choices of q. Moreover, as a byproduct of
our degree computations, we obtain yet another test of minimality, following the
same procedure as [14, Algorithm 1].
The computation described above detects non-minimality for 2878 of the 143494
label-equivalence classes of PL1Ps given by solutions to (2). Among the 76446
swap&label-equivalence classes, 1871 are not minimal.

Result 8 In three calibrated views, up to relabeling cameras, there are
• 140616 = 143494− 2878 reduced minimal PL1Ps and
• 74575 = 76446− 1871 terminal camera-minimal PL1Ps.

8 Computing degrees

From the perspective of solving minimal problems, it is highly desirable to com-
pute all degrees of our minimal PL1Ps. In particular, we wish to identify prob-

9 Since we are testing minimality, being minimal is the positive outcome. See SM for
detailed explanation why false positives cannot occur.
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216 160 384 256 80 416 568 320 320 768 360 512 616 160 528 776 984

320 320 720 1024 1456 400 560 640 1376 920 744 1416 1608 160 800 1480 1656

2232 320 320 1040 1360 2016 2568 400 560 640 1200 1920 2688 400 800 960 2000

Table 3. Reduced minimal PL0Ps and their degrees. Points not visible in a given view
are indicated in grey. Five-point subproblems are indicated in red.

lems with small degrees that may be of practical interest. Since some problems
in this list are known from prior work [27] to have large degrees (> 1000), our
main technique is a monodromy approach based on numerical homotopy contin-
uation. Our implementation in Macaulay2 [20,13] is similar to that used in prior
work [14]. The next result shows that there are many interesting problems with
small degrees that are solvable with existing solving technology [34,4].

Result 9 There are 759 (up to relabeling cameras) terminal camera-minimal
PL1Ps in three calibrated views with camera-degree less than 300. Their camera-
degree distribution is shown in Table 2(a).

It is also interesting to look at problems with simple incidence structure,
since they are easier to detect in images. This motivates the following.

Definition 7. We say that a point-line problem is a PLκP if each line in 3D is
incident to at most κ points.

Definition 7 generalizes Definition 4 of PL1Ps to get a hierarchy of subfamilies
of point-line problems: PL0P ⊂ PL1P ⊂ PL2P ⊂ . . .
For instance, PL0Ps consist of free points and free lines only10. The family
of PL1Ps contains many problems involving at most one pin per point—see
Result 10 and Table 2(b). Such features are readily provided by the SIFT [40]
detector. PL1Ps can also include features with two pins per point, which are
readily provided by the LAF [43] detector, which can also be used to get PL2Ps
if all 3 LAF points are used. More complex incidences (e.g. PL3Ps) can be
obtained from line t-junction detectors [67].

Result 10 There are 9533 (up to relabeling cameras) terminal camera-minimal
PL1Ps in three calibrated views which have at most one pin per point. 694
of them have camera-degree less than 500. Their camera-degree distribution is
shown in Table 2(b).
10 We note that reduced minimal PL0Ps are terminal.
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Result 11 There are 51 (up to relabeling cameras) reduced minimal PL0Ps in
three calibrated views. They are depicted together with their degrees in Table 3.

Note that there are four problems in Table 3 that are extensions of the classi-
cal minimal problem of five points in two views. This implies that the relative
pose of the two cameras can be determined from the five point correspondences
(highlighted in red). As to the remaining camera, each of these four problems
can be interpreted as a camera registration problem (the first one is known as
P3P [28]): given a set of points and lines in the world and their images for a
camera, find that camera pose. Note that the solution counts indicate that there
are 8, 4, 8, and 8 solutions to the corresponding four camera registration prob-
lems. Similar degrees were previously reported for camera registration from 3D
points and lines for perspective and generalized cameras [12,11,53,44,45].

Result 12 We determined all PL1Ps in three calibrated views that are exten-
sions of the five-points minimal problem. Of them, up to relabeling cameras,
• 6300 are reduced minimal,
• 61 of the 6300 correspond to camera registration problems (see SM)
• 3648 are terminal camera-minimal.

9 Conclusion

We have explicitly classified all reduced minimal and camera-minimal problems
in three calibrated views for configurations of points and lines when lines contain
at most one point.

The number of (camera-)minimal problems in our classification is large.
Apart from constructing a database of all these problems, we identify interest-
ing subfamilies where the number of the problems is relatively small (see Tables
Table 3, Table 2 in this article and Table 4 in SM.)

Another part of our computational effort focused on determining algebraic
degrees of the (camera-)minimal problems. The degree of a problem provides a
measure of complexity of a solver one may want to construct. The smaller the
degree, the more plausible it is that a problem could be used in practice: Table 2
shows the degree distributions for problems of degree less than 300.

Our code is available at https://github.com/timduff35/PL1P.
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