
Truncated Inference for Latent Variable
Optimization Problems: Application to Robust

Estimation and Learning

Christopher Zach[0000−0003−2840−6187] and Huu Le[0000−0001−7562−7180]

Chalmers University of Technology, Gothenburg, Sweden
{zach,huul}@chalmers.se

Abstract. Optimization problems with an auxiliary latent variable struc-
ture in addition to the main model parameters occur frequently in com-
puter vision and machine learning. The additional latent variables make
the underlying optimization task expensive, either in terms of memory
(by maintaining the latent variables), or in terms of runtime (repeated
exact inference of latent variables). We aim to remove the need to main-
tain the latent variables and propose two formally justified methods,
that dynamically adapt the required accuracy of latent variable infer-
ence. These methods have applications in large scale robust estimation
and in learning energy-based models from labeled data.

Keywords: Majorization-minimization, latent variable models, stochas-
tic gradient methods

1 Introduction

In this work1 we are interested in optimization problems that involve additional
latent variables and therefore have the general form,

min
θ

min
u
J(θ,u) =: min

θ
J(θ), (1)

where θ are the main parameters of interest and u denote the complete set
of latent variables. By construction J(θ,u) is always an upper bound to the
“ideal” objective J . In typical computer vision and machine learning settings
the objective function in Eq. 1 has a more explicit structure as follows,

J(θ,u) =
1

N

∑N

i=1
J i(θ, ui), (2)

where the index i ranges over e.g. training samples or over observed measure-
ments. Each ui corresponds to the inferred (optimized) latent variable for each
term, and u is the entire collection of latent variables, i.e. u = (u1, . . . , uN). Ex-
amples for this problem class are models for (structured) prediction with latent

1 This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

2 C. Zach and H. Le

J(θ(t−2),u(t−1))

J(θ(t−1),u(t−1))

J(θ(t−1),u(t))

J(θ(t),u(t))

J(θ(t−1),u(t))

θ(t−2) θ(t−1) θ(t)

(a) Relaxed generalized MM

J(θ(t−1),u(t))

J(θ(t),u(t))

J(θ(t−1),u(t))

θ(t−1) θ(t)

(b) Sufficient descent MM

Fig. 1. Illustration of the principle behind our proposed majorization-minimization
variants. Left: relaxed generalized MM requires that the current duality gap at θ(t−1)

(between dotted and lower dashed lines) is at most a given fraction of the gap induced
by the previous upper bound (between dashed lines). Right: sufficient descent MM
requires that the current duality gap (between upper dashed and dotted lines) is at
most a given fraction of a guaranteed decrease (between dashed lines).

variables [10, 32], supervised learning of energy-based models [20, 30] (in both
scenarios N labeled training samples are provided), and robust estimation us-
ing explicit confidence weights [11, 35] (where N corresponds to the number of
sensor measurements).

We focus on the setting when N is very large, and maintaining the values
of ui for all N terms in memory is intractable. In particular, storing the entire
vector u is undesirable when the dimensionality of each ui is large. In one of
our applications ui represents the entire set of unit activations in a deep neural
network, and therefore ui is high-dimensional in such cases.

Observe that neither J(θ) nor ∇J(θ) are easy to evaluate directly. By using
a variable projection approach, the loss J in Eq. 2 can in principle be optimized
using a “state-less” gradient method,

∇J(θ) =
1

N

∑N

i=1
∇θJ i(θ;u∗i (θ)) (3)

where u∗i (θ) = arg minui
J i(θ;ui). Usually determining u∗i (θ) requires itself an

iterative minimization method, hence exactly solving arg minui
J i(θ;ui) renders

the computation of ∇J(θ) expensive in terms of run-time (e.g. it requires solving
a quadratic program in the application presented in Section 6.2). On the other
hand, by using Eq. 3 there is no need to explicitly keep track of the values
u∗i (θ) (as long as determining the minimizer u∗i (θ) is “cold-started”, i.e. run
from scratch). Note that Eq. 3 is only correct for stationary points u∗i (θ). For
inexact minimizers u′i(θ) ≈ u∗i (θ) the second term in the total derivative,

dJ i(θ;u
′
i(θ))

dθ
=
∂J i(θ;ui)

∂θ

∣∣∣
ui=u′

i(θ)
+
∂J i(θ;ui)

∂ui

∣∣∣
ui=u′

i(θ)
· ∂u

′
i(θ)

∂θ
(4)

Truncated Inference for Latent Variable Optimization Problems 3

does not vanish, and the often complicated dependence of u′i(θ) on θ must be
explicitly modeled (e.g. by “un-rolling” the iterations of a chosen minimization
method yielding u′i(θ)). Otherwise, the estimate for ∇θJ will be biased, and
minimization of J will be eventually hindered. Nevertheless, we are interested in
such inexact solutions u′i(θ), that can be obtained in finite time (without warm-
starting from a previous estimate), and the question is how close u′i(θ) has to be
to u∗i (θ) in order to still successfully minimize Eq. 2. Hence, we are interested in
algorithms that have the following properties:

1. returns a minimizer (or in general a stationary point) of Eq. 2,
2. does not require storing u = (u1, . . . , uN) between updates of θ,
3. and is optionally applicable in a stochastic or incremental setting.

We propose two algorithms to minimize Eq. 2, that leverage inexact minimization
for the latent variables ui (described in Sections 4 and 5). Our analysis applies to
the setting, when each J i(θ;ui) is convex in ui. The basic principle is illustrated
in Fig. 1: in iteration t of each of the proposed algorithms, a new upper bound
parametrized by u(t) is found, that guarantees a sufficient improvement over the
previous upper bound according to a respective criterion. This criterion either
uses past objective values (Fig. 1(a)) or current gradient information (Fig. 1(b)).
In Section 6 we demonstrate the proposed algorithms for large scale robust
estimation instances and for training a layered energy-based model.

2 Related Work

Our proposed methods are based on the majorization-minimization (MM) prin-
ciple [14, 12], which generalizes methods such as expectation-maximization [7,
28, 21] and the convex-concave procedure [33]. A large number of variants and
extensions of MM exist. The notion of a (global) majorizer is relaxed in [17,
19], where also a stochastic variant termed MISO (Minimization by Incremen-
tal Surrogate Optimization) is proposed. The memory consumption of MISO
is O(ND), as sufficient information about each term in Eq. 2 has to be main-
tained. Here D is the size of the data necessary to represent a surrogate function
(i.e. D = dim(ui)). The first-order surrogates introduced in [17] are required to
agree with the gradient at the current solution, which is relaxed to asymptotic
agreement in [31].

The first of our proposed methods is based on the “generalized MM” method
presented in [22], which relaxes the “touching condition” in MM by a looser
diminishing gap criterion. Our second method is also a variant of MM, but it
is stated such that it easily transfers to a stochastic optimization setting. Since
our surrogate functions are only upper bounds of the true objective, the gradient
induced by a mini-batch will be biased even at the current solution. This is dif-
ferent from e.g. [37], where noisy surrogate functions are considered, which have
unbiased function values and gradients at the current solution. The stochastic
majorization-minimization [18] and the stochastic successive upper-bound mini-
mization (SSUM, [24]) algorithms average information from the surrogate func-
tions gathered during the iterations. Thus, for Lipschitz gradient (quadratic)

4 C. Zach and H. Le

surrogates, the memory requirements reduce to O(D) (compared to O(ND) for
the original MISO). Several gradient-based methods that are able to cope with
noisy gradient oracles are presented in [3, 8, 9] with different assumptions on the
objective function and on the gradient oracle,

Majorization-minimization is strongly connected to minimization by alterna-
tion (AM). In [6] a “5-point” property is proposed, that is a sufficient condition
for AM to converge to a global minimum. Byrne [4] points out that AM (and
therefore MM) fall into a larger class of algorithms termed “sequential uncon-
strained minimization algorithm” (SUMMA).

Contrastive losses such as the one employed in Section 6.2 occur often when
model parameters of latent variable models are estimated from training data
(e.g. [20, 32]). Such losses can be interpreted either as finite-difference approx-
imations to implicit differentiation [30, 26, 36], as surrogates for the misclassifi-
cation loss [32], or as approximations to the cross-entropy loss [36]. Thus, con-
trastive losses are an alternative to the exact gradient computation in bilevel
optimization problems (e.g. using the Pineda-Almeida method [23, 2, 25]).

3 Minimization Using Families of Upper Bounds

General setting Let J : Rd → R≥0 be a differentiable objective function, that
is bounded from below (we choose w.l.o.g. J(θ) ≥ 0 for all θ). The task is to
determine a minimizer θ∗ of J (or stationary point in general).2 We assume that
J is difficult to evaluate directly (e.g. J has the form of Eq. 2), but a differentiable
function J(θ;u) taking an additional argument u ∈ U ⊆ RD̄ is available that has
the following properties:

1. J(θ,u) ≥ J(θ) for all θ ∈ Rd and u ∈ U ,
2. J(θ,u) is convex in u and satisfies strong duality,
3. J(θ) = minu∈U J(θ,u).

This means that J(θ,u) is a family of upper bounds of J parametrized by u ∈ U ,
and the target objective J(θ) is given as the lower envelope of {J(θ,u) : u ∈ U}.
The second condition implies that optimizing the upper bound for a given θ
is relatively easy (but in general it still will require an iterative algorithm). As
pointed out in Section 1, u may be very high-dimensional and expensive to
maintain in memory. We will absorb the constraint u ∈ U into J and therefore
drop this condition in the following.

The baseline algorithm: minimization by alternation The straightforward method
to minimize J in Eq. 1/Eq. 2 is by alternating minimization (AM) w.r.t. θ and
u. The downside of AM is, that the entire set of latent variables represented by
u has to be stored while updating θ. This can be intractable in machine learning
applications when N � 1 and D � 1.

2 By convergence to a stationary point we mean that the gradient converges to 0.
Convergence of solution is difficult to obtain in the general non-convex setting.

Truncated Inference for Latent Variable Optimization Problems 5

4 Relaxed Generalized Majorization-Minimization

Our first proposed method extends the generalized majorization-minimization
method [22] to the case when computation of J is expensive. Majorization-
minimzation (MM, [14, 12]) maintains a sequence of solutions (θ(t))Tt=1 and latent
variables (u(t))Tt=1 such that

θ(t−1) ← arg min
θ
J(θ,u(t−1)) u(t) ← arg min

u
J(θ(t−1), u). (5)

Standard MM requires the following “touching condition” to be satisfied,

J(θ(t−1),u(t)) = J(θ(t−1)). (6)

It should be clear that a standard MM approach is equivalent to the alternating
minimization baseline algorithm. In most applications of MM, the domain of the
latent variables defining the upper bound is identical to the domain for θ.

Generalized MM relaxes the touching condition to the following one,

J(θ(t−1),u(t)) ≤ ηJ(θ(t−1)) + (1− η)J(θ(t−1),u(t−1))

= J(θ(t−1),u(t−1))− η
(
J(θ(t−1),u(t−1))− J(θ(t−1))

)
, (7)

where η ∈ (0, 1) is a user-specified parameter. By construction the gap dt :=
J(θ(t−1),u(t−1)) − J(θ(t−1)) is non-negative. The above condition means that
u(t) has to be chosen such that the new objective value J(θ(t),u(t)) is guaranteed
to sufficiently improve over the current upper bound J(θ(t−1),u(t−1)),

J(θ(t),u(t)) ≤ J(θ(t−1),u(t)) ≤ J(θ(t−1),u(t−1))− ηdt.
It is shown that the sequence limt→∞ dt → 0, i.e. asymptotically the true cost J
is optimized. Since generalized MM decreases the upper bound less aggressively
than standard MM, it has an improved empirical ability to reach better local
minima in highly non-convex problems [22].

Generalized MM is not directly applicable in our setting, as J is assumed
not to be available (or at least expensive to compute, which is exactly we aim to
avoid). By leveraging convex duality we have a lower bound for J(θ,u) ≤ J(θ)
available. Hence, we modify the generalized MM approach by replacing J(θ(t−1))
with a lower bound J(θ(t−1),u(t)) for a suitable dual parameter u(t), leading to
a condition on u(t) and u(t) of the form

J(θ(t−1),u(t)) ≤ ηJ(θ(t−1),u(t)) + (1− η)J(θ(t−1),u(t−1)).

This condition still has the significant shortcoming, that both J(θ(t−1),u(t)) and
J(θ(t−1),u(t−1)) need to be evaluated. While computation of the first quantity is
firmly required, evaluation of the second value is unnecessary as we will see in the
following. Not needing to compute J(θ(t−1),u(t−1)) also means that the memory
associated with u(t−1) can be immediately reused. Our proposed condition on
u(t) and u(t) for a relaxed generalized MM (or ReGeMM) method is given by

J(θ(t−1),u(t)) ≤ ηJ(θ(t−1),u(t)) + (1− η)J(θ(t−2),u(t−1)), (8)

6 C. Zach and H. Le

Algorithm 1 ReGeMM: Relaxed Generalized Majorization-Minimization

Require: Initial θ(0) = θ(−1) and u(0), number of rounds T
1: for t = 1, . . . , T do
2: Determine u(t) and u(t) that satisfy Eq. 8
3: Set θ(t) ← arg minθ J(θ,u(t))
4: end for
5: return θ(T)

where η ∈ (0, 1), e.g. η = 1/2 in our implementation. The resulting algorithm
is given in Alg. 1. The existence of a pair (u(t),u(t)) is guaranteed, since both
J(θ(t−1);u(t)) and J(θ(t−1);u(t)) can be made arbitrarily close to J(θ(t−1)) by
our assumption of strong duality. We introduce ct,

ct := J(θ(t−2),u(t−1))− J(θ(t−1),u(t)) ≥ 0, (9)

and Eq. 8 can therefore be restated as

J(θ(t−1),u(t)) ≤ J(θ(t−2),u(t−1))− ηct. (10)

Proposition 1. We have limt→∞ ct = 0.

Proof. We define vt := J(θ(t−2),u(t−1))− ηct. First, observe that

ct = J(θ(t−2);u(t−1))− J(θ(t−1);u(t)) ≥ J(θ(t−1);u(t−1))− J(θ(t−1);u(t))

≥ J(θ(t−1);u(t−1))− J(θ(t−1)) ≥ 0

(using the relations J(θ(t−1);u(t−1)) ≤ J(θ(t−2);u(t−1)) and J(θ(t−1);u) ≤ J(θ(t−1))
≤ J(θ(t−1);u) for any u and u). We further have∑T

t=1
ct = η−1

∑T

t=1

(
J(θ(t−2);u(t−1))− vt

)
≤ η−1

∑T

t=1

(
J(θ(t−2);u(t−1))− J(θ(t−1);u(t))

)
= η−1

(
J(θ(−1);u(0))− J(θ(T−1);u(T))

)
<∞,

since J is bounded from below. In the first line we used the definition of dt and
in the second line we utilized that J(θ(t−1);u(t)) ≤ vt. The last line follows from
the telescopic sum. Overall, we have that

lim
T→∞

∑T

t=1
ct = η−1

(
J(θ(−1);u(0))− lim

T→∞
J(θ(T−1);u(T))

)
,

which is finite, since J (and therefore J) is bounded from below. From ct ≥ 0

and limT→∞
∑T
t=1 ct <∞ we deduce that limT→∞ ct = 0.

Truncated Inference for Latent Variable Optimization Problems 7

Hence, in analogy with the generalized MM method [22], the upper bound
J(θ(t),u(t)) approaches the target objective value J(θ(t)) in the proposed relaxed
scheme. This result also implies that finding u(t) will be increasingly harder. This
is expected, since one ultimately aims to minimize J . If we additionally assume
that the mapping θ 7→ ∇θJ(θ,u) has Lipschitz gradient for all u, then it can be
also shown that ∇θJ(θ(t),u(t))→ 0 (we refer to the supplementary material).

The relaxed generalized MM approach is therefore a well-understood method
when applied in a full batch scenario (recall Eq. 2). Since the condition in Eq. 8
is based on all terms in the objectives, it is not clear how it generalizes to an
incremental or stochastic setting, when θ is updated using small mini-batches.
This is the motivation for developing an alternative criterion to Eq. 8 in the next
section, that is based on “local” quantities.

Using constant memory Naive implementations of Alg. 1 require O(N) memory
to store u = (u1, . . . , uN). In many applications the number of terms N is large,
but the latent variables (ui)i have the same structure for all i (e.g. ui represent
pixel-level predictions for training images of the same dimensions). If we use a
gradient method to update θ, then the required quantities can be accumulated in-
place, as shown in the supplementary material. The constant memory algorithm
is not limited to first order methods for θ, but any method that accumulates the
information needed to determine θ(t) from θ(t−1) in-place is feasible (such as the
Newton or the Gauss-Newton method).

5 Sufficient Descent Majorization-Minimization

The ReGeMM method proposed above has two disadvantages: (i) the underly-
ing condition is somewhat technical and it is also a global condition, and (ii)
the resulting algorithm does not straightforwardly generalize to incremental or
stochastic methods, that have proven to be far superior compared to full-batch
approaches, especially in machine learning scenarios.

In this section we make the additional assumption on J , that

J(θ′,u) ≤ J(θ,u) +∇θJ(θ,u)T (θ′ − θ) +
L

2
‖θ′ − θ‖2, (11)

for a constant L > 0 and all u. This essentially means, that the mapping θ 7→
J(θ,u) has a Lipschitz gradient with Lipschitz constant L. This assumption is
frequent in many gradient-based minimization methods. Note that the minimizer
of the r.h.s. in Eq. 11 w.r.t. θ′ is given by θ′ = θ− 1

L∇θJ(θ,u). Hence, we focus

on gradient-based updates of θ in the following, i.e. θ(t) is given by

θ(t) = θ(t−1) − 1

L
∇θJ(θ(t−1),u(t)). (12)

Combining this with Eq. 11 yields

J(θ(t),u(t)) ≤ J(θ(t−1),u(t))− 1

2L
‖∇θJ(θ(t−1),u(t))‖2,

8 C. Zach and H. Le

hence the update from θ(t−1) to θ(t) yields a guaranteed reduction of J(·,u(t))
in terms of the respective gradient magnitude.

We therefore propose the following condition on (u(t),u(t)) based on the cur-
rent iterate θ(t−1): for a ρ ∈ (0, 1) (which is set to ρ = 1/2 in our implementation)
determine u(t) and u(t) such that

J(θ(t−1);u(t))− J(θ(t−1);u(t)) ≤ ρ

2L
‖∇J(θ(t−1);u(t))‖2 (13)

This condition requires intuitively, that the duality gap J(θ(t−1);u(t))−J(θ(t−1);u(t))
is sufficiently smaller than the reduction of J(·;u(t)) guaranteed by a gradient
descent step. Convexity and strong duality of J(θ; ·) for each θ allows to deter-
mine such a pair (u(t),u(t)) using convex optimization methods. Rearranging
the above condition (and using that θ(t) = θ(t−1) −∇J(θ(t−1),u(t))/L) yields

J(θ(t);u(t)) ≤ J(θ(t−1);u(t))− 1

2L
‖∇J(θ(t−1);u(t))‖2

≤ J(θ(t−1);u(t))− 1− ρ
2L
‖∇J(θ(t−1);u(t))‖2

≤ J(θ(t−1))− 1− ρ
2L
‖∇J(θ(t−1);u(t))‖2,

i.e. the upper bound at the new solution θ(t) is sufficiently below the lower bound
(and the true function value) at the current solution θ(t−1). This can be stated
compactly,

J(θ(t)) ≤ J(θ(t);u(t)) ≤ J(θ(t−1))− 1− ρ
2L
‖∇J(θ(t−1);u(t))‖2, (14)

and the sequence (J(θ(t))∞t=1 is therefore non-increasing. Since we are always
asking for a sufficient decrease (in analogy with the Armijo condition), we expect
convergence to a stationary solution θ∗. This is the case:

Proposition 2. limt→∞∇θJ(θ(t−1);u(t)) = 0.

Proof. By rearranging Eq. 14 we have∑
t
‖∇J(θ(t−1);u(t))‖2 ≤ 2L

1− ρ
∑

t

(
J(θ(t−1))− J(θ(t))

)
=

2L

1− ρ
(
J(θ(0))− J(θ∗)

)
<∞,

and therefore ‖∇J(θ(t−1);u(t))‖ → 0, which implies that ∇J(θ(t−1);u(t))→ 0.

We summarize the resulting sufficient descent MM (or SuDeMM) method in
Alg. 2. As with the ReGeMM approach, determining u is more difficult when
closing in on a stationary point (as ∇θJ(θ(t), u) → 0). The gradient step indi-
cated in line 3 in Alg. 2 can be replaced by any update that guarantees sufficient
descent. Finally, in analogy with the ReGeMM approach discussed in the previ-
ous section, it is straightforward to obtain a constant memory variant of Alg. 2.
The stochastic method described below incorporates both immediate memory
reduction from O(N) to O(B), where B is the size of the mini-batch, and faster
minimization due to the use of mini-batches.

Truncated Inference for Latent Variable Optimization Problems 9

Algorithm 2 SuDeMM: Sufficient-Descent Majorization-Minimization

Require: Initial θ(0), number of rounds T
1: for t = 1, . . . , T do
2: Determine u(t) and u(t) that satisfy Eq. 13
3: Set θ(t) ← θ(t−1) − 1

L
∇θJ(θ(t−1),u(t))

4: end for
5: return θ(T)

5.1 Extension to the stochastic setting

In many machine learning applications J will be of the form of Eq. 2 with N � 1
being the number of training samples. It is well known that in such settings
methods levering the full gradient accumulated over all training samples are
hugely outperformed by stochastic gradient methods, which operate on a single
training sample (i.e. term in Eq. 2) or, alternatively, on a small mini-batch of
size B randomly drawn from the range {1, . . . , N}.

It is straightforward to extend Alg. 2 to a stochastic setting working on single
data points (or mini-batches) by replacing the objective values J(θ(t−1);u(t)),
J(θ(t−1);u(t))) and the full gradient ∇θJ(θ(t−1),u(t)) with the respective mini-
batch counter-parts. The resulting algorithm is depicted in Alg. 3 (for mini-
batches of size one). Due to the stochastic nature of the gradient estimate
∇θJ i(θ(t−1),u(t)), both the step sizes αt > 0 and the reduction parameter ρt > 0
are time-dependent and need to satisfy the following conditions,∑∞

t=1
αt =∞

∑∞

t=1
α2
t <∞

∑∞

t=1
ρt <∞. (15)

The first two conditions on the step sizes (αt)t are standard in stochastic gra-
dient methods, and the last condition on the sequence (ρt)t ensures that the
added noise by using time-dependent upper bounds J(·,u(t)) (instead of the
time-independent function J(·)) has bounded variance. The constraint on ρt is

therefore stronger than the intuitively necessary condition ρt
t→∞→ 0. We refer to

the supplementary material for a detailed discussion. Due to the small size B of

a mini-batch, the values of u
(t)
i and u

(t)
i in the mini-batch can be maintained,

and the restarting strategy outlined in Section 4 is not necessary.

6 Applications

6.1 Robust Bundle Adjustment

In this experiment we first demonstrate the applicability of our proposed ReGeMM
schemes to a large scale robust fitting task. The aim is to determine whether
ReGeMM is also able to avoid poor local minima (in analogy with the k-means
experiment in [22]). The hypothesis is, that optimizing the latent variables just
enough to meet the ReGeMM condition (Eq. 8) corresponds to a particular

10 C. Zach and H. Le

Algorithm 3 Stochastic Sufficient Descent Majorization-Minimization

Require: Initial θ(0), number of rounds T
1: for t = 1, . . . , T do
2: Uniformly sample i from {1, . . . , N}
3: Determine ui and ui that satisfy

J i(θ
(t−1), ui)− J i(θ

(t−1), ui) ≤
ρt
2
‖∇θJ i(θ(t−1), ui)‖2 (16)

4: Set θ(t) ← θ(t−1) − αt∇θJ i(θ(t−1), u(t))
5: end for
6: return θ(T)

variant of graduated optimization, and therefore will (empirically) return better
local minima for highly non-convex problems.

Robust bundle adjustment aims to refine the camera poses and 3D point
structure to maximize a log-likelihood given image observations and established
correspondences. The unknowns are θ = (P1, . . . , Pn, X1, . . . , Xm), where Pk ∈
R6 refers to the k-th camera pose and Xj ∈ R3 is the position of the j-th 3D
point. The cost J is given by

J(θ) =
∑

i
ψ(fi(θ)−mi), (17)

where mi ∈ R2 is the i-th image observation and fi projects the respective 3D
point to the image plane of the corresponding camera. ψ is a so called robust
kernel, which generally turns J into a highly non-convex objective functions with
a large number of local minima. Following [35] an upper bound J is given via
half-quadratic (HQ) minimization [11],

J(θ,u) =
∑

i

(ui
2
‖fi(θ)−mi‖2 + κ(ui)

)
, (18)

where κ : R≥0 → R≥0 depends on the choice for ψ, and ui is identified as the
(confidence) weight on the i-th observation. The standard MM approach cor-
responds essentially to the iteratively reweighted least squares method (IRLS),
which is prone to yield poor local minima if θ is not well initialized. For given θ
the optimal latent variables u∗i (θ) are given by u∗i (θ) = ω(‖fi(θ)−mi‖), where
ω(·) is the weight function associated with the robust kernel ψ. Joint HQ mini-
mization of J w.r.t. θ and u is suggested and evaluated in [35], which empirically
yields significantly better local minima of J than IRLS. We compare this joint-
HQ method (as well as IRLS and an explicit graduated method GOM [34]) with
our ReGeMM condition (Eq. 8), where the confidence weights u are optimized
to meet but not substantially surpass this criterion: a scale parameter σ ≥ 1 is

determined such that u
(t)
i is set to ω(‖fi(θ(t−1)) −mi‖/σ), and u satisfies the

ReGeMM condition (Eq. 8) and

η′J(θ(t−1)) + (1− η′)J(θ(t−2),u(t−1)) ≤ J(θ(t−1),u(t)) (19)

Truncated Inference for Latent Variable Optimization Problems 11

5 10 15 20 25 30 35 40 45 50 55 60

1.2

1.4

1.6

·105

Iterations

J

IRLS
Joint HQ
GOM

ReGeMM

5 10 15 20 25 30 35 40 45 50 55 60

1.6

1.8

2

2.2

·105

Iterations

J

IRLS
Joint HQ
GOM

ReGeMM

Fig. 2. Objective value w.r.t. number of iterations of a NNLS solver for the Dubrovnik-
356 (left) and Venice-427 (right) datasets.

0 2 4 6 8 10 12 14 16 18 20

0.1

0.15

Dataset number

O
b
je
ct
iv
e

IRLS HQ GOM+ relaxed MM

Fig. 3. Final objective values reached by different methods for 20 metric bundle ad-
justment instances after 100 NNLS solver iterations.

for an η′ ∈ (η, 1). In our implementation we determine σ using bisection search
and choose η′ = 3/4. In this application the evaluation of J is inexpensive, and
therefore we use J(θ(t−1)) instead of a lower bound J(θ(t−1),u(t)) in the r.h.s.
The model parameters θ are updated for given u using a Levenberg-Marquardt
solver. Our choice of ψ is the smooth truncated quadratic cost [35].

In Fig. 2 we depict the evolution of the target objective Eq. 17 for two metric
bundle adjustment instances from [1]. The proposed ReGeMM approach (with
the initial confidence weights u all set to 1) compares favorably against IRLS,
joint HQ [35] and even graduated optimization [34] (that leads only to a slightly
better minimum).This observation is supported by comparing the methods us-
ing a larger database of 20 problem instances [1] (listed in the supplementary
material) in Fig. 3, where the final objective values reached after 100 NNLS iter-
ations by different methods are depicted. ReGeMM is again highly competitive.
In terms of run-time, ReGeMM is beetwen 5% and 25% slower per iteration than
IRLS in our implementation.

6.2 Contrastive Hebbian Learning

Contrastive Hebbian learning uses an energy model over latent variables to ex-
plicitly infer (i.e. minimize over) the network activations (instead of using a
predefined rule such as in feed-forward DNNs). Feed-forward DNNs using cer-
tain activation functions can be identified as limit case of suitable energy-based
models [30, 26, 36]. We use the formulation proposed in [36] due to the underlying
convexity of the energy model. In the following we outline that the corresponding

12 C. Zach and H. Le

0 200 400 600 800 1,000

10−2

10−1

Epochs

J̄

Fixed-32
Fixed-4
Fixed-3
Fixed-2

ReGeMM
SuDeMM

Baseline (AM)

0 200 400 600 800 1,000

0

20

40

60

Epochs

In
fe
re
n
ce

p
as
se
s

Fixed-32
Fixed-4
Fixed-3
Fixed-2
ReGeMM
SuDeMM

Baseline (AM)

Fig. 4. Objective value w.r.t. number of epochs (left) and the (accumulated) number of
inference steps needed to meet the respective criterion (right) in the full-batch setting.

supervised learning task is an instance of Eq. 2. In contrastive Hebbian learning
the activations for the network are inferred in two phases: the clamped phase
uses information from the target label (via a loss function ` that is convex in
its first argument) to steer the output layer, and the free phase does not put
any constraint on the output. The input layer is always clamped to the provided
training input. The clamped network energy is given by3

Ê(z; θ) = `(aL; y) +
1

2
‖z1 −W0x− b0‖2 +

1

2

L−2∑
k=1

‖zk+1 −Wkzk − bk‖2 (20)

subject to zk ∈ Ck, where Ck is a convex set and θ contains all network weights
Wk and biases bk. In order to mimic DNNs with ReLU activations, we choose
Ck = Rnk

≥0. The loss function is chosen to be the Euclidean loss, `(aL; y) =

‖aL − y‖2/2. The dual network energy can be derived as

Ê∗(λ; θ) = −`∗(−λL; y)− 1

2

∑L−1

k=1
‖λk‖2 − λT1 W0x+

∑L

k=1
λTk bk−1 (21)

subject to λk ≥ WT
k λk+1 for k = 1, . . . , L − 1. If ` ≡ 0, i.e. there is no loss on

the final layer output, then we denote the corresponding free primal and dual
energies by Ě and Ě∗, respectively. Observe that Ê/Ě are convex w.r.t. the
network activations z, and Ê∗/Ě∗ are concave w.r.t. the dual variables λ.

Training using contrastive learning Let {(xi, yi)}i be a labeled dataset containing
N training samples, and the task for the network is to predict yi from given xi.
The utilized contrastive training loss is given by

J(θ) :=
∑

i

(
min
ẑ
Ê(ẑ;xi, yi, θ)−min

ž
Ě(ž;xi, θ)

)
=
∑

i
min
ẑ

max
ž

(
Ê(ẑ;xi, yi, θ)− Ě(ž;xi, θ)

)
, (22)

which is minimized w.r.t. the network parameters θ. Using duality this saddle-
point problem can be restated as pure minimization and maximization tasks [36],

J(θ, (ẑi, λ̌i)
N
i=1) =

∑
i

(
Ê(ẑi;xi, yi, θ)− Ě∗(λ̌i;xi, θ)

)
(23)

3 We omit the explicit feedback parameter used in [30, 36], since it can be absorbed
into the activations and network weights.

Truncated Inference for Latent Variable Optimization Problems 13

and

J(θ, (λ̂i, ži)
N
i=1) =

∑
i

(
Ê∗(λ̂i;xi, yi, θ)− Ě(ži;xi, θ)

)
. (24)

Thus, the latent variables ui = (ẑi, λ̌i) and ui = (λ̂i, ži) correspond to primal-
dual pairs representing the network activations, and therefore the entire set of
latent variables u is very high-dimensional. In this scenario the true cost J is
not accessible, since it requires solving a inner minimization problem w.r.t. ui
not having a closed form solution (it requires solving a convex QP). Inference
(minimization) w.r.t. ui is conducted by coordinate descent, which is guaranteed
to converge to a global solution as both Ê and −Ě∗ are strongly convex [16, 27].

Full batch methods In Fig. 4 we illustrate the evolution of J on a subset of
MNIST [15] using a fully connected 784-64(×4)-10 architecture for 4 methods:
(i) inferring ui with a fixed number of 2, 3, 4 and 32 passes of an iterative method,
respectively, (ii) using the ReGeMM condition Eq. 8, and (iii) using the SuDeMM
criterion Eq. 13. Inference for ui is continued until the respective criterion is met.
Both ReGeMM and SuDeMM use the respective constant memory variants. In
this scenario 32 passes are considered sufficient to perform inference, and the
ReGeMM and SuDeMM methods track the best curve well. We chose to use
the number of epochs (i.e. the number of updates of θ) on the x-axis to align
the curves. Clearly, using a fixed number of 2 passes is significantly faster than
using 32 or an adaptive but growing number of inference steps. Interestingly,
the necessary inference steps grow much quicker (to the allowed maximum of 40
passes) for the ReGeMM condition compared to the SuDeMM test. The baseline
method alternates between gradient updates w.r.t. u (using line search) and θ.
In all methods the gradient update for θ uses the same fixed learning rate.

Stochastic methods For the stochastic method in Alg. 3 we illustrate the evolu-
tion of the objectives values J and the number of inference passes in Fig. 5. For
MNIST and its drop-in replacements Fashion-MNIST [29] and KMNIST [5] we
again use the same 784-64(×4)-10 architecture as above. For a greyscale version
of CIFAR-10 [13] we employ a 1024-128(×3)-10 network. The batch size is 10,
and a constant step size is employed. The overall conclusions from Fig. 5 are
as follows: using an insufficient number of inference passes yields poor surro-
gates for the true objective J and it can lead to numerical instabilities due to
the biasedness of the gradient estimates. Further, the proposed SuDeMM algo-
rithm yields the lowest estimates for the true objective by gradually adapting
the necessary inference precision.4

7 Conclusion

We present two approaches to optimize problems with a latent variable structure.
Our formally justified methods (i) enable inexact (or truncated) minimization

4 We refer to the supplementary material for results corresponding to sparse coding
as the underlying network model.

14 C. Zach and H. Le

0 0.5 1 1.5 2 2.5

·104

10−3

10−2

10−1

batches

J̄

Fixed-32
Fixed-16
Fixed-8

SuDeMM

0 0.5 1 1.5 2 2.5

·104

0

20

40

60

batches

In
fe
re
n
ce

p
as
se
s Fixed-32

Fixed-16
Fixed-8
SuDeMM

0 0.5 1 1.5 2 2.5

·104

10−2

10−1

batches

J̄

Fixed-32
Fixed-16
Fixed-8

SuDeMM

0 0.5 1 1.5 2 2.5

·104

0

20

40

batches

In
fe
re
n
ce

p
as
se
s Fixed-32

Fixed-16
Fixed-8
SuDeMM

0 0.5 1 1.5 2 2.5

·104

10−2

10−1

batches

J̄

Fixed-32
Fixed-16
Fixed-8

SuDeMM

0 0.5 1 1.5 2 2.5

·104

0

20

40

60

batches

In
fe
re
n
ce

p
as
se
s Fixed-32

Fixed-16
Fixed-8
SuDeMM

0 0.2 0.4 0.6 0.8 1

·105

10−2

10−1

batches

J̄

Fixed-32
Fixed-16
Fixed-8

SuDeMM

0 0.2 0.4 0.6 0.8 1

·105

10

20

30

batches

In
fe
re
n
ce

p
a
ss
es

Fixed-32
Fixed-16
Fixed-8
SuDeMM

Fig. 5. Objective value w.r.t. number of processed mini-batches (left column) and
the number of inference steps needed to meet the respective criterion (right column)
for MNIST (1st row), Fashion-MNIST (2nd row), KMNIST (3rd row) and CIFAR-10
(bottom row) using the stochastic gradient method.

over the latent variables and (ii) allow to discard the latent variables between
updates of the main parameters of interest. Hence, the proposed methods signif-
icantly reduce the memory consumption, and automatically adjust the necessary
precision for latent variable inference. One of the two presented methods can be
adapted to return competitive solutions for highly non-convex problems such as
large-scale robust estimation, and the second method can be run in a stochastic
optimization setting in order to address machine learning tasks.

In the future we plan to better understand how turning the proposed ReGeMM
inequality condition essentially into an equality constraint can help with solv-
ing highly non-convex optimization problems. Further, the presented SuDeMM
method enables us to better explore a variety of convex energy-based models in
the future.

Truncated Inference for Latent Variable Optimization Problems 15

References

1. Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R.: Bundle adjustment in the large.
In: Proc. ECCV, pp. 29–42. Springer (2010)

2. Almeida, L.B.: A learning rule for asynchronous perceptrons with feedback in a
combinatorial environment. In: Artificial neural networks: concept learning, pp.
102–111 (1990)

3. Bertsekas, D.P., Tsitsiklis, J.N.: Gradient convergence in gradient methods with
errors. SIAM Journal on Optimization 10(3), 627–642 (2000)

4. Byrne, C.L.: Alternating minimization as sequential unconstrained minimization:
a survey. Journal of Optimization Theory and Applications 156(3), 554–566 (2013)

5. Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.:
Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718
(2018)

6. Csiszár, I., Tusnády, G.E.: Information geometry and alternating minimization
procedures. In: Statistics and Decisions (1984)

7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society: Series B
(Methodological) 39(1), 1–22 (1977)

8. Devolder, O., Glineur, F., Nesterov, Y.: First-order methods of smooth convex op-
timization with inexact oracle. Mathematical Programming 146(1-2), 37–75 (2014)

9. Dvurechensky, P., Gasnikov, A.: Stochastic intermediate gradient method for con-
vex problems with stochastic inexact oracle. Journal of Optimization Theory and
Applications 171(1), 121–145 (2016)

10. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. IEEE transactions on pattern
analysis and machine intelligence 32(9), 1627–1645 (2009)

11. Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinu-
ities. IEEE Trans. Pattern Anal. Mach. Intell. 14(3), 367–383 (1992)

12. Hunter, D.R., Lange, K.: A tutorial on MM algorithms. The American Statistician
58(1), 30–37 (2004)

13. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Tech. rep., Citeseer (2009)

14. Lange, K., Hunter, D.R., Yang, I.: Optimization transfer using surrogate objective
functions. Journal of computational and graphical statistics 9(1), 1–20 (2000)

15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

16. Luo, Z.Q., Tseng, P.: On the convergence of the coordinate descent method for con-
vex differentiable minimization. Journal of Optimization Theory and Applications
72(1), 7–35 (1992)

17. Mairal, J.: Optimization with first-order surrogate functions. In: International Con-
ference on Machine Learning. pp. 783–791 (2013)

18. Mairal, J.: Stochastic majorization-minimization algorithms for large-scale opti-
mization. In: Advances in Neural Information Processing Systems. pp. 2283–2291
(2013)

19. Mairal, J.: Incremental majorization-minimization optimization with application
to large-scale machine learning. SIAM Journal on Optimization 25(2), 829–855
(2015)

20. Movellan, J.R.: Contrastive Hebbian learning in the continuous hopfield model. In:
Connectionist Models, pp. 10–17. Elsevier (1991)

16 C. Zach and H. Le

21. Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental,
sparse, and other variants. In: Learning in graphical models, pp. 355–368. Springer
(1998)

22. Parizi, S.N., He, K., Aghajani, R., Sclaroff, S., Felzenszwalb, P.: Generalized
majorization-minimization. In: International Conference on Machine Learning. pp.
5022–5031 (2019)

23. Pineda, F.J.: Generalization of back-propagation to recurrent neural networks.
Physical review letters 59(19), 2229 (1987)

24. Razaviyayn, M., Sanjabi, M., Luo, Z.Q.: A stochastic successive minimization
method for nonsmooth nonconvex optimization with applications to transceiver
design in wireless communication networks. Mathematical Programming 157(2),
515–545 (2016)

25. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Transactions on Neural Networks 20(1), 61–80 (2008)

26. Scellier, B., Bengio, Y.: Equilibrium propagation: Bridging the gap between energy-
based models and backpropagation. Frontiers in computational neuroscience 11,
24 (2017)

27. Wright, S.J.: Coordinate descent algorithms. Mathematical Programming 151(1),
3–34 (2015)

28. Wu, C.J.: On the convergence properties of the EM algorithm. The Annals of
statistics pp. 95–103 (1983)

29. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

30. Xie, X., Seung, H.S.: Equivalence of backpropagation and contrastive Hebbian
learning in a layered network. Neural computation 15(2), 441–454 (2003)

31. Xu, C., Lin, Z., Zhao, Z., Zha, H.: Relaxed majorization-minimization for non-
smooth and non-convex optimization. In: Thirtieth AAAI Conference on Artificial
Intelligence (2016)

32. Yu, C.N.J., Joachims, T.: Learning structural SVMs with latent variables. In: Pro-
ceedings of the 26th annual international conference on machine learning. pp. 1169–
1176 (2009)

33. Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural computation
15(4), 915–936 (2003)

34. Zach, C., Bourmaud, G.: Descending, lifting or smoothing: Secrets of robust cost
optimization. In: Proc. ECCV (2018)

35. Zach, C.: Robust bundle adjustment revisited. In: Proc. ECCV. pp. 772–787.
Springer International Publishing (2014)

36. Zach, C., Estellers, V.: Contrastive learning for lifted networks. In: British Machine
Vision Conference (2019)

37. Zhang, H., Zhou, P., Yang, Y., Feng, J.: Generalized majorization-minimization
for non-convex optimization. In: Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence. pp. 4257–4263. AAAI Press (2019)

