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1 Joint Wireframe and Image Synthesis

Our joint representation learning framework is general and may also benefit other image
synthesis tasks. In this section, we report preliminary results on extending this frame-
work to the noise-to-image task. Recently, coarse-to-fine multi-scale models [1–4] have
been shown to produce visually pleasing results. However, such models often rely on
having a large training set and do not explicitly take structural integrity into considera-
tion.

In this work, we choose the state-of-art StackGANv2 [4] model as the baseline
model for our experiments. In the baseline model, the generator takes a random noise
vector as input and output an image. Instead of generating images only, we propose a
GAN model to generate images and their corresponding wireframes simultaneously. An
illustration of our proposed GAN model with joint representation learning can be found
in Fig. 1. Unlike the original StackGANv2 model, we first map the input noise vector to
a shared latent space of wireframe and image through the first generator G0, then two
separate branches of coarse-to-fine generators take the joint representation and gener-
ate wireframes and images, respectively. Although we do not have explicit supervision
upon the joint representation, the wireframe-based adversarial learning guarantees that
the learned representation contains enough structure information.

Note that our GAN model for image and wireframe generation does not require
paired wireframes and images during training, as it uses separate discriminators for
wireframes and images. Thus, we can potentially use wireframes and images from dif-
ferent sources, which makes the model scalable to much larger datasets.

Following [4], our GAN objective consists of two parts: the traditional adversarial
loss and a color-consistency regularization term. Since we are generating both wire-
frame and image, we also apply a structure-consistency regularization term to the gen-
erated wireframes. More specifically, the adversarial objective for the ith generator Gi
and the ith discriminator Di is defined as

max
θD

min
θG
Ladv
i =Exi

[logDw
i (xi)] + Ezwi log(1−Dw

i (G
w
i (z

w
i )))]

+ Eyi [logDs
i (yi)] + Ezsi log(1−D

s
i (G

s
i (z

s
i )))],

(1)

where zi is the input to the ith generator, x and y represent real wireframes and images,
respectively. The superscript indicates the index of the generator/discriminator branch
and G0 is shared by both branches.
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Fig. 1. Network architecture of our GAN model for joint wireframe and image generation. The
backbone generators and discriminators are the same as StackGANv2 [4].

Given a mini-batch of N generated wireframes x̂ni and images ŷni at the ith scale,
the color- and structure-consistency regularization term is defined as
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where µ and Σ represent the mean and covariance of pixel values of the given wire-
frame or image.

During the training of each discriminator in our model, only the adversarial lossLadv

is applied. When we train the ith generator, the total loss is the sum of the adversarial
loss and the consistency regularization loss, i.e., LGi = Ladv

i + αconLcon
i , where αcon is

the scaling factor that controls the relative influence of the two loss terms.

1.1 Implementation Details

Our proposed GAN model is built upon a StackGANv2 [4] backbone. After the shared
generator G0 which maps the input vector z to a joint embedding, the wireframe gen-
erator and image generator use separate coarse-to-fine generators Gw1 , G

s
1 and Gw2 , G

s
2

to generate wireframes and images at different scales. Before generating each wire-
frame/image, the learned features will go through a 3 × 3 convolution block including
batch normalization and relu activation, then followed by a 7× 7 convolution and tanh
activation to generate the wireframe or image. We set λ1 = 1, λ2 = 5 and αcon = 50 to
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Fig. 2. Qualitative comparisons of image generation models. The first row contains generated
images by the baseline StackGANv2 [4] model. The second and third rows are paired images and
wireframes generated by our model.

Table 1. Quantitative comparisons between image generation models. The inception score of the
real images in the test set is provided as reference.

Method IS↑ FID↓
StackGANv2 [4] 2.92 49.76

Ours 3.08 50.96

GT 3.21 -

be consistent with the original StackGANv2. The training is done by Adam optimizer
with fixed learning rate 2e−3. The batchsize is 64 and the maximum number of training
epochs is 500. No LSGAN loss is applied during training.

The data pre-processing is the same as in the image translation experiments except
that we do not apply color jitter augmentation for GAN training. During inference, only
the highest resolution images (we use 128 × 128 in joint synthesis experiments) are
evaluated.

1.2 Experiment Results

Fig. 2 shows example image synthesis results of StackGANv2 and our model. As one
can see, our model generates images with room layouts which are more geometrically
meaningful and better align with the typical layout of real rooms. It is also worth noting
that the wireframes generated by our model align quite well with the images, despite
that fact that no direct supervision is provided w.r.t. the alignment. This is a strong
indication of the effectiveness of the joint representation learning module.

Table 1 reports quantitative comparison results between the baseline StackGANv2
model and our GAN model. Specifically, we randomly generate 500 images for each
model, then calculate the IS and FID scores based on the generated images and real
images in the test set. Here we note that, the focus of our work is more on the geo-
metric constraints and structural integrity of the generated images. However, existing
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GAN metrics, such as the IS and FID scores, are mainly designed to measure the per-
ceptual quality and the diversity of the generated images, and cannot well capture the
structure information. While preserving structural integrity in image synthesis remains
a challenge for current GAN models, we hope that our proposed model and preliminary
results provide some useful insight for future research. We also expect that our model
can be improved by training with larger datasets from multiple sources and utilizing
advanced GAN models.

2 Additional Wireframe Rendering Results

We provide more wireframe-to-image translation results and wireframe detection re-
sults in Fig. 3. Note the structural similarity between our synthesized images and the
real images. Also, by comparing the wireframe detection results from synthetic images
with real images, we can observe that wireframes detected from real images contain
more false positives. This may explain why our synthetic images achieves higher sAP
scores than real images.
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Fig. 3. Additional wireframe-to-image translation results. The first row is the input wireframe;
second and third rows are images generated by our model and the corresponding wireframe de-
tection results; the rest are real images and the corresponding detection results. We use wire-
frame parser from [5] to detect wireframes from synthetic/real images. For fair comparison, no
post-processing is done for the wireframe parser.
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