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1 Relaxed Generalized MM and the gradient method

We assume that J(·;u) has a Lipschitz gradient with constant L, and therefore

J(θ;u) ≤ J(θ0;u) +∇J(θ0;u)T (θ − θ0) +
L

2
‖θ − θ0‖2 (1)

for all u, θ and θ0. We recall the relaxed GMM condition,

J(θ(t−1);u(t)) ≤ ηJ(θ(t−1), u(t)) + (1− η)J(θ(t−2);u(t−1))

= J(θ(t−2);u(t−1))− η
(
J(θ(t−2), u(t−1))− J(θ(t−1), u(t))

)
︸ ︷︷ ︸

=:ct

.

If θ(t−1) = θ(t−2) − 1
L∇J(θ(t−2);u(t−1)), then

J(θ(t−1);u(t−1)) ≤ J(θ(t−2);u(t−1)) +∇J(θ(t−2);u(t−1))T (θ(t−1) − θ(t−2))

+
L

2
‖θ(t−1) − θ(t−1)‖2

= J(θ(t−2);u(t−1))− 1

2L
‖∇J(θ(t−2);u(t−1))‖2. (2)

Consequently,

ct = J(θ(t−2), u(t−1))− J(θ(t−1), u(t))

≥ J(θ(t−1);u(t−1)) +
1

2L
‖∇J(θ(t−2);u(t−1))‖2 − J(θ(t−1), u(t))

≥ J(θ(t−1))− J(θ(t−1), u(t)) +
1

2L
‖∇J(θ(t−2);u(t−1))‖2

=
1

2L
‖∇J(θ(t−2);u(t−1))‖2 ≥ 0, (3)

where we first used Eq. 2 and then the lower and upper bounds on J . From Propo-
sition 1 we know that ct → 0, which implies that ‖∇J(θ(t−2);u(t−1))‖2/(2L) ≤
ct → 0. Hence, limit points of (θ(t))Tt=1 are stationary points of J .
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Algorithm 1 Relaxed Majorization-Minimization: constant memory version

Require: Initial θ(0) = θ(−1) and u(0); number of rounds T ; Rmin ≥ 1
1: for t = 1, . . . , T do
2: R← Rmin

3: repeat
4: J0 ← 0, J1 ← 0, g ← 0
5: for i = 1, . . . , N do
6: Set

v ← R-step-arg-minvJ i(θ
(t−1), v) v ← R-step-arg-maxvJ i(θ

(t−1), v)

J0 ← J0 + J i(θ
(t−1), v) J1 ← J1 + J i(θ

(t−1), v)

g ← g +∇θJ i(θ(t−1), v) (5)

7: end for
8: R← 2R
9: until J0 ≤ ηJ1 + (1− η)J2 . Test for the ReGeMM condition
10: Set θ(t) ← θ(t−1) − 1

L
g

11: end for
12: return θ(T )

Remark 1. θ(t) is not necessarily induced by a gradient step, but a new iterate
θ(t) has to satisfy a sufficient descent condition,

J(θ(t);u(t)) ≤ J(θ(t−1);u(t))− κ‖∇J(θ(t−1);u(t))‖2
2L

.

for a factor κ ∈ (0, 1). In this setting we obtain analogously

ct ≥
κ

2L
‖∇J(θ(t−2);u(t−1))‖2 ≥ 0, (4)

leading to the same conclusion.

2 ReGeMM using constant memory

As pointed out in the main text, naive implementations of the ReGeMM algo-
rithm (Alg. 1 in the main text) require O(N) memory to store u = (u1, . . . , uN ).
In many applications the number of terms N is large, but the latent variables
(ui)i have the same structure for all i (e.g. ui represent pixel-level predictions
for training images of the same dimensions). If we use a gradient method to up-
date θ, then the required quantities can be accumulated in-place, in Alg. 1. The
constant memory algorithm is not limited to first order methods for θ, but any
method that accumulates the information needed to determine θ(t) from θ(t−1)

in-place is feasible (such as the Newton or the Gauss-Newton method).
The latent variables v and v are reused for all terms i, and inference for v

and v is conducted using R steps of suitable iterative inference methods, that are
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monotonically decreasing and increasing, respectively. Inference is started from
constant inital values for v and v. Suitable choices such for inference methods
include gradient methods and (block) coordinate descent (if the mappings u 7→
J(θ,u) and u 7→ J(θ,u) are strictly convex and concave, respectively, for all θ).
If the ReGeMM condition (Eq. 8 in the main text) is not satisfied, then repeated
doubling of R ensures, that the total number of steps spent for inference is at
most four times the minimally required number of steps.1

The constant memory algorithm is not limited to first order methods to
update θ, but any method that accumulates the information needed to determine
θ(t) from θ(t−1) in-place is feasible (such as the Newton or the Gauss-Newton
method).

3 Analysis of stochastic SuDeMM

We use the following assumptions:

1. J i(·, u) has Lipschitz gradient with constant L for all i and u. This implies
that J has Lipschitz gradient as well.

2. All iterates θ(t), t ∈ N, are bounded. Together with the Lipschitz gradient
assumption this means, that the sequence of gradients (gt)

∞
t=1 is contained

in a bounded set.

We partially follow [1]. Let gt := ∇J it(θ(t−1), u(t)it ) and therefore θ(t) =

θ(t−1) − αtgt. Thus, we have

J(θ(t), u(t)) = J(θ(t−1) − αtgt, u(t))

≤ J(θ(t−1), u(t))− αt∇θJ(θ(t−1), u(t))T gt +
Lα2

t

2
‖gt‖2. (6)

The SuDeMM condition implies that

J it(θ
(t−1), u(t)it ) ≤ Jit(θ(t−1)) +

ρt
2
‖gt‖2. (7)

By taking the expectation on both sides of this relation we consequently obtain

E
[
J(θ(t−1), u(t))

]
≤ J(θ(t−1)) + E

[ρt
2
‖gt‖2

]
≤ J(θ(t−1), u(t−1)) + E

[ρt
2
‖gt‖2

]
. (8)

Combining this with Eq. 6 yields

E
[
J(θ(t), u(t))

]
≤ J(θ(t−1), u(t−1)) + E

[
Lα2

t + ρt
2

‖gt‖2 − αt∇θJ(θ(t−1), u(t))T gt

]
= J(θ(t−1), u(t−1)) + E

[
Lα2

t + ρt
2

‖gt‖2
]
− αt‖∇θJ(θ(t−1), u(t))‖2,

(9)

1 In the worst case that the mininum number of steps required to meet the relaxed
MM condition is 2M + 1 for some M ∈ N, hence the doubling approach will need
1 + 2 + · · ·+ 2M+1 ≈ 2M+2 total inference steps.
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since E [gt] = ∇θJ(θ(t−1), u(t)). We consider the telescopic sum and obtain

E
[
J(θ(T ), u(T ))

]
− J(θ(0), u(0)) = E

[
T∑
t=1

(
J(θ(t), u(t))− J(θ(t−1), u(t−1))

)]

≤
T∑
t=1

(
−αt‖∇θJ(θ(t−1), u(t))‖2 + E

[
Lα2

t + ρt
2

‖gt‖2
])

or

E

[
T∑
t=1

αt‖∇θJ(θ(t−1), u(t))‖2
]
≤ J(θ(0), u(0))− E

[
J(θ(T ), u(T ))

]
+

T∑
t=1

E
[
Lα2

t + ρt
2

‖gt‖2
]
. (10)

The r.h.s. is finite by our assumptions. With
∑∞
t=1 αt = ∞ this implies that

lim inft→∞ E
[
‖∇θJ(θ(t−1), u(t))‖2

]
= 0. With the following simple lemma we

can show something stronger.

Lemma 1. Let Xt be a stochastic process adapted to the filtration (Ft)t sat-
isfying E [Xt − δt|Ft−1] ≤ Xt−1 for all t ∈ N. Then Yt := Xt −

∑t
r=1 δr is a

supermartingale.

Proof. We have

E [Yt|Ft−1] = E

[
Xt −

t∑
r=1

δr|Ft−1
]

= E [Xt − δt|Ft−1]−
t−1∑
r=1

δr

≤ Xt−1 −
t−1∑
r=1

δr = Yt−1,

hence Yt is a supermartingale.

We choose Xt := J(θ(t−1), u(t)) and

δt :=
Lα2

t + ρt
2

‖gt‖2 − αt‖∇θJ(θ(t−1), u(t))‖2. (11)

Using Eq. 9 and the above lemma the stochastic process

Yt := J(θ(t−1), u(t))−
t∑

r=1

Lα2
r + ρr
2

‖gr‖2 +

t∑
r=1

αr‖∇θJ(θ(r−1), u(r))‖2 (12)

is a supermartingale. By our assumptions on the sequences (αt)t, (ρt)t and (gt)t,
the sum in the middle is bounded. Further, the first term and the last sum are
non-negative. Hence, Yt is also bounded from below, and via the supermartingale
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convergence theorem Yt → Y∞ < ∞ a.s. Consequently, the boundedness of

(J(θ(t−1), u(t)))t and
∑∞
r=1

Lα2
r+ρr
2 ‖gr‖2 implies that

∞∑
t=1

αt‖∇θJ(θ(t−1), u(t))‖2 <∞ a.s. (13)

With
∑∞
t=1 αt = ∞ we deduce that ‖∇θJ(θ(t−1), u(t))‖2 → 0 (and therefore

∇θJ(θ(t−1), u(t))→ 0) a.s. Thus, with probability 1 (w.r.t. the sequence of sam-
pled indices (it)

∞
t=1) every accumulation point of (θ(t))∞t=1 is a stationary point.

4 The list of bundle adjustment instances

The list of the used bundle adjustment datasets is as follows: ladybug-73,
ladybug-138, ladybug-318, ladybug-598, trafalgar-126, trafalgar-
138, trafalgar-201, trafalgar-225, trafalgar-257, dubrovnik-150,
dubrovnik-202, dubrovnik-253, dubrovnik-308, dubrovnik-356, venice-
89, venice-245, venice-427, venice-744, final-93, final-394.

5 Application to sparse coding

Unsupervised dictionary learning We use the standard sparse coding model as
the underlying “network” energy,

E(z;x) =
1

2
‖W0z + b0 − x‖2 + κ‖z‖1, (14)

where κ > 0 is the weight of the sparsity term. We constrain the columns of W0

(i.e. the dictionary elements) to have unit norm. For a given dataset {xi} the
learning objective is

J(W0, b0) =
∑
i

min
z

{
1

2
‖W0z + b0 − xi‖2 + κ‖z‖1

}
→ min

W0,b0
. (15)

We use coordinate descent to minimize w.r.t. sparse code z, and the standard
tangent-plane following by normalization approach to update W0. J is minim-
imized w.r.t. W0 and b0 using the stochastic variant of SuDeMM. One dual of
E is given by

E∗(λ;x) = −1

2
‖λ‖2 + λT (b0 − x) s.t.

∥∥WT
0 λ
∥∥ ≤ κ. (16)

Given a primal iterate z, a dual estimate is obtained via λ = W0z+b0−x, which
is made feasible (if necessary) by uniform scaling of λ,

λ← λ

max{1, ‖WT
0 λ‖∞/κ}

. (17)



6 C. Zach and H. Le

0 10 20 30 40 50

22

24

26

28

Seconds

J̄

Fixed-16
Fixed-8
Fixed-4

SuDeMM

0 10 20 30 40 50

5

10

15

Seconds

In
fe
re
n
ce

p
as
se
s Fixed-16

Fixed-8
Fixed-4
SuDeMM

Fig. 1. Unsupervised dictionary learning: objective value w.r.t. wall clock time (left)
and the number of inference steps needed to meet the respective criterion (right column)
for MNIST using the stochastic gradient method.

In Fig. 1 we depict the evolution of the learning loss and the number of inference
steps (i.e. coordinate descent traversals over z) applied, when learning a dictio-
nary (with 128 elements) for the MNIST dataset (with κ = 2) and the learning
rate is constant αt = 0.02. Interestingly, progress in learning leads to more ef-
ficient inference, and the number of required inference passes quickly drops for
SuDeMM.

Discriminative dictionary learning We stack a linear regression layer on top of
the sparse coding layer and arrive at the following network energy,

E(z;x) =
1

2
‖W0z1 + b0 − x‖2 + κ‖z1‖1 +

ν

2
‖z1‖2 +

β

2
‖W1z1 + b1 − z2‖2 ,

(18)

where β > 0 is the feedback weight and ν ≥ 0 weights the Tikhonov regulariza-
tion. Thus, the sparse coding layer becomes an elastic net model. Discriminative
learning in such a model is achieved by using the following constrastive loss,

J(W0, b0,W1, b1) =
∑
i

min
z
Ê(z;xi, yi)−

∑
i

min
z
Ě(z;xi)

=
∑
i

min
z
Ê(z;xi, yi) +

∑
i

max
λ
−Ě∗(λ;xi)→ min

W0,b0,W1,b1
,

(19)

where {(xi, yi)} is a training set. Here the clamped primal and dual energies are
given by

Ê(z;x, y) =
1

2
‖W0z1 + b0 − x‖2 + κ‖z1‖1 +

ν

2
‖z1‖2 +

β

2
‖W1z1 + b1 − y‖2

Ê∗(λ;x, y) = −1

2
‖λ1‖2 −

β

2
‖λ2‖2 + λT1 (b0 − x) + βλT2 (b1 − y)

− 1

2ν

∑
j

[
|(WT

0 λ1 + βWT
1 λ2)j | − κ

]2
+
, (20)
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Fig. 2. Discriminative dictionary learning: objective value w.r.t. wall clock time (left)
and the number of inference steps needed to meet the respective criterion (right column)
for MNIST using the stochastic gradient method.

and the free variants read as

Ě(z;x) =
1

2
‖W0z1 + b0 − x‖2 + κ‖z1‖1 +

ν

2
‖z1‖2

Ě∗(λ;x) = −1

2
‖λ1‖2 −

β

2
‖λ2‖2 + λT1 (b0 − x)− 1

2ν

∑
j

[
|(WT

0 λ1)j | − κ
]2
+
,

(21)

Using the elastic net regularizer (with κ = 2 and ν = 1/4) significantly stablilizes
converting between primal and dual variables and therefore improves estimates
for the current duality gap. In Fig. 2 we show the evolution of the contrastive
learning loss and the number of required inference steps when training on the
MNIST dataset. The dictionary W0 is initialized to the one obtained in the
unsupervised setting above. W1 is initialized with random Gaussian entries, and
the initial biases b0 and b1 are zero. The learning rate is constant αt = 0.02. We
observe a slow (but noisy) increase of necessary inference passes for SuDeMM
over time.
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