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Abstract. We present a novel method for testing the safety of self-
driving vehicles in simulation. We propose an alternative to sensor sim-
ulation, as sensor simulation is expensive and has large domain gaps.
Instead, we directly simulate the outputs of the self-driving vehicle’s per-
ception and prediction system, enabling realistic motion planning testing.
Specifically, we use paired data in the form of ground truth labels and
real perception and prediction outputs to train a model that predicts
what the online system will produce. Importantly, the inputs to our sys-
tem consists of high definition maps, bounding boxes, and trajectories,
which can be easily sketched by a test engineer in a matter of minutes.
This makes our approach a much more scalable solution. Quantitative
results on two large-scale datasets demonstrate that we can realistically
test motion planning using our simulations.
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1 Introduction

Self-driving vehicles (SDVs) have the potential to become a safer, cheaper, and
more scalable form of transportation. But while great progress has been achieved
in the last few decades, there still remain many open challenges that impede
the deployment of these vehicles at scale. One such challenge concerns how to
test the safety of these vehicles and, in particular, their motion planners [13,
44]. Most large-scale self-driving programs in industry use simulation for this
purpose, especially in the case of testing safety-critical scenarios, which can be
costly—even unethical—to perform in the real world. To this end, test engineers
first create a large bank of test scenarios, each comprised of a high definition
(HD) map and a set of actors represented by bounding boxes and trajectories.
These mocked objects are then given as input to the motion planner. Finally,
metrics computed on the simulation results are used to assess progress.

? Indicates equal contribution. Work done during Qiang’s internship at Uber ATG.
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Fig. 1. Perception and prediction simulation. Our goal is to simulate the outputs
of the SDV’s perception and prediction system in order to realistically test its motion
planner. For each timestep, our system ingests an HD map and a set of actors (bounding
boxes and trajectories) and produces noisy outputs similar to those from the real
system. To test the motion planner, we mock real outputs with our simulated ones.

However, in order to provide realistic testing, the mocked objects need to
reflect the noise of real perception and prediction4 systems [34, 7, 33, 62, 50, 31].
Unfortunately, existing approaches typically assume perfect perception or use
simple heuristics to generate noise [18]. As a result, they yield unrealistic assess-
ments of the motion planner’s safety. For example, under this testing regime, we
will never see the SDV slamming its brakes due to a false positive detection.

An alternative approach is to use sensor simulation to test the SDV’s full
autonomy stack, end-to-end. Sensor simulation is a popular area of research,
particularly in the case of images [42, 15, 1, 53, 25, 32, 60]. However, most exist-
ing sensor simulators are costly and difficult to scale since they are based on
virtual worlds created by teams of artists; e.g ., TORCS [54], CARLA [12], Air-
Sim [46]. Rendering these virtual worlds also results in observations that have
very different statistics from real sensor data. As a result, there are large domain
gaps between these virtual worlds and our physical one. Recently, LiDARSim
[35] leveraged real-world data to produce realistic LiDAR simulations at scale,
narrowing the fidelity gap significantly. However, current autonomy stacks use a
host of different sensors, including LiDAR [63, 59, 30], radar [8, 57], cameras [10,
51, 33], and ultrasonics, and thus all of these sensors must be simulated consis-
tently for this approach to be useful in testing the full autonomy stack. These
challenges make sensor simulation a very exciting area of research, but also one
that is potentially far from deployment in real-world systems that must meet
requirements developed by safety, systems engineering, and testing teams.

In this paper, we propose to simulate the SDV’s perception and prediction
system instead; see Fig. 1. To this end, we provide a comprehensive study of a
variety of noise models with increasing levels of sophistication. Our best model is

4 We use the terms prediction and motion forecasting interchangeably.
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a convolutional neural network that, given a simple representation of the scene,
produces realistic perception and prediction simulations. Importantly, this input
representation can be sketched by a test engineer in a matter of minutes, making
our approach cheap and easy to scale. We validate our model on two self-driving
datasets and show that our simulations closely match the outputs of a real
perception and prediction system. We also demonstrate that they can be used
to realistically test motion planning. We hope to inspire work in this important
field so that one day we can certify the safety of SDVs and deploy them at scale.

2 Related Work

Sensor simulation: The use of sensor simulation in self-driving dates back to at
least the seminal work of Pomerleau [40] who used both simulated and real road
images to train a neural network to drive. Since then, researchers and engineers
have developed increasingly realistic sensor simulators for self-driving across var-
ious modalities. For example, [42, 15, 1, 53, 25] use photo-realistic rendering tech-
niques to synthesize images to train neural networks and [32, 60] leverage real
sensor data to generate novel views. Likewise, [17, 61, 14, 12] use physics-based
ray-casting to simulate LiDAR while [35] enhances its realism with learning. And
in radar, [19] propose a ray-tracing based simulator and [52] use a fully-learned
approach. However, despite much progress in recent years, there remain size-
able domain gaps between simulated sensor data and real ones [35]. Moreover,
developing a realistic sensor simulator requires significant effort from domain
experts [25], which limits the scalability of doing so across an entire sensor suite.
In this paper, we sidestep these challenges by instead simulating a much simpler
scene representation: the SDV’s perception and prediction outputs.

Virtual environments: Training and testing robots in the phyiscal world
can be a slow, costly, and even dangerous affair; virtual environments are of-
ten used to circumvent these difficulties. For example, in machine learning and
robotics, popular benchmarks include computer games [4, 24, 47, 26, 3], indoor
environments [29, 45, 56, 55], robotics simulators [11, 49, 28], and self-driving sim-
ulators [54, 9, 12, 46]. These virtual worlds have motivated a wealth of research
in fields ranging from embodied vision to self-driving. However, they also require
significant effort to construct, and this has unfortunately limited the diversity of
their content. For example, CARLA [12] originally had just two artist-generated
towns consisting of 4.3km of drivable roads. In this paper, we use a lightweight
scene representation that simplifies the task of generating new scenarios.

Knowledge distillation: Knowledge distillation was first popularized by Hin-
ton et al . [22] as a way to compress neural networks by training one network
with the (soft) outputs of another. Since then, researchers have found success-
ful applications of distillation in subfields across machine learning [21, 16, 38,
43, 20]. In this paper, we also train our simulation model using outputs from an
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SDV’s perception and prediction system. In this sense, our work is closely related
with distillation. However, unlike prior work in distillation, we assume no direct
knowledge of the target perception and prediction system; i.e., we treat these
modules as black boxes. Moreover, the inputs to our simulation model differ from
the inputs to the target system. This setting is more suitable for self-driving,
where perception and prediction systems can be arbitrarily complex pipelines.

3 Perception and Prediction Simulation

Our goal is to develop a framework for testing the SDV’s motion planner as it
will behave in the real world. One approach is to use sensor simulation to test
the SDV’s full autonomy stack, end-to-end. However, this can be a complex and
costly endeavor that requires constructing realistic virtual worlds and develop-
ing high-fidelity sensor simulators. Moreover, there remains a large domain gap
between the sensor data produced by existing simulators and our physical world.

In this work, we study an alternative approach. We observe that the au-
tonomy stack of today’s SDVs employ a cascade of interpretable modules: per-
ception, prediction, and motion planning. Therefore, rather than simulate the
raw sensor data, we simulate the SDV’s intermediate perception and prediction
outputs instead, thus leveraging the compositionally of its autonomy stack to
bypass the challenges of sensor simulation. Testing the SDV’s motion planner
can then proceed by simply mocking real perception and prediction outputs with
our simulated ones. We call this task perception and prediction simulation.

Our approach is predicated on the hypothesis that there exists systemic noise
in modern perception and prediction systems that we could simulate. Indeed, our
experiments show that this is the case in practice. Therefore, we study a variety
of noise models with increasing levels of sophistication. Our best model is a
convolutional neural network that, given a simple representation of the scene,
learns to produce realistic perception and prediction simulations. This enables
us to realistically test motion planning in simulation. See Fig. 1 for an overview.

In this section, we first formulate the task of perception and prediction sim-
ulation and define some useful notation. Next, we describe a number of noise
models in order of increasing sophistication and highlight several key modeling
choices that informs the design of our best model. Finally, we describe our best
model for this task and discuss how to train it in an end-to-end fashion.

3.1 Problem Formulation

Given a sensor reading at timestep t, the SDV’s perception and prediction sys-
tem ingests an HD map and sensor data and produces a class label ĉi, a bird’s
eye view (BEV) bounding box b̂i, and a set of future states ŝi = {ŝi,t+δ}Hδ=1 for
each actor i that it detects in the scene, where H is the prediction horizon. Each
state ŝi,t+δ ∈ R3 consists of the actor’s 2D BEV position and orientation at
some timestep t+ δ in the future.5 Note that this is the typical output parame-

5 Actors’ future orientations are approximated from their predicted waypoints using
finite differences, and their bounding box sizes remain constant over time.
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Fig. 2. Perturbation models for perception and prediction simulation.
NoNoise assumes perfect perception and prediction. GaussianNoise and Multimodal-
Noise use marginal noise distributions to perturb each actor’s shape, position, and
whether it is misdetected. ActorNoise accounts for inter-actor variability by predicting
perturbations conditioned on each actor’s bounding box and positions over time.

terization for an SDV’s perception and prediction system [34, 7, 33, 62, 50, 31], as
it is lightweight, interpretable, and easily ingested by existing motion planners.

For each timestep in a test scenario, our goal is to simulate the outputs of the
SDV’s perception and prediction system without using sensor data—neither real
nor simulated. Instead, we use a much simpler representation of the world such
that we can: (i) bypass the complexity of developing realistic virtual worlds and
sensor simulators; and (ii) simplify the task of constructing new test scenarios.

Our scenario representation consists of an HD map M, a set of actors A,
and additional meta-data for motion planning, such as the SDV’s starting state
and desired route. The HD map M contains semantic information about the
static scene, including lane boundaries and drivable surfaces. Each actor ai ∈ A
is represented by a class label ci, a bounding box bi, and a set of states si =
{si,t}Tt=0, where T is the scenario duration. Note that A is a perfect perception
and prediction of the world, not the (noisy) outputs of a real online system.

This simple representation can be easily sketched by a test engineer in a
matter of seconds or minutes, depending on the complexity and duration of the
scenario. The test engineer can start from scratch or from existing logs collected
in real traffic or in structured tests at a test track by adding or removing actors,
varying their speeds, changing the underlying map, etc.

3.2 Perturbation Models for Perception and Prediction Simulation

One family of perception and prediction simulation methods builds on the idea of
perturbing the actors A of the input test scenario with noise approximating that
found in real systems. In this section, we describe a number of such methods in
order of increasing sophistication; see Fig. 2. Along the way, we highlight several
key modeling considerations that will motivate the design of our best model.

NoNoise: For each timestep t of the test scenario, we can readily simulate
perfect perception and prediction by outputting the class label ci, the bounding
box bi, and the future states {si,t+δ}Hδ=1 for each actor ai ∈ A. Indeed, most
existing methods to test motion planning similarly use perfect perception [18].
This approach gives an important signal as an upper bound on the motion
planner’s performance in the real world. However, it is also unrealistic as it yields
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an overly optimistic evaluation of the motion planner’s safety. For example, this
approach cannot simulate false negative detections; thus, the motion planner
will never be tested for its ability to exercise caution in areas of high occlusion.

GaussianNoise: Due to its assumption of perfect perception and prediction,
the previous method does not account for the noise present in real perception
and prediction systems. As such, it suffers a sim-to-real domain gap. In domain
randomization, researchers have successfully used random noise to bridge this
gap during training [39, 48, 41, 36, 37]. This next approach investigates whether
random noise can be similarly used to bridge the sim-to-real gap during test-
ing. Specifically, we model the noise present in real perception and prediction
systems with a marginal distribution pnoise over all actors. For each timestep
t in the test scenario, we perturb each actor’s bounding box bi and future
states {si,t+δ}Hδ=1 with noise drawn from pnoise. In our experiments, we use
noise drawn from a Gaussian distribution N (0, 0.1) to perturb each component
in bi = (x, y, logw, log h, sin θ, cos θ), where (x, y) is the box’s center, (w, h) is
its width and height, and θ is its orientation. We similarly perturb each state in
{si,t+δ}Hδ=1. To simulate misdetections, we randomly drop boxes with probability
equal to the observed rate of false negative detections in our data.6

MultimodalNoise: Simple noise distributions such as the one used in Gaus-
sianNoise do not adequately reflect the complexity of the noise in perception and
prediction systems. For example, prediction noise is highly multi-modal since ve-
hicles can go straight or turn at intersections. Therefore, in this next approach,
we instead use a Gaussian Mixture Model, which we fit to the empirical dis-
tribution of noise in our data via expectation-maximization [5]. As before, we
simulate misdetections by dropping boxes with probability equal to the observed
rate of false negative detections in our data.

ActorNoise: In MultimodalNoise, we use a marginal noise distribution over all
actors to model the noise present in perception and prediction systems. This,
however, does not account for inter-actor variability. For example, prediction
systems are usually more accurate for stationary vehicles than for ones with ir-
regular motion. In our next approach, we relax this assumption by conditioning
the noise for each actor on its bounding box bi and past, present, and future
states si. We implement ActorNoise as a multi-layer perceptron that learns to
predict perturbations to each component of an actor’s bounding box bi and
future states {si,t+δ}Hδ=1. We also predict each actor’s probability of misdetec-
tion. To train ActorNoise, we use a combination of a binary cross entropy loss for
misdetection classification and a smooth `1 loss for box and waypoint regression.

6 True positive, false positive, and false negative detections are determined by IoU
following the detection AP metric. In our experiments, we use a 0.5 IoU threshold
for cars and vehicles and 0.3 IoU for pedestrians and bicyclists.
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Fig. 3. ContextNoise for perception and prediction simulation. Given BEV
rasterized images of the scene (drawn from bounding boxes and HD maps), our model
simulates outputs similar to those from the real perception and prediction system. It
consists of: (i) a shared backbone feature extractor; (ii) a perception head for simulating
bounding box outputs; and (iii) a prediction head for simulating future states outputs.

3.3 A Contextual Model for Perception and Prediction Simulation

So far, we have discussed several perturbation-based models for perception and
prediction simulation. However, these methods have two limitations. First, they
cannot simulate false positive misdetections. More importantly, they do not use
contextual information about the scene, which intuitively should correlate with
the success of a perception and prediction system. For example, HD maps provide
valuable contextual information to determine what actor behaviors are possible.

To address these limitations, we propose to use a convolutional neural net-
work that takes as input BEV rasterized images of the scene (drawn from bound-
ing boxes and HD maps) and learns to simulate dense bounding boxes and future
state outputs similar to those from the real perception and prediction system.
This is the native parameterization of the perception and prediction system used
in our experiments. Our model architecture is composed of three components:
(i) a shared backbone feature extractor; (ii) a perception head for simulating
bounding box outputs; and (iii) a prediction head for simulating future states
outputs. We call this model ContextNoise. See Fig. 3 for an overview.

Input representation: For each timestep t of the input scenario, our model
takes as input BEV raster images of the scene in ego-centric coordinates. In
particular, for each class of interest, we render the actors of that class as bounding
boxes in a sequence of occupancy masks [2, 23] indicating their past, present,
and future positions. Following [7, 58], we rasterize the HD mapM into multiple
binary images. We represent lane boundaries as polylines and drivable surfaces as
filled polygons. Occlusion is an important source of systemic errors for perception
and prediction systems. For example, a heavily occluded pedestrian is more likely
to be misdetected. To model this, we render a temporal sequence of 2D occlusion
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masks using a constant-horizon ray-casting algorithm [18]. By stacking these
binary images along the feature channel, we obtain our final input representation.

Backbone network: We use the backbone architecture of [33] as our shared
feature extractor. Specifically, it is a convolutional neural network that computes
a feature hierarchy at three scales of input resolution: 1/4, 1/8, and 1/16. These
multi-scale features are then upscaled to 1/4 resolution and fused using residual
connections. This yields a C ×H/4×W/4 feature map, where C is the number
of output channels and H and W is the height and width of the input raster
image. Note that we use this backbone to extract features from BEV raster
images (drawn from bounding boxes and HD maps), not voxelized LiDAR point
clouds as it was originally designed for. We denote the resulting feature map by:

Fbev = CNNbev (A,M) (1)

Perception head: Here, our goal is to simulate the bounding box outputs of
the real perception and prediction system. To this end, we use a lightweight
header to predict dense bounding box outputs for every class. Our dense output
parameterization allows us to naturally handle false positive and false negative
misdetections. In detail, for each class of interest, we use one convolution layer
with 1× 1 kernels to predict a bounding box b̃i and detection score α̃i at every
BEV pixel i in Fbev. We parameterize b̃i as (∆x,∆y, logw, log h, sin θ, cos θ),
where (∆x,∆y) are the position offsets to the box center, (w, h) are its width
and height, and θ is its orientation [59]. We use non-maximum suppression to
remove duplicates. This yields a set of simulated bounding boxes Bsim = {b̃i}Ni=1.

Prediction head: Our goal now is to simulate a set of future states for each
bounding box b̃i ∈ Bsim. To this end, for each b̃i ∈ Bsim, we first extract a feature
vector fi by bilinearly interpolating Fbev around its box center. We then use a
multi-layer perceptron to simulate its future positions:

x̃i = MLPpred (fi) (2)

where x̃i ∈ RH×2 is a set of 2D BEV waypoints over the prediction horizon
H. We also simulate its future orientation θ̃i using finite differences. Together,
{x̃i}Ni=1 and {θ̃i}Ni=1 yield a set of simulated future states Ssim = {s̃i}Ni=1. Com-
bining Ssim with Bsim, we have our final perception and prediction simulation.

Learning: We train our model with a multi-task loss function:

L = `perc + `pred (3)

where `perc is the perception loss and `pred is the prediction loss. Note that these
losses are computed between our simulations and the outputs of the real percep-
tion and prediction system. Thus, we train our model using datasets that provide
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both real sensor data (to generate real perception and prediction outputs) and
our input scenario representations (to give as input to our model).7

Our perception loss is a multi-task detection loss. For object classification,
we use a binary cross-entropy loss with online negative hard-mining, where pos-
itive and negative BEV pixels are determined according to their distances to an
object’s center [59]. For box regression at positive pixels, we use a smooth `1
loss for box orientation and an axis-aligned IoU loss for box location and size.

Our prediction loss is a sum of smooth `1 losses over future waypoints for
each true positive bounding box, where a simulated box is positive if its IoU with
a box from the real system exceeds a certain threshold. In our experiments, we
use a threshold of 0.5 for cars and vehicles and 0.3 for pedestrians and bicyclists.

4 Experimental Evaluation

In this section, we benchmark a variety of noise models for perception and pre-
diction simulation on two large-scale self-driving datasets (Section 4.3). Our best
model achieves significantly higher simulation fidelity than existing approaches
that assume perfect perception and prediction. We also conduct downstream ex-
periments with two motion planners (Section 4.4). Our results show that there is
a strong correlation between our ability to realistically simulate perception and
prediction and our ability to realistically test motion planning.

4.1 Datasets

nuScenes: nuScenes [6] consists of 1000 traffic scenarios collected in Boston and
Singapore, each containing 20 seconds of video captured by a 32-beam LiDAR
sensor at 20Hz. In this dataset, keyframes sampled at 2Hz are annotated with
object labels within a 50m radius. We generate additional labels at unannotated
frames by linearly interpolating labels from adjacent keyframes [33]. We use the
official training and validation splits and perform evaluation on the car class. To
prevent our simulation model from overfitting to the training split, we partition
the training split into two halves: one to train the perception and prediction
model and the other our simulation model. Note that we do not use HD maps
in our nuScenes experiments due to localization issues in some maps.8

ATG4D: ATG4D [59] consists of 6500 challenging traffic scenarios collected
by a fleet of self-driving vehicles in cities across North America. Each scenario
contains 25 seconds of video captured by a Velodyne HDL-64E at 10Hz, resulting
in 250 LiDAR sweeps per video. Each sweep is annotated with bounding boxes
and trajectories for the vehicle, pedestrian, and bicyclist classes within a 100m
radius and comes with localized HD maps. We split ATG4D into two training
splits of 2500 scenarios each, a validation split of 500, and a test split of 1000.

7 Our representation uses bounding boxes and trajectories. Most self-driving datasets
provide this as ground truth labels for the standard perception and prediction task.
For perception and prediction simulation, we use these labels as inputs instead.

8 As of nuScenes map v1.0.
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Fig. 4. Simulation results on ATG4D. We visualize PLT [44] motion planning re-
sults when given real perception and prediction (top) versus simulations from NoNoise
(middle) and ContextNoise (bottom). ContextNoise faithfully simulates a misprediction
due to multi-modality and induces a lane-change behavior from the motion planner.

4.2 Experiment Setup

Autonomy stack: We simulate the outputs of PnPNet [33]—a state-of-the-art
joint perception and prediction model. PnPNet takes as input an HD map and
the past 0.5s of LiDAR sweeps and outputs BEV bounding boxes and 3.0s of
future waypoints (in 0.5s increments) for each actor that it detects. Since our
focus is on simulating perception and prediction, we use the variant of PnPNet
without tracking. We configure PnPNet to use a common detection score thresh-
old of 0. In the ATG4D validation split, this corresponds to a recall rate of 94%
for vehicles, 78% for pedestrians, and 62% for bicyclists.

To gauge the usefulness of using our simulations to test motion planning, we
conduct downstream experiments with two motion planners. Our first motion
planner is adaptive cruise control (ACC), which implements a car-following algo-
rithm. Our second motion planner is PLT [44]—a jointly learnable behavior and
trajectory planner. PLT is pretrained on the ManualDrive dataset [44], which
consists of 12,000 logs in which the drivers were instructed to drive smoothly.
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Experiment details: In nuScenes, we use a 100m × 100m region of interest
centered on the SDV for training and evaluation. In ATG4D, we use one encom-
passing 70m in front of the SDV and 40m to its left and right. Our rasters have a
resolution of 0.15625m per pixel, resulting in 640×640 input images for nuScenes
and 448 × 512 for ATG4D. All of our noise models ingest 0.5s of actor states
in the past and 3.0s into the future (in 0.5s increments). We train ActorNoise
and ContextNoise using the Adam optimizer [27] with a batch size of 32 and an
initial learning rate of 4e−4, which we decay by 0.1 after every five epochs for a
total of 15 epochs. We re-train PnPNet for our experiments following [33].

4.3 Perception and Prediction Simulation Results

In this section, we benchmark a variety of noise models for perception and pre-
diction simulation. Our best model, ContextNoise, produces simulations that
closely match the outputs of the real perception and prediction system.

Metrics: We use two families of metrics to evaluate the similarity between our
simulated outputs and those from the real perception and prediction system.
This is possible since our datasets provide both real sensor data and our input
scenario representations. Our first family of metrics measures the similarity be-
tween simulated bounding boxes and real ones. To this end, we report detection
average precision (AP) and maximum recall at various IoU thresholds depending
on the class and dataset. Our second family of metrics measures the similarity
between simulated future states and real ones. We use average displacement er-
ror (ADE) over 3.0s and final displacement error (FDE) at 3.0s for this purpose.
These metrics are computed on true positive bounding boxes at 0.5 IoU for cars
and vehicles and 0.3 IoU for pedestrians and bicyclists. In order to fairly com-
pare models with different maximum recall rates, we report ADE and FDE for
all methods at a common recall point, if it is attained. All metrics for Gaussian-
Noise and MultimodalNoise are averaged over 25 sample runs. Note that we use
random ordering to compute AP, ADE, and FDE for the methods that do not
produce ranking scores: NoNoise, GaussianNoise, and MultimodalNoise.

Quantitative results: Tables 1 and 2 show the results of our experiments
on nuScenes and ATG4D respectively. Overall, ContextNoise attains the best
performance. In contrast, simple marginal noise models such as GaussianNoise
and MultimodalNoise perform worse than the method that uses no noise at all.
This attests to the importance of using contextual information for simulating
the noise in real perception and prediction systems. In addition, we highlight
the fact that only ContextNoise improves maximum recall over NoNoise. This is
at least in part due to its dense output parameterization, which can naturally
model misdetections due to mislocalization, misclassification, etc. Finally, we
note that ContextNoise’s improvements in prediction metrics are most evident
for the car and vehicle classes; for rarer classes, such as pedestrians and bicyclists,
ContextNoise and ActorNoise perform similarly well.
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Perception Metrics ↑ Prediction Metrics ↓
AP (%) Max Recall (%) ADE (cm) FDE (cm)

Car 0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU 50% R 70% R 50% R 70% R

GaussianNoise 4.9 0.9 13.0 1.7 - - - -
MultimodalNoise 12.8 4.9 21.1 13.1 - - - -
NoNoise 51.5 39.0 72.0 62.7 85 84 147 146
ActorNoise 65.7 55.0 72.1 63.5 64 66 97 100
ContextNoise 72.2 59.1 80.3 68.9 54 61 81 90

Table 1. Perception and prediction simulation metrics on nuScene valida-
tion. R denotes the common recall point at which prediction metrics are computed.

Perception Metrics ↑ Prediction Metrics ↓
AP (%) Max Recall (%) ADE (cm) FDE (cm)

Vehicle 0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU 70% R 90% R 70% R 90% R

GaussianNoise 16.5 0.4 34.4 5.2 - - - -
MultimodalNoise 30.7 12.1 46.8 29.4 - - - -
NoNoise 71.7 56.9 93.1 82.9 70 70 127 128
ActorNoise 86.6 70.4 93.2 82.9 65 57 109 93
ContextNoise 91.8 82.3 95.7 87.8 46 51 72 78

Pedestrian 0.3 IoU 0.5 IoU 0.3 IoU 0.5 IoU 60% R 80% R 60% R 80% R

GaussianNoise 13.8 3.0 30.0 13.8 - - - -
MultimodalNoise 30.3 21.7 44.2 37.4 - - - -
NoNoise 57.4 52.3 84.0 80.2 41 41 70 70
ActorNoise 67.1 61.6 84.0 80.0 36 35 55 54
ContextNoise 75.1 66.6 88.2 80.3 34 34 51 52

Bicyclist 0.3 IoU 0.5 IoU 0.3 IoU 0.5 IoU 50% R 70% R 50% R 70% R

GaussianNoise 4.7 0.4 17.8 5.4 - - - -
MultimodalNoise 8.4 3.2 24.0 14.7 - - - -
NoNoise 30.6 21.6 79.7 66.8 54 55 95 95
ActorNoise 60.4 44.1 79.7 67.8 54 49 88 78
ContextNoise 66.8 52.8 89.8 76.5 52 50 80 75

Table 2. Perception and prediction simulation metrics on ATG4D test.

4.4 Motion Planning Evaluation Results

Our ultimate goal is to use perception and prediction simulation to test motion
planning. Therefore, we conduct downstream experiments in ATG4D to quantify
the efficacy of doing so for two motion planners: ACC and PLT.

Metrics: Our goal is to evaluate how similarly a motion planner will behave
in simulation versus the physical world. To quantify this, we compute the `2
distance between a motion planner’s trajectory given simulated perception and
prediction outputs versus its trajectory when given real outputs instead. We
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`2 Distance (cm) ↓ Collision Sim. (%) ↑ Driving Diff. (%) ↓
1.0s 2.0s 3.0s IoU Recall Beh. Jerk Acc.

PLT

GaussianNoise 2.6 8.4 15.9 34.5 92.7 0.30 0.10 1.05
MultimodalNoise 2.7 9.4 18.0 25.2 93.6 0.33 1.22 1.25
NoNoise 1.4 4.8 9.5 52.9 58.2 0.18 0.44 0.03
ActorNoise 1.0 3.6 7.0 57.6 63.6 0.12 0.27 0.13
ContextNoise 0.8 2.9 5.6 65.1 74.3 0.10 0.05 0.06

ACC

GaussianNoise 6.4 32.5 79.9 36.5 96.7 - 5.14 0.03
MultimodalNoise 5.1 26.2 64.9 36.5 96.7 - 3.84 0.11
NoNoise 1.9 10.0 25.2 52.9 32.4 - 0.20 0.17
ActorNoise 1.6 8.1 20.0 58.6 66.3 - 0.40 0.13
ContextNoise 1.4 7.2 17.6 61.3 74.1 - 0.14 0.03

Table 3. Motion planning evaluation metrics on ATG4D test.

report this metric for {1.0, 2.0, 3.0} seconds into the future. In addition, we also
measure their differences in terms of passenger comfort metrics; i.e., jerk and
lateral acceleration. Finally, we report the proportion of scenarios in which PLT
chooses a different behavior when given simulated outputs instead of real ones.9

An especially important metric to evaluate the safety of a motion planner
measures the proportion of scenarios in which the SDV will collide with an
obstacle. To quantify our ability to reliably measure this in simulation, we report
the intersection-over-union of collision scenarios and its recall-based variant:

IoUcol =
|R+ ∩ S+|

|R+ ∩ S+|+ |R+ ∩ S−|+ |R− ∩ S+|
Recallcol =

|R+ ∩ S+|
|R+|

(4)

where R+ and S+ are the sets of scenarios in which the SDV collides with an ob-
stacle after 3.0s given real and simulated perception and prediction respectively,
and R− and S− are similarly defined for scenarios with no collisions.

Quantitative results: Table 3 shows our experiment results on ATG4D. They
show that by realistically simulating the noise in real perception and prediction
systems, we can induce similar motion planning behaviors in simulation as in the
real world, thus making our simulation tests more realistic. For example, Con-
textNoise yields a 41.1% and 30.2% relative reduction in `2 distance at 3.0s over
NoNoise for PLT and ACC respectively. Importantly, we can also more reliably
measure a motion planner’s collision rate using ContextNoise versus NoNoise.
This is an important finding since existing methods to test motion planning in
simulation typically assume perfect perception or use simple heuristics to gener-
ate noise. Our results show that more sophisticated noise modeling is necessary.

9 Note that ACC always uses the same driving behavior.
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Inputs AP (%) ↑ FDE (cm) ↓ `2 @ 3.0s (cm) ↓
Variant A O M Veh. Ped. Bic. Veh. Ped. Bic. PLT ACC

1 X 85.0 64.0 59.9 87 56 70 4.7 15.0
2 X X 85.5 63.8 61.7 86 55 72 4.7 14.4
3 X X X 86.9 68.6 64.1 76 52 70 4.2 14.2

Table 4. Ablation of ContextNoise input features on ATG4D validation. We
progressively add each input feature described in Section 3.3. A denotes actor occu-
pancy images; O denotes occlusion masks; and M denotes HD maps. AP is computed
using 0.7 IoU for vehicles and 0.5 IoU for pedestrians and bicyclists. FDE at 3.0s is
computed at 90% recall for vehicles, 80% for pedestrians, and 70% for bicyclists.

4.5 Ablation Study

To understand the usefulness of contextual information for simulation, we ablate
the inputs to ContextNoise by progressively augmenting it with actor occupancy
images, occlusion masks, and HD maps. From Table 4, we see that adding con-
textual information consistently improves simulation performance. These gains
also directly translate to more realistic evaluations of motion planning.

4.6 Qualitative Results

We also visualize results from the PLT motion planner when given real per-
ception and prediction versus simulations from NoNoise and ContextNoise. As
shown in Fig. 4, ContextNoise faithfully simulates a misprediction due to multi-
modality and induces a lane-change behavior from the motion planner—the same
behavior as if the motion planner was given real perception and prediction. In
contrast, NoNoise induces an unrealistic keep-lane behavior instead.

5 Conclusion

In this paper, we introduced the problem of perception and prediction simula-
tion in order to realistically test motion planning. To this end, we have studied a
variety of noise models. Our best model has proven to be a convolutional neural
network that, given a simple representation of the scene, learns to produce real-
istic perception and prediction simulations. Importantly, this representation can
be easily sketched by a test engineer in a matter of minutes. We have validated
our model on two large-scale self-driving datasets and showed that our simula-
tions closely match the outputs of real perception and prediction systems. We
have only begun to scratch the surface of this task. We hope our findings here
will inspire advances in this important field so that one day we can certify the
safety of self-driving vehicles and deploy them at scale.
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canu, R., Mnih, V., Kavukcuoglu, K., Hadsell, R.: Policy distillation. In: 4th Inter-
national Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings (2016)

44. Sadat, A., Ren, M., Pokrovsky, A., Lin, Y., Yumer, E., Urtasun, R.: Jointly learn-
able behavior and trajectory planning for self-driving vehicles. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2019, Macau,
SAR, China, November 3-8, 2019 (2019)

45. Savva, M., Chang, A.X., Dosovitskiy, A., Funkhouser, T.A., Koltun, V.: MINOS:
multimodal indoor simulator for navigation in complex environments. CoRR (2017)

46. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: High-fidelity visual and physical
simulation for autonomous vehicles. CoRR (2017)

47. Tessler, C., Givony, S., Zahavy, T., Mankowitz, D.J., Mannor, S.: A deep hierarchi-
cal approach to lifelong learning in minecraft. In: Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA (2017)



18 K. Wong, Q. Zhang, M. Liang, B. Yang, R. Liao, A. Sadat, and R. Urtasun

48. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain
randomization for transferring deep neural networks from simulation to the real
world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2017, Vancouver, BC, Canada, September 24-28, 2017 (2017)

49. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: A physics engine for model-based con-
trol. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, IROS 2012, Vilamoura, Algarve, Portugal, October 7-12, 2012 (2012)

50. Wang, T.H., Manivasagam, S., Liang, M., Yang, B., Zeng, W., Urtasun, R.:
V2VNet: Vehicle-to-vehicle communication for joint perception and prediction. In:
Computer Vision - ECCV 2020 - 16th European Conference, August 23-28, 2020,
Proceedings (2020)

51. Wang, Y., Chao, W., Garg, D., Hariharan, B., Campbell, M.E., Weinberger, K.Q.:
Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection
for autonomous driving. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019 (2019)

52. Wheeler, T.A., Holder, M., Winner, H., Kochenderfer, M.J.: Deep stochastic radar
models. CoRR (2017)

53. Wrenninge, M., Unger, J.: Synscapes: A photorealistic synthetic dataset for street
scene parsing. CoRR (2018)

54. Wymann, B., Dimitrakakisy, C., Sumnery, A., Guionneauz, C.: TORCS: The open
racing car simulator (2015)

55. Xia, F., Shen, W.B., Li, C., Kasimbeg, P., Tchapmi, M., Toshev, A., Mart́ın-
Mart́ın, R., Savarese, S.: Interactive Gibson benchmark: A benchmark for interac-
tive navigation in cluttered environments. IEEE Robotics Autom. Lett. (2020)

56. Xia, F., Zamir, A.R., He, Z., Sax, A., Malik, J., Savarese, S.: Gibson Env: Real-
world perception for embodied agents. In: 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-
22, 2018 (2018)

57. Yang, B., Guo, R., Liang, M., Casas, S., Urtasun, R.: Exploiting radar for robust
perception of dynamic objects. In: Computer Vision - ECCV 2020 - 16th European
Conference, August 23-28, 2020, Proceedings (2020)

58. Yang, B., Liang, M., Urtasun, R.: HDNET: exploiting HD maps for 3d object
detection. In: 2nd Annual Conference on Robot Learning, CoRL 2018, Zürich,
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