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Abstract. Low-resolution person re-identification (LR re-id) is a chal-
lenging task with low-resolution probes and high-resolution gallery im-
ages. To address the resolution mismatch, existing methods typically re-
cover missing details for low-resolution probes by super-resolution. How-
ever, they usually pre-specify fixed scale factors for all images, and ignore
the fact that choosing a preferable scale factor for certain image content
probably greatly benefits the identification. In this paper, we propose a
novel Prediction, Recovery and Identification (PRI) model for LR re-id,
which adaptively recovers missing details by predicting a preferable scale
factor based on the image content. To deal with the lack of ground-truth
optimal scale factors, our model contains a self-supervised scale factor
metric that automatically generates dynamic soft labels. The generated
labels indicate probabilities that each scale factor is optimal, which are
used as guidance to enhance the content-aware scale factor prediction.
Consequently, our model can more accurately predict and recover the
content-aware details, and achieve state-of-the-art performances on four
LR re-id datasets.

Keywords: Low-resolution person re-identification; Adaptive scale fac-
tor prediction; Dynamic soft label

1 Introduction

Given a person image captured by a certain camera, person re-identification (re-
id) aims to identify the same person across different cameras. With more and
more video surveillance in public places, this task has attracted wider attention
of both academia and industry, because of its great application potentials. Most
researchers study this topic under the assumption that all the available person
images have sufficient and similar resolutions. In real-world application scenar-
ios, however, the resolutions of captured persons may vary greatly due to the
uncontrollable distances between persons and cameras. Generally, target persons
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Fig. 1. Top-ranked HR gallery images of two LR probes [11] with different scale factor
settings. The ground truth is indicated by a green bounding box. For the same probe,
different scale factors might lead to different search results.

of high resolution (HR) are enrolled as the gallery set, while probe persons cap-
tured by surveillance cameras have low resolution (LR). This common problem
is usually referred as the low-resolution person re-identification (LR re-id).

To deal with the resolution mismatch problem in LR re-id, existing works [17,
39] typically recover missing details for LR images with super-resolution (SR)
modules. In fact, performing SR has its pros and cons. We resort to it to recover
details but it will inevitably bring about noise in the meanwhile. Especially when
we use a larger scale factor for SR, the produced noise might greatly degenerate
the image quality and identification results. Nevertheless, existing works usually
ignore the problem and pre-specify a fixed scale factor for images, regardless of
whether it can recover the most effective details and not incur excessive noise
to degenerate the identification. We experimentally find that choosing different
scale factors for the same LR probe may lead to quite different search results,
as shown in Figure 1. For example, the ground truth of the probe A drops from
the first to fourth in the ranking lists, when we change the scale factor from 2 to
4. The reason probably lies in that the dazzling shadow and background of the
probe A are more prone to result in noisy recovery as the scale factor increases.
Intuitively, the image content should be an important cue to determine which
scale factor can achieve better recovery for accurate identification.

However, how to combine the image content for choosing a preferable scale
factor is seldom investigated and has many challenges. A tough one is that we
have no prior annotation indicating which scale factor is optimal to identify a
given person. In practice, it is also difficult and time-consuming to pre-define
such an optimal scale factor. The optimal scale factor should not be consistent
for different re-id modules, even for the same re-id module at different timesteps
during training. This is because they have varying abilities in distinguishing the
recovered details and noise. In addition, one LR image sometimes has multiple
scale factors that achieve comparably good results, e.g., the scale factor 3 and 4
are almost equally suitable to the probe B in Figure 1. In view of the variability
and multiplicity of optimal scale factors, realizing the content-aware scale factor
prediction remains challenging.

To address the problem, we propose a novel Prediction, Recovery and Iden-
tification (PRI) model for LR re-id, which can adaptively recover details by



Prediction and Recovery for Adaptive Low-Resolution Person Re-Id 3

predicting a preferable scale factor for a given image based on image content.
Our model formulates the scale factor prediction as a classification problem, by
choosing a preferable scale factor from a set of pre-defined ones for a given image.
Unlike the typical classification setting [20, 32] where an object has a one-hot
label indicating its class, our scale factor prediction suffers from the mentioned
problems of label variability and multiplicity. To this end, we propose a scale
factor metric that automatically assigns a given LR image a dynamic soft label,
i.e., a normalized real-value vector. The dynamic soft label indicates the relative
probabilities that each alternative scale factor is optimal, which is formulated
by comparing the recovered contents by different scale factors. The dynamic
property can dynamically evaluate and adjust the optimal scale factors during
training. And the soft property allows multiple optimal scale factors in the form
of probability and flexibly handles their variations. To enhance the content-aware
scale factor prediction, the generated dynamic soft labels are exploited as super-
vision to guide our model to predict the preferable scale factor based on the
given LR image content. Abundant experimental results show that our proposed
model is effective and achieves the state-of-the-art performances on four LR re-
id datasets. Besides, our proposed adaptive scale factor prediction can be used
for standard re-id models to improve their performances in the LR re-id setting.
The contributions of this paper are summarized as follows.

– This paper focuses on a practical but rarely investigated LR re-id problem,
i.e., how to choose a better scale factor for identification based on the LR
image content.

– We propose a novel PRI model, which can adaptively predict the preferable
scale factor, recover details for LR images, and perform the identification in
an end-to-end manner.

– Without annotations of the optimal scale factors, we propose a self-supervised
scale factor metric that evaluates the dynamic soft label as supervision.

– We conduct extensive experiments to demonstrate the effectiveness of our
model, and achieve the state-of-the-art results on four LR re-id datasets.

2 Related Work

Standard Person Re-identification (re-id). Person re-identification [23, 31,
2, 3, 41, 29] has made great progress, with the significant development of deep
learning in the past years. Many approaches have been proposed to extract more
discriminative identity features. For example, to align and improve local features,
PCB [36] divides the deep feature maps into several stripe features, aligns each
stripe and identifies them one by one. Martinel et al. [27] observe that body
partitions should have different importances at different scales of features. They
accordingly propose PyrNet that exploits pyramid features to capture image
relevancy at different levels of detail. In addition, some works pay attention to
addressing some challenging re-id problems, such as background bias [33, 16],
occlusion[13, 28, 35, 14] and domain adaption [34, 9, 4, 40, 30].
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Low-Resolution Person Re-identification (LR re-id). Among various re-id
challenges, resolution mismatch is a practical but less studied problem. Super-
resolving LR images by SR modules is a common approach. For example, Jiao
et al. [17] propose a SR and re-id joint formulation, but they enlarge LR images
with the preset fixed scale factors, which probably results in the suboptimal re-
covery to identify the person. Wang et al. [39] assign a scale factor for an image
depending on the relative image size to acquire the super-resolved images with
the uniform size. However, there seems to be no necessary relationship between
the image size and the optimal scale factor, and therefore their performances
are also limited. Besides, there is another kind of method aiming at learning
resolution-invariant representations without requiring SR. For example, Chen
et al. [5] exploit adversarial learning to pull the identity-related and resolution-
unrelated feature maps closer. Compared with the SR-based methods, they do
not take advantages of compensated details for more fine-grained analyses. Li et
al. [25] propose to recover details while learning resolution-invariant representa-
tions. This method combines the merits of the above two kinds of methods, but
recovers LR images into the same resolution, which still suffers from the prob-
lem of the suboptimal recovery level. Different from these works, we propose
to adaptively predict a preferable scale factor for each image based on the im-
age content, so that we can achieve better recovery to improve the re-id accuracy.

Image Super-Resolution (SR). Given a LR image and a scale factor, im-
age super-resolution [8, 21, 37, 26, 42] recovers a HR image of the desired size.
Although we want to employ SR modules to alleviate the resolution mismatch
problem, there is a clear target difference between SR and person re-id. SR is
designed for estimating low-level pixel values, which pursues the good pixel-level
approximation or high visual quality, while re-id aims at learning the high-level
identity discrimination. To improve the compatibility of SR and re-id modules,
we integrate them into a joint-learning network. With the joint supervision of
the ground-truth HR images and identity signals, our model learns the re-id
oriented detail recovery to facilitate the identification.

3 Method

3.1 Overview

Given a LR image, we aim to adaptively predict and recover the content-aware
details to achieve more accuracy identification. Our proposed Prediction, Re-
covery and Identification (PRI) model is illustrated in Figure 2 and outlined as
follows. The LR re-id dataset generally contains pairs of HR and LR images of
the same identity but captured by different cameras. Inspired by [17], PRI takes
as input such a pair of images along with a synthetic LR image down-sampled
by the HR one. We denote such an input set composed of a HR, a LR and a
synthetic LR image as {xh, xl, xsl} respectively for the following description.

During training, the LR image xl is sent to the adaptive scale factor pre-
dictor P , which formulates the scale factor prediction as a N -class classification
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Fig. 2. The proposed Prediction, Recovery and Identification (PRI) model.

problem, and predicts the probabilities that xl belongs to each class. N classes
refer to N alternative scale factors {r1, r2, · · · , rN}, and we illustrate with N=4
as an example in Figure 2. At the same time, xl is also super-resolved with the
SR module by all the alternative scale factors. All the super-resolved images
are projected into the common feature space, where we perform the scale factor
metric to acquire the dynamic soft label. The dynamic soft label is then fed back
to the predictor P , and serves as the supervision guiding P to predict the de-
sired scale factor via the prediction loss Lp. Besides, we exploit the SR loss Lsr,
identity loss Lid and triplet loss Ltri to learn the effective detail recovery and
identity discrimination. When test, we only need to super-resolve a LR image by
the scale factor rp, which has the maximum predicted probability and is more
likely to achieve better recovery and identification results than the other scale
factors. We will elaborate each part of our model in the following sections.

3.2 Adaptive Scale Factor Predictor

Selecting which scale factor to recover missing details is a practical problem in
LR re-id. Intuitively, the optimal scale factor is probably inherently related to the
image content. This inspires us to predict a preferable scale factor for a LR image
based on its image content. Ideally, we want to recover helpful appearance details
as much as possible, and control the undesired noise in an acceptable range that
does not adversely affect the identification.

In this paper, we formulate predicting a preferable scale factor as a N -class
classification problem by presetting N alternative scale factors r1, r2, · · · , rN .
The preset scale factors should have a proper varying interval. It makes little
sense to choose a better scale factor from several fairly close ones, e.g., 2.1, 2,2
and 2.3, because they have nearly the same recovery effects. Experimentally,
we set the interval to 1, the number of classes N to 4, and {r1, r2, · · · , rN} to
{1, 2, 3, 4}, respectively. We accordingly design an adaptive scale factor predictor
P as a classifier. Given an image, P extracts the features and predicts the prob-
abilities that the image belongs to each class, which are also the probabilities
that each alternative scale factor is the optimal one. We choose ResNet50 [12] as
the backbone of our predictor, and use 1×1 convolutional layers after global av-
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erage pooling to reduce the dimension from 2048 to 512. Then, a fully-connected
layer and the softmax function are used to predict the normalized probability
pri(i = 1, 2, · · · , N) that ri is the optimal scale factor. We formulate it as

pr1 , pr2 , · · · , prN = P (xl). (1)

Thus, the predicted optimal scale factor rp = arg maxri P (xl). However, unlike
the common classification setting [20, 32], we have no ground-truth optimal scale
factors as supervision to enable the supervised learning of the predictor. To
address this problem, we propose to regard the scale factor that can recover the
most discriminative details as the ground-truth optimal one. To realize that, we
need a SR module to perform the detail recovery.

3.3 Person Super-Resolution

To compare the recovery effects of different scale factors, we design a SR module
G that can super-resolve a given image with multiple scale factors. Inspired by
Meta-SR [15], the SR module G is composed of feature extraction layers and the
meta-upscale layers. Many basic SR modules could be adopted as our feature
extraction layers (we choose RDN [42] in this paper due to its competitive image
recovery performance) which extract the feature maps for the given image. The
meta-upscale layers consist of two fully-connected layers and a ReLU activation
layer between them. They take the height, width and scale factor of the LR
image as input, and predict the corresponding weights of convolution filters so
that the feature maps can be upscaled with the given scale factor.

To find out which scale factor can recover the most discriminative details
for xl, we send xl along with all the alternative scale factors {r1, r2, · · · , rN}
into G. Then we can acquire the recovered images by each scale factor, and
denote them as {Gr1(xl), Gr2(xl), · · · , GrN (xl)}, respectively. Different from xl,
xsl is super-resolved by one randomly chosen scale factor rsl ∈ {r1, r2, · · · , rN}.
Thus, xsl and xh constitute a pair of LR input and HR supervision to ensure
that the SR module can be optimized by the SR loss Lsr. Lsr calculates the
pixel-to-pixel 1-norm distance between the super-resolved image Grsl(xsl) and
the ground truth xh. We formulate it as

Lsr =
1

r2slWH

rslW∑
i=1

rslH∑
j=1

|(Grsl(xsl))i,j − (xh)i,j | (2)

where Xi,j is the pixel value at the coordinate (i, j) of the image X, and W,H
and rsl are the width, height and scale factor of xsl, respectively. The synthetic
LR image xsl contributes to the SR loss, which unites the latter identity loss to
make it possible to jointly optimize the SR and re-id module. This shows the
important role of xsl in bridging SR and re-id two originally separate tasks.

3.4 Scale Factor Metric and Dynamic Soft Label

Scale factor metric. After obtaining the recovered images by all the alterna-
tive scale factors, we need to evaluate the effectiveness of the recovered con-
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tents. We regard the recovered image that contains the most discriminative
details as the best recovery, and the corresponding scale factor as the opti-
mal one. Based on this assumption, we propose a scale factor metric M, which
is a feature-based evaluation criterion by comparing which recovered image of
{Gr1(xl), Gr2(xl), · · · , GrN (xl)} has the most discriminative identity features.
Specifically, we use a re-id module F to project all these super-resolved images
into the common feature space. Similar to the adaptive scale factor predictor, we
adopt ResNet50 as the re-id backbone and reduce the dimension of features. We
denote the feature vectors of the above recovered images as {fr1 , fr2 , · · · , frN },
respectively. To measure which one is the most discriminative, we exploit a HR
image of the same identity (i.e., xh) as an anchor, and compare the Euclidean
distances among the features of the recovered images (fr1 , fr2 , · · · , frN ) and the
anchor (denoted as fxh

).

Intuitively, a preferable scale factor should have a smaller relative distance
to the HR anchor, due to the better detail recovery. To measure and compare
the relative distances between different scale factors and the HR anchor, the
proposed scale factor metric M is formulated as follows.

lri =M(d1, · · · , dN ) = softmax((
1

N

N∑
j=1

dj − di)γ) (3)

where di is the Euclidean distance between fri and fxh
, and γ is the regulatory

factor. lri can indicate the relative probability that ri is the ground-truth optimal
scale factor, which is normalized by the softmax function. Note that γ should be
an odd number to make sure that the scale factor with a smaller feature distance
than the average ( 1

N

∑N
j=1 dj) is endowed with a higher probability of being the

optimal one. And the scale factor with the maximum probability is considered
as the ground-truth optimal one for xl.

Dynamic soft label. We can use the measured optimal scale factor as a one-hot
label to enable the supervised learning of the predictor P via the cross-entropy
classification loss. However, the optimal scale factor is often not consistent, and
varies during training the re-id module, which will cause the dramatic change
from a one-hot label to another. The frequent change of the one-hot label will
confuse the cross-entropy loss, which typically encourages a higher probability
for the only one correct class as much as possible, and make the loss function
hard to converge.

To address the problem, we exploit Equation 3 to constitute the dynamic soft
label, i.e., a normalized real-value vector (lr1 , lr2 , · · · , lrN ). It has the following
advantages. First, the change of the optimal scale factor becomes smoother in
the form of the relative probability. Second, it allows to activate multiple opti-
mal scale factors: the scale factor with the higher probability is not necessarily
optimal, but more likely to be. We set an update frequency ω to determine the
frequency of updating dynamic soft labels, which indicates that we perform the
scale factor metric and obtain the dynamic soft label for each LR image per ω
training epochs, and keep them unchanged between two updates.
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Then, we use the dynamic soft label as the ground truth to supervise the
predicted results of the predictor P in Equation 1. We accordingly exploit a soft
cross-entropy prediction loss Lp, which is calculated as

Lp = −
N∑
i=1

lri log pri . (4)

Note that we cut off the error back-propagation from Lp to the dynamic soft
label. In other words, considering the evaluated dynamic soft label as the ground
truth, Lp is only used to optimize the predictor rather than the SR or re-id mod-
ule. We minimize Lp to supervise the predictor to make an prediction consistent
with the dynamic soft label, e.g., predicting a higher probability for the scale
factor that is more likely to be evaluated as the optimal one.

3.5 Optimization

Overall loss. To learn the discriminative identity features for re-id, we send
frp , fxsl

and fxh
(the feature vectors of the predicted optimal recovered image

xrp , the synthetic image xsl and the HR image xh, respectively) into a classifier
(i.e., a fully-connected layer) to predict the identities. This process is supervised
by the cross-entropy identity loss Lid and triplet loss Ltri. Ltri is defined as

Ltri = max(0, φ+ dp − dn) (5)

where dp and dn are respectively the distances between the positive samples with
the same identity and negative samples with different identities. φ is the margin
parameter. We optimize the whole network by minimizing the weighted sum of
the SR loss Lsr, identity loss Lid, triplet loss Ltri and prediction loss Lp. The
total loss L is formulated as

L = Lsr + αLid + βLtri + λLp (6)

where α, β and λ are the weight factors of Lid, Ltri and Lp, respectively. Different
from the first three losses supervising the SR and re-id module, Lp is used for
the predictor separately, and therefore we set its weight λ to 1.

When test, we only need to super-resolve a LR probe by the scale factor
rp that has the maximum predicted probability. We embed the super-resolved
probe and all the HR gallery images into the feature space, where we measure
the similarity among their features by the Euclidean distances.
Pre-training. Experimentally, if we randomly initialize PRI for training, the
dynamic soft label might vary frequently at the early training stage and degen-
erate the optimization process. Since the untrained SR module produces poorly
recovered images, the features corresponding to different scale factors do not
have relatively stable distances to the anchor, thus degenerating the effective-
ness of the dynamic soft label. To alleviate the problem, we pre-train the SR and
re-id module before jointly training the whole model. Specifically, we remove the
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prediction loss Lp, and the SR module super-resolves both xl and xsl only by a
randomly chosen scale factor from the alternative ones. We only minimize the
sum of Lsr, Lid and Ltri during pre-training, so that the SR and re-id module
can learn to stably recover images and extract their features in advance, which
will help to train the whole model more effectively.

4 Experiment

4.1 Datasets and Evaluation Protocol

Datasets. We evaluate our model on three synthetic and one genuine LR re-id
dataset. 1) MLR-CUHK03 is built from CUHK03 [22], containing over 14,000 im-
ages of 1,467 identities captured by 5 pairs of cameras. Following [17], for a pair
of images from two cameras, we down-sample one of them by randomly choosing
a down-sampling factor r ∈ {2, 3, 4} as a LR probe, while the other remains
unchanged as a HR gallery image. Two types of images, manually cropped and
automatically detected images, are both used. 2) MLR-DukeMTMC-reid [44]
includes 36, 411 images of 1, 404 identities captured by 8 cameras. 3) MLR-
Market1501 [43] consists of 32, 668 images of 1, 501 identities from 6 camera
views. Both MLR-DukeMTMC-reid and MLR-Market1501 are synthesized by
the same down-sampling operation as MLR-CUHK03. 4) CAVIAR [6] is a gen-
uine dataset composed of 1220 images of 72 identities and two camera views.
We discard 22 identities that only appear in the closer camera.

Evaluation protocol. We adopt the standard single-shot person re-id setting.
Images of CAVIAR are randomly and evenly divided into two halves for training
and test, which means that there are 25/25 identities in the training/test set.
We use the 1,367/100, 702/702 and 751/750 training/test identity split on MLR-
CUHK03, MLR-DukeMTMC-reid and MLRMarket1501, respectively. For test,
we build the probe set with all the LR images, and the gallery set with one
randomly selected HR image of each person. For test, we build the probe set with
all the LR images, and the gallery set with one randomly selected HR image of
each person. Above random data splits are repeated 10 times in the experiments.
For the re-id performance evaluation, we use the average Cumulative Match
Characteristic (CMC) and report results at ranks 1, 5 and 10.
Implementation details. Our ResNet50 backbone (for P and F ) is pre-trained
on ImageNet [7], and the SR module G is pre-trained on DIV2K [1]. All the
images sent into ResNet50 are resized to 384×128×3. A set of input images (xl,
xsl and xh) is randomly flipped horizontally at the same time. We pre-train PRI
for T1 epochs as stated in Section 3.5, and then further train the whole PRI
model for T2 epochs. We adopt the Adam optimizer [19] (β1 = 0.9 and β2 =
0.999), and set the initial learning rate of the ResNet50 backbone and the added
1×1 convolutional layers to 0.01 and 0.1, respectively. They will be respectively
decayed to 0.001 and 0.01 after T1 epochs. We set T1/T2 to 60/140 for CAVIAR,
and 20/60 for MLR-CUHK03, MLR-DukeMTMC-re-id and MLR-Market1501.
Other hyper-parameters are set as follows: the weight factor α = 1, β = 0.01,
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Table 1. Comparison with the state-of-the-art models on four datasets (%). Bold and
underlined numbers indicate top two results, respectively.

Method
CAVIAR MLR-CUHK03 MLR-DukeMTMC-reid MLR-Market1501

Rank 1 Rank 5 Rank 10 Rank 1 Rank 5 Rank 10 Rank 1 Rank 5 Rank 10 Rank 1 Rank 5 Rank 10

JUDEA [24] 22.0 60.1 80.8 26.2 58.0 73.4 - - - - - -

SLD2L [18] 18.4 44.8 61.2 - - - - - - - - -

SDF [38] 14.3 37.5 62.5 22.2 48.0 64.0 - - - - - -

SING [17] 33.5 72.7 89.0 67.7 90.7 94.7 65.2 80.1 84.8 74.4 87.8 91.6

CSR-GAN [39] 34.7 72.5 87.4 71.3 92.1 97.4 67.6 81.4 85.1 76.4 88.5 91.9

RAIN [5] 42.0 77.3 89.6 78.9 97.3 98.7 - - - - - -

CAD-Net [25] 42.8 76.2 91.5 82.1 97.4 98.8 75.6 86.7 89.6 83.7 92.7 95.8

CamStyle [46] 32.1 72.3 85.9 69.1 89.6 93.9 64.0 78.1 84.4 74.5 88.6 93.0

FD-GAN [10] 33.5 71.4 86.5 73.4 93.8 97.9 67.5 82.0 85.3 79.6 91.6 93.5

PCB [36] 42.1 74.8 88.2 80.6 96.2 98.6 74.5 84.6 90.3 82.6 92.7 95.2

PyrNet [27] 43.6 79.2 90.4 83.9 97.1 98.5 79.6 88.1 91.2 83.8 93.3 95.6

PRI (Ours) 43.2 78.5 91.9 85.2 97.5 98.8 78.3 87.5 91.4 84.9 93.5 96.1

PCB + PRI 44.3 83.7 94.8 86.2 97.9 99.1 81.6 89.6 92.4 88.1 94.2 96.5

PyrNet + PRI 45.2 84.1 94.6 86.5 97.7 99.1 82.1 91.1 92.8 86.9 93.8 96.4

the margin of the triplet loss φ = 10, the regulatory factor γ = 1, the update
frequency ω = 1. We train our model on 2 NVIDIA Titan Xp GPUs with the
batch size set to 16.

4.2 Comparison with State-of-the-art Models

We compare our PRI model with the state-of-the-art models on four LR re-id
datasets, including CAVIAR, MLR-CUHK03, MLR-DukeMTMC-reid and MLR-
Market1501 in Table 1. For a fair comparison, we do not use pre-/post-processing
methods, e.g., re-ranking [45], even though they can further improve our results.
Comparison with LR re-id models. We compare our PRI model with LR
re-id models, including JUDEA [24], SLD2L [18], SDF [38], SING [17], CSR-
GAN [39], RAIN [5] and CAD-Net [25]. Compared with the most competi-
tive CAD-Net, PRI achieves 0.4%, 3.1%, 2.7% and 1.2% higher scores at rank
1 on CAVIAR, MLR-CUHK03, MLR-DukeMTMC-reid and MLR-Market1501,
respectively. Our advantage lies in adaptively predicting and achieving better
recovery that contains more discriminative details instead of noise to help iden-
tification. In contrast, CAD-Net recovers details into the fixed resolution, which
might not be guaranteed to suit the images of various resolutions best. Apart
from CAD-Net, there are also some notable comparisons. SING super-resolves
LR probes with multiple scale factors separately and then manually fuses them,
while CSR-GAN tries to depend on the image sizes to specify the scale factors.
Unlike them, our model can exploit the image content to realize the adaptive
scale factor prediction in an end-to-end manner.
Comparison with standard re-id models. We also make a comparison be-
tween PRI and the competitive standard re-id models, including CamStyle [46],
FD-GAN [10], PCB [36] and PyrNet [27]. For a fair comparison, they are trained
on the LR re-id datasets in the same manner as our model. The results of
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Table 2. Evaluation of different scale factor predictors on MLR-CUHK03 (%).

Predictor Rank 1 mAP

Fixed ×1 78.6 79.2
Fixed ×2 82.3 82.9
Fixed ×3 82.1 82.5
Fixed ×4 82.7 82.8
Size-based 82.5 82.8

Ideal 86.8 87.2
Adaptive (Ours) 85.2 85.7

CamStyle and FD-GAN are extracted from [25], and those of PCB and PyrNet
are acquired by running the released codes. Among these models, only PyrNet
can outperform our model at some ranks, e.g., rank 1 on CAVIAR and MLR-
DukeMTMC-reid. However, our method can help the standard re-id models bet-
ter generalize to the LR re-id setting through a simple combination. We only
need to replace our ResNet50 re-id module F with the standard re-id models,
and keep the other parts (such as G and P ) unchanged. For example, combining
PyrNet and our method (“PyrNet + PRI” in Table 1) improves rank 1 by at
most 3.1% on MLR-Market1501.

4.3 Ablation Studies

Adaptive scale factor predictor. To verify the effectiveness of our adaptive
scale factor predictor P , we compare different methods of predicting scale factors
in Table 2. Given a well-trained PRI model on MLR-CUHK03, we replace P with
the fixed, size-based and ideal predictors in turn, and compare their performances
when test. We set four alternative scale factors, including 1, 2, 3 and 4. The
“fixed” predictor chooses a fixed scale factor from the four alternatives for each
LR probe. Similar to [39], the “size-based” predictor gives a LR probe a scale
factor that is the nearest integer to the ratio of R to r. R is the average size (the
product of the image height and width) of all the HR images of the training set,
and r is the size of the given LR probe. The “ideal” predictor refers to traversing
all the alternative scale factors and choosing the one achieving the best result.
To some extent, it represents the upper bound that the given PRI model can
reach, if we keep G and F unchanged, and only adjust the scale factor for each
LR probe. It is not a surprise that there is a performance gap between the ideal
predictor and ours, which means that ours cannot guarantee all the predictions
are optimal. But it obviously outperforms the fixed and size-based predictors in
terms of rank 1 and mAP (mean Average Precision). Compared with the rough
manual “fixed” or “size-based” predictors, our model can adaptively predict and
recover the more effective details for each LR image based on its image content,
which helps further improve the re-id accuracy.
Soft property. We replace the dynamic soft label of our model with the one-hot
label to demonstrate the effectiveness of the soft property. The one-hot label is
a binary vector where the scale factor with the maximum evaluated probability
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Table 3. Comparison of the soft label with the one-hot label on MLR-CUHK03 (%).

Method Rank 1 Rank 5 Rank 10

One-hot label 81.8 94.8 97.2
Soft label (Ours) 85.2 97.5 98.8
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Fig. 3. A comparison between the soft label and one-hot label. This example indicates
the change of the predicted optimal scale factor rp for a LR image during training.

is labeled as 1, while the others are labeled as 0. We evaluate the two types of
labels on MLR-CUHK03 in Table 3, which shows that the soft label outperforms
the one-hot label by 3.4% at rank 1. The reason is that the variability of the
optimal scale factors causes the frequent change of the one-hot label and the
unstable training. In fact, we find that using the one-hot label tends to predict
a same scale factor (e.g., 2) for most LR probes when test.

We visualize an example of the change of the predicted optimal scale factor
rp during training, as illustrated in Figure 3. We can observe that the soft label
stably predicts 2 after 31 epochs while the one-hot label results in a switch
between 2 and 3. This indicates that the soft label can smooth the change of the
predicted optimal scale factor and stabilize the optimization process.

Dynamic property. We validate the dynamic property of the dynamic soft
label by adjusting the update frequency ω. Figure 4 (a) reports the changing
curve of rank 1 with ω. Note that ω=0 refers to randomly determining whether
to update dynamic soft labels during each training epoch. Compared with setting
ω to 1, setting it to 0 slightly degenerates rank 1 on both two datasets. This is
probably because randomly updating leads labels not to always timely reflect
their variation. When ω ≥1, Figure 4 (a) has a general trend that rank 1 declines
as ω increases, showing that more timely updating labels can make more adaptive
prediction about the optimal scale factor. Therefore, the dynamic property is
effective in handling the variation of the optimal scale factors during training.

Regulatory factor. The regulatory factor γ controls the relative importance of
each scale factor in Equation 3. Figure 4 (b) plots rank 1 scores varying with γ.
We only set γ to the odd number (except 0) to make sure that the scale factor
near to the HR anchor in the feature space has a higher confidence probability.
As shown in Figure 4 (b), the rank 1 reaches a peak value when γ is set to 1/3 on
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Fig. 4. Effect of the update frequency and regulatory factor.

Table 4. Rank 1 scores of three training manners (%).

Method MLR-CUHK03 MLR-DukeMTMC-reid

Only pre-training 82.5 73.8
Without pre-training 82.8 75.1

With pre-training (Ours) 85.2 78.3

MLR-CUHK03/MLR-DukeMTMC-reid, respectively. Not surprisingly, setting γ
to 0 degrades the performance because this considers all the scale factors as
equal, and thus loses the effective supervision of the dynamic soft label.

Pre-training. To validate the effectiveness of pre-training in Section 3.5, we
evaluate the rank 1 scores of three training manners, which are in turn: only
pre-training (not training the whole model), training without pre-training and
training with pre-training. As shown in Table 4, only pre-training achieves the
lowest scores on two datasets, and training with pre-training outperforms with-
out pre-training by 2.4% and 3.2% on MLR-CUHK03 and MLR-DukeMTMC-
reid, respectively. Pre-training can improve our results because it can endow the
SR and re-id module with a basic recovering and identifying ability, so that we
can obtain more stable distributions of the features (corresponding to different
scale factors) and dynamic soft labels.

Loss functions. We train our model by minimizing the weighted sum of the
identity loss Lid, triplet loss Ltri, SR loss Lsr and prediction loss Lp in Equation
6. We validate each loss by removing it from the total loss. Table 5 shows that
removing Lid, Ltri or Lsr deteriorates the performance to varying degrees. This is
reasonable because Lid and Ltri are essential to learn the identity discrimination,
while Lsr is significant to recover effective image contents. Discarding Lp makes
rank 1 drop from 85.2% to 82.0%, because the predictor remains initialized and
cannot be optimized for the adaptive scale factor prediction without Lp.

Example analysis. We visualize an example of the recovered images, image
matching results and predicted probabilities in Figure 5. It can be easily ob-
served that the ground truths achieve the best ranking results and occupy the
top 4 places when we super-resolve the probe by the scale factor 2. This is con-
sistent with the fact that 2 has the highest predicted probability (0.33) of being
the optimal scale factor. The recovered images could provide an intuitional ex-
planation for the matching results. The relatively complex shirt textures make
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Table 5. Evaluation of losses on MLR-CUHK03 (%).

Removed Loss Rank 1 Rank 5 Rank 10

Lid 80.4 94.8 97.5
Lsr 81.5 95.4 97.9
Ltri 83.4 97.3 98.8
Lp 82.0 94.2 97.2

PRI(with all losses) 85.2 97.5 98.8

x
1
 

 ×
2 0.33

0.28 0.24

0.15

Probe Top-5 gallery images PredictionRecovery

Top 1 Top 2 Top 3 Top 4 Top 5

x
3
 

 ×
4

Top-5 gallery images PredictionRecovery

Top 1 Top 2 Top 3 Top 4 Top 5

Fig. 5. Visualized examples of the recovered images (resized to the uniform size for a
better comparison), top-ranked HR gallery images and predicted probabilities. Each
ground truth is indicated by a green bounding box.

the larger scale factor (e.g., 4) tend to produce the distorted or blurry recovery.
Therefore, slightly super-resolving the probe with the smaller scale factor 2 is
enough for better identification.

5 Conclusions

In this paper, we have proposed the PRI model to explore the potential relation
between the image content and the optimal scale factor for LR person re-id.
Despite lack of annotations, our proposed dynamic soft label enables us to learn
the prediction of the optimal scale factors in a self-supervised manner. Given
a LR image, our model can automatically make the content-aware scale factor
prediction, and then recover details into the predicted level, and finally identify
the recovered person image. Our method can not only predict a preferable scale
factor for more effective recovery and identification, but also help the standard
re-id models generalize well to the LR re-id setting.
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