
OneGAN: Simultaneous Unsupervised Learning
of Conditional Image Generation, Foreground
Segmentation, and Fine-Grained Clustering

Yaniv Benny and Lior Wolf

Tel-Aviv University, Israel

Abstract. We present a method for simultaneously learning, in an un-
supervised manner, (i) a conditional image generator, (ii) foreground ex-
traction and segmentation, (iii) clustering into a two-level class hierarchy,
and (iv) object removal and background completion, all done without
any use of annotation. The method combines a Generative Adversarial
Network and a Variational Auto-Encoder, with multiple encoders, gener-
ators and discriminators, and benefits from solving all tasks at once. The
input to the training scheme is a varied collection of unlabeled images
from the same domain, as well as a set of background images without a
foreground object. In addition, the image generator can mix the back-
ground from one image, with a foreground that is conditioned either on
that of a second image or on the index of a desired cluster. The method
obtains state of the art results in comparison to the literature methods,
when compared to the current state of the art in each of the tasks.

1 Introduction

We hypothesize that solving multiple unsupervised tasks together, enables one
to improve on the performance of the best methods that solve each individually.
The underlying motivation is that in unsupervised learning, the structure of the
data is a key source of knowledge and each task exposes a different aspect of
it. We advocate for solving the various tasks in phases, where easier tasks are
addressed first, and the other tasks are introduced gradually, while constantly
updating the solutions of the previous sets of tasks. The method consists of
multiple networks that are trained end-to-end and side-by-side to solve multiple
tasks. The method starts from learning background image synthesis and image
generation of objects from a particular domain. It then advances to more complex
tasks, such as clustering, semantic segmentation and object removal. Finally,
we show the model’s ability to perform image-to-image translation. The entire
learning process is unsupervised, meaning that no annotated information is used.
In particular, the method does not employ class labels, segmentation masks,
bounding boxes, etc. However, it does require a separate set of clean background
images, which are easy to obtain in many cases.
Contributions Beyond the conceptual novelty of a method that treats single-
handedly multiple unsupervised tasks, which were previously solved by individ-
ual methods, the method displays a host of technical novelties, including: (i) a
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novel architecture that supports multiple paths addressing multiple tasks, (ii)
employing bypass paths that allow a smooth transition between autoencoding
and generation based on a random seed, (iii) backpropagation through three
paths in each iteration, (iv) mixup module, which applies interpolation between
latent representations of the generation and reconstruction paths, and more. Due
to each of these novelties, backed by the ablation studies, we obtain state of the
art results compared to the literature methods in each of the individual tasks.

2 Related work

Since our work touches on many tasks, we focus the literature review on gen-
eral concepts and on the most relevant work. Generative models are typically
based on Generative Adversarial Networks [11] or Variational Auto-Encoders [18].
In addition, these two can be combined [21]. Conditional image generation
conditions the output on an initial variable, most commonly, the target class.
CGAN [23] and InfoGAN [7] proposed different methods to apply the condition
on the discriminator. Our work is more similar to InfoGAN, since we do not
use labeled data and the label is not linked to any real image and no condi-
tional discriminator can be applied. The condition is maintained by a classifier
that tries to predict the conditioned label and, as a result, forces the generator
to condition the result on that label. Semantic segmentation deals with the
classification of the image pixels based on their class labels. For the supervised
setting Unet [24], DeepLab [4], DeepLabV3 [5], HRNet [30] have shown great
performance leaps using a regression loss. For the unsupervised case, more cre-
ative solutions are considered. In [6, 16, 32, 31, 8, 27, 14, 3] a variety of methods
have been used including inpainting, learning feature representation, clustering
or video frames comparison. In Clustering, deep learning methods are the cur-
rent state of the art. JULE [33] and DEPICT [10], cluster based on a learned
feature representation. IIC [14] trains a classifier directly.

The most similar approach to ours is FineGAN [26], which our generators
and discriminators are based upon. However, there are many significant differ-
ences and additions: (i) We added a set of encoders, which are trained to support
new tasks. (ii) While FineGAN employs one-hot input, our generators use coded
input, which is important for our autoencoding path. (iii) We added a skip con-
nection, followed by a mixup module that combines the bypass tensor with the
pre-image tensor. The mixup also allows passing only one of the tensors, making
either the bypass or the pre-image optional in each flow. (iv) We employ single
foreground generator instead of FineGAN’s double hierarchical design, where we
have found one generator to be dominant and the second one redundant. (v) Our
model uses layer normalization [1] instead of batch normalization, which better
performs for large number of classes, small batch size, and alternating paths.
(vi) We define a new normalization method for the generators, where GLU [9]
activation layers were used as non-linear activations. (vii) We add many losses
and training techniques. Many of which are completely novel, as far as we can
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ascertain. As a result, our work outperforms FineGAN in all tasks and is capable
of performing new tasks that its predecessor could not handle.

Mixup [35] is a technique for applying a weighted sum between two latent
variables in order to synthesize a new latent variable. We use it to merge dif-
ferent paths in the model by mixing latent variables that are part coded by the
encoder and part produced by the lower levels of the generation. As far as we
can ascertain, this is the first usage of mixup to merge information from different
paths. Our mixup is applied to image reconstruction in four different locations.

3 Method

To solve the tasks of clustering, foreground segmentation, and conditional gen-
eration, our method trains multiple neural networks side-by-side. Each task is
solved by applying the networks in a specific order. Similarly, the model is trained
by applying the networks in two different paths, with a specific set of losses.
Architecture The compound network consists of two generators, three en-
coders and two discriminators. Fig. 1,2 illustrate the two training paths. In
the generation path, the generators produce a synthetic image conditioned on
selected code, the encoders then retrieve the latent code from the generated im-
ages. In the reconstruction path, the encoders code an input image into latent
code which is used by the generators to reconstruct the image. The reconstruc-
tion path is applied twice in each iteration, once on real images and once on fake
images from the generation path. The reconstruction of fake images adds mul-
tiple capabilities of self-supervision such as reconstructing the background and
mask, which is not applicable with real images without additional supervision.
Generators The generation is performed by merging the results of two sepa-
rate generators that run in parallel to produce the output image. One generator
is dedicated for generating the background and the other for the foreground.
The generators are conditioned on a two-level hierarchical categorization. Each
category has a unique child class φc and a parent class φp shared by multi-
ple child classes. These classes are represented by the one-hot vectors (ec, ep).
An additional background one-hot vector ebg affects the generation of the back-
ground images. Since there is a tight coupling between the class of the object
(water bird, tropical bird, etc.) and the expected background, the typology of
the background follows the coarse hierarchy, i.e. the parent class. The generator
architecture is influenced by.

ec[i] = δi,φc , ep[i] = δi,φp , ebg = ep (1)

The generation starts by converting the one-hot vectors into code vectors us-
ing learned embeddings. Such an embedding is often used when working with
categorical values. A fourth vector z is sampled from a multi-variate gaussian
distribution to represent non-categorical features.

vbg = Vbg(ebg), vp = Vp(ep), vc = Vc(ec), z ∼ N (0, 1)dz (2)



4 Y. Benny and L. Wolf

Embedding

Shape

Generator

Style

Background

Ep

Ec

Ebg

Pa
re

n
t

 o
n

e-
h

o
t

Gbg1

I1 Foreground

I1 Mask

I1 Background

I1

Gbg0

C
hi

ld
 o

n
e-

h
o

t

Vc

Vp

Vbg
Background 

vector

Pose 
vector

Shape 
vector

Style 
vector

DcA

DbgA

B
ac

kg
ro

un
d

 o
n

e-
ho

t

B
G

 M
as

ki
n

g
B

G
 M

as
ki

n
g

Shape vector

Style 
vector

Pose vector

Parent 
one-hot

Child 
one-hot

Gfg0 Gfg1 Gfg2

real/fake

bg/fg

real/fake

aux: child

Background 
vector

Reconstruction

Embedding

Shape

Generator

Style

Background

Ep

Ec

Ebg Gbg1

I1 Foreground

I1 Mask

I1 Background

I1

Gbg0

Vc

Background 
vector

Pose 
vector

Shape 
vector

Style 
vector

B
G

 M
as

ki
ng

B
G

 M
as

ki
ng

Shape vector

Style 
vector

Pose vector

Parent 
one-hot

Child 
one-hot

Gfg0 Gfg1 Gfg2

Background 
vector

Reconstruction

Vp
Mixup 

1
Mixup 

1

Mixup 
2

Mixup 
2

Mixup  
3

Mixup  
3

SKIP CONNECTION Bfg

SKIP CONNECTION Bbg

Mixup  
4

Mixup  
4

DbgB

DcB

DbgA real/fake

bg/fgDbgB

DcA real/fake

aux: childDcB

Fig. 1. Flow of the generation path. The generators decode the four priors (ebg, ep, ec, z)
and produce three separate images (foreground, background, mask) that are combined
into the final image. The generated image is then coded by three encoders to retrieve
the latent variables and priors.
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Fig. 2. Flow of the reconstruction path. The same sub-networks are rearranged to per-
form image reconstruction. The image is coded with the shape and style encoders and
then decoded by the foreground generator to produce the foreground image and mask.
Then the background encoder and generator code the masked image and produces a
background image. The output image combines the foreground and background images.
The mixup modules, placed in four different locations, merge the encoders’ predicted
codes with intermediate stages of the generation, acting as a robust skip connection.

The background generator Gbg receives the background vector vbg and noise z
and produces a background image Ibg. The foreground generator Gfg receives
the parent vector ep, child vector ec and the same z used in the background
generation and produces a foreground image Ifg and a foreground mask Im.
The generator is optimized such that all foreground images with the same ep will
have the same object shape and all images with the same ec will have a similar
object appearance. The latent vector z is implicitly conditioned to represent all
non-categorical information, such as pose, orientation, size, etc. It is used in both
the background and foreground generation, so that the images produced by both
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networks will merge into a coherent image. Each generator is a composition of
sub-modules applied back to back, with intermediate pre-images (Abg, Afg):

Ibg = Gbg1(Abg), Abg = Gbg0(vbg, z) (3)

(Ifg, Im) = Gfg2(Gfg1(Afg, vp), vc), Afg = Gfg0(vp, z) (4)

The final generated image is: (where ◦ denotes element-wise multiplication)

I = Ibg ◦ (1− Im) + Ifg ◦ Im (5)

Encoders Unlike FineGAN, which performs only the generation task, our
method requires the use of encoders. We introduce three encoders: background
encoder Ebg, shape encoder Ep, and style encoder Ec. They run in semi-parallel
to predict both the latent codes (vbg, vp, vc, z) of an input image and the underly-
ing one-hot vectors (ebg, ep, ec). All encoders are fed with image I as input. The
background encoder is also fed with the mask Im. During image reconstruction,
there is no initial image mask, therefore it first has to be generated by encoding
the shape and style features and applying the foreground generator. The lack of
ground-truth mask is why the encoders do not run fully in parallel. In addition,
the background and shape encoders also produce bypass tensors (Bbg, Bfg) to
be used as skip connections between the encoders and the generators.

(Bbg) = Ebg(I, Im) (6)

(êp, µp, σp, Bfg, µz, σz) = Ep(I) (7)

(êc, µc, σc) = Ec(I) (8)

Where (µ, σ) are three paired vectors of sizes (dz, dp, dc) defining the mean and
variance to sample each element of (ẑ, v̂p, v̂c) from a gaussian distribution .
Mixup At the intersection between the encoders and generators, we introduce
a novel method to merge information coded by the encoders and information
produced by the embeddings and lower levels of the generators. The mixup
module [35], mixes two input variables with a weight parameter β. The rationale
behind this application is that during generation there is no data coming from the
encoders, so the mixup is turned off and only information from the embeddings
and lower levels of the generators are passed forward. During reconstruction, we
want our method to utilize the skip connections to improve performance and also
use the predicted embeddings (vp, vc) to represent the object’s shape and style.
The contrast between the two paths leads to a difficulty in optimizing them
simultaneously. The introduction of the mixup simplifies this by having both
paths active during forward path and back-propagation. In contrast to regular
residual connections, the ever changing β used in the mixup forces both inputs
to be independent representations and not complement each other.

The mixup modules at the vector embeddings level (mixup1 and mixup2 in
Fig. 2) mix the vectors (vp, vc) given by the embeddings (Vp, Vc), Eq. 2, with the
predicted vectors (v̂p, v̂c) produced by the encoders (Ep, Ec), Eq. 7,8. The mix-
ture of features leads to both the embeddings and the encoders being optimized
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for reconstructing the object. This has two benefits. First, it trains the encoders
to properly code the images, which improves clustering and learns image-to-
image translation implicitly. Second, it trains the embeddings to represent the
real object classes, which improves the generation task.

The mixup modules at the skip connections (mixup3 and mixup4 in Fig. 2)
mix the pre-image tensors (Abg, Afg), Eq. 3,4, with the bypass tensors (Bbg, Bfg),
Eq. 6,7. It serves to create the condition where the reconstruction path will be
simultaneously dependent on the bypass and on the lower stage of the generators.
This way, at any time we can choose any β or even pass only the bypass or only
the pre-image and result in an almost identical image.

Given two inputs and a parameter β, the mixup is defined as follows:

vpmix
= vp ◦ (1− β1) + v̂p ◦ β1, vcmix

= vc ◦ (1− β2) + v̂c ◦ β2
Afgmix

= Afg ◦ (1− β3) +Bfg ◦ β3, Abgmix
= Abg ◦ (1− β4) +Bbg ◦ β4

(9)

In our implementation, β1, β2 ∈ [0, 1] and β3, β4 ∈ [0.5, 1], are sampled in each
iteration for each instance in the batch. At reconstruction, the mixed features
(vpmix

, vcmix
, Afgmix

, Abgmix
) replace the features (vp, vc, Afg, Abg) in Eq. 3,4 as

input to the generators. For illustration, please refer to Fig. 2.
GLU Layer Normalization Following StackGANv2 and FineGAN archi-
tecture, we apply GLU [9] activation in the generators. Due to the multiple
paths, the large scale and high complexity of our method, batch normalization
was unstable for our low batch size, and, increasing the batch size was not an
option. As a solution, we switched to layer normalization, which is not affected
by the batch size. We fused the normalization and activation into a single module
termed “GLU Layer Normalization”. Given an input x with xL, xR representing
an equal split in the channel axis (left/right): GLU(xL, xR) = xL ◦Sigmoid(xR),
GLU-LNorm(xL, xR) = GLU(LNorm(xL), xR). In this method, the normaliza-
tion is only applied on xL. The input to the sigmoid, xR, is not normalized. This
is favorable, because xR serves as a mask on xL, and normalizing it across the
channels contradicts this goal.
Discriminators Following FineGAN, the two discriminators are adversarial
opponents on the outputs Ibg, I. The background discriminator Dbg has two
tasks, with a separate output for each. The tasks are as follows: (i) patch-wise
prediction if the input image is real or fake when presented with either a real
or fake background image, annotated as DbgA . (ii) patch-wise prediction if the
input image is a background image or not when presented with either a real
background image or a real object image, annotated as DbgB . The background
generator is hereby optimized to generate images that look like real images and
do not contain object features. In addition, when performing the reconstruction
path on fake images, we also extract a hidden layer output and apply perceptual
loss between generated and reconstructed backgrounds, annotated as DbgC , to
reduce the perceptual distance between the original and the reconstructed image.

The image discriminator Dc receives real images from Xc or generated fake
images, and also has two tasks: (i) predict if the input image is real or fake,
annotated as DcA . (ii) predict the child class φc of the image, annotated as
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DcB , as in all InfoGAN-influenced methods. This trains the foreground generator
to generate images that look real and represent the conditioned child class. In
addition, we also extract a hidden layer output and apply perceptual loss between
generated and reconstructed foreground images, annotated as DcC .

4 Training

To train to solve various tasks, we perform in each iteration two different paths
through the model, by connecting the various sub-networks in a specific order.

4.1 Generation path

The generation path is described in Fig. 1, Eq. 2–5. For illustrations, see Fig. 3.
The inputs for this path are ebg, ep, ec, z. During generation, the model learns
to generate image I in a way that relies on generating a background Ibg, fore-
ground Ifg, and mask Im images. The discriminators are trained along with the
generators and produce an adversarial training signal. In addition, the encoders
are also trained to retrieve the latent variables from the generated images, as a
self-supervised task.

The losses in this path can be put into four groups: adversarial losses, classi-
fication losses, distance losses, and regularizations. For brevity, e represents the
dependence on all prior codes (ebg, ep, ec). Similarly, G(e, z) represents the full
generation of the final image, Eq. 3–5.
Adversarial losses These involve the two discriminators and are derived
from the minimax equation: minG maxD Ex[log(D(x))] + Ez[log(1 −D(G(z)))],
for a generic generator G and discriminator D. The concrete GAN loss is the
sum of the losses for the separation between real/fake background, the separation
between background/object and the separation between real/fake object.

For the discriminators, where Xbg, Xc are the sets of real background images
and real object images, the losses are:

LDbgA
=Ex∼Xbg

[log(DbgA(x))] + Eebg,z[log(1−DbgA(Gbg(ebg, z)))]

LDbgB
=Ex∼Xbg

[log(DbgB (x))] + Ex∼Xc
[log(1−DbgB (x))]

LDcA
=Ex∼Xc

[log(DcA(x))] + Ee,z[log(1−DcA(G(e, z)))]

LD =10 · LDbgA
+ LDbgB

+ LDcA

(10)

For the generators, the losses are:

LGbgA
=Eebg,z[log(DbgA(Gbg(ebg, z)))],LGbgB

= Eebg,z[log(DbgB (Gbg(ebg, z)))]

LGcA
=Ee,z[log(DcA(G(e, z)))],LG = 10 · LGbgA

+ LGbgB
+ LGcA

(11)

Classification losses These losses optimize the generators to generate dis-
tinguished images for each style and shape priors and optimize the encoders to
retrieve the prior classes. We use the cross entropy loss between the conditioned
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classes (φp, φc) and the encoders’ predictions (êp, êc) form Eq.7,8. In addition,
we use the auxiliary task DCB

.

LE = CE(êp, φp) + CE(êc, φc) + CE(DcB (I), φc) (12)

Distance losses We train the encoders to minimize the mean squared error
between the vectors in the latent space produced during generation and their
predicted counterparts. These vectors are used in the reconstruction path, thus
this self-supervised task assists in this regard. We minimize the distance between
the pre-images and bypasses (Abg, Afg, Bbg, Bfg), and between the latent vectors
(vp, vc) and the mean vectors µp, µc used to sample the latent code (v̂p, v̂c).

LMSE = MSE(vc, µc) + MSE(vp, µp) + MSE(Afg, Bfg) + MSE(Abg, Bbg) (13)

Regularization losses For regularization, a loss term is applied on the latent
codes (vbg, vp, vc), annotated as LRv

, and on the foreground mask Im, annotated
as LRM

. They are detailed in the supplementary.
All the losses are summed together to the total loss:

LGEN = LG + LE + LMSE + 0.1 · LRv
+ 2 · LRM

(14)

4.2 Reconstruction path

The reconstruction path is described in Fig. 2. For illustrations, see Fig. 4. The
input is an image I. The precise flow is: (1) encode the foreground through the
shape and style encoders (Ep, Ec), Eq. 7,8, (2) generate a foreground image and
mask with the foreground generator (Gfg), Eq. 4, (3) encode the image and mask
through the background encoder (Ebg), Eq. 6, (4) generate the background im-
age with the background generator (Gbg), Eq. 3, and (5) compose the final image
with Ifg, Ibg, Im, Eq. 5. In addition, the mixup is applied as in Eq. 9 between
encoding and generation. This path optimizes the clustering and segmentation
tasks directly and also implicitly optimizes the generation task by reconstruc-
tion real images. We perform the reconstruction path on both real images and
generated images from the generation path. This fully utilizes the information
available to learn all tasks with minimal supervision.

The losses in this path can be put in three groups: statistical losses, recon-
struction losses, and perceptual losses.
Statistical losses As in Variational Auto-Encoders [18], we compare the
Kullback-Leiber Divergence between the latent variables encoded by the en-
coders (v̂p, v̂c, ẑ) to a multivariate gaussian distribution. For the pose vector z,
we used the standard normal distribution with covariance matrix equal to the
identity matrix (Σ = Idz ) and a zero mean vector (µ = 0). For the shape and
style vectors (v̂p, v̂c) we still use identity Σ, but since they should match their
latent code (vp, vc), we use these latent codes as the target mean.

LVAEp = DKL(N (µp,diag(σp))‖N (vp, Idp))

LVAEc = DKL(N (µc,diag(σc))‖N (vc, Idc))

LVAEz = DKL(N (µz,diag(σz))‖N (0, Idz ))

LVAE = LVAEp + LVAEc + LVAEz

(15)
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Reconstruction losses The reconstruction losses are a set of L1 losses that
compare the difference between the input image to the output. The network
trains at reconstructing both real and fake images. For fake images, we have the
extra self-supervision to also compare reconstruction of the background image
and foreground mask.

LREC =

{
L1(I, Î) , real

L1(I, Î) + L1(Ibg, Îbg) + L1(Im, Îm) , fake
(16)

Perceptual losses Comparing images to their ground-truth counterpart is
known to produce blurred images; Perceptual loss [15] is known to aid in pro-
ducing sharper images with more visible context [36] by comparing the images
on the feature level as well. The perceptual loss is often used along with a pre-
trained network, but this relies on added supervision. In our case, we use the
discriminators as feature extractors. We use the notation DbgC , DcC from Sec. 3
to describe the extraction of the hidden layers used for this comparison.

LPER =

{
L2DcC

(I, Î) , real

L2DcC
(I, Î) + ‖D(DbgC )−D(Îbg)‖2 , fake

(17)

All the losses are summed together to the total loss:

LAE = LGEN + LVAE + LREC + LPER (18)

4.3 Multi-phase training

In order to simplify training, instead of training both paths at once, we schedule
the training process by phases. The phases are designed to train the network for
a gradually increasing subset of tasks, starting from image-level tasks (gener-
ating images) to semantic tasks (semantic segmentation of the foreground, and
semantic clustering) that benefit from the capabilities obtained in the genera-
tion path. In the first phase we only perform the generation path 4.1 and in the
second phase we add the reconstruction path 4.2.

Without multi-phase training, the networks would be trained to generate and
reconstruct images simultaneously. While the generation flow encourages a sep-
aration between the background and foreground components, the reconstruction
flow resists this separation due to the trivial solution of encoding and decod-
ing the image in one of the paths (foreground or background) and applying an
all-zero or all-one mask. In the experiments, in Tab. 1,2, we show that without
multi-phase the model is incapable of learning any task.

In this controlled environment, the generators are much more likely to con-
verge to the required setting. After a decent amount of iterations, determined
in advance by a hyper-parameter, the second phase kicks in, where the model is
also trained to reconstruct images, which will train the encoders on top of the
generator instead of breaking it.
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Fig. 3. Image Generation for each dataset. From top to bottom: (i) final image, (ii)
foreground, (iii) foreground mask, (iv) background.

Fig. 4. Image reconstruction for each dataset. From top to bottom: (i) real image, (ii)
reconstructed image, (iii) reconstructed foreground, (iv) reconstructed background, (v)
ground-truth foreground mask, (vi) predicted foreground mask.

When entering Phase II, the fake images for both discriminators can be a
result of either (i) generation path, (ii) fake image reconstruction, or (iii) real im-
age reconstruction. We noticed that images from the reconstruction paths fail to
converge to real-looking images when the discriminators were only trained by the
generation path outputs. We hypothesized that this is probably due to each path
producing images from a different source domain and these paths can generate
very different images during training and the discriminators get overwhelmed by
the different tasks and are not able to optimize them simultaneously. To solve
this, upon entering Phase II, we clone each discriminator (Dc, Dbg) twice and as-
sociate one separate clone for each path, resulting in a total of three background
discriminators and another three for the foreground. In this setting, each path
receives the adversarial signal that is concentrated only at improving that path.

5 Experiments

We train the network for 600,000 iterations, with batch size 20. All sub-networks
are optimized using Adam [19], with lr=2e-4. Phase I duration is 200,000 itera-
tions and Phase II 400,000. Within Phase II, we start with training only on fake
images and real image reconstruction starts after another 200,000 iterations.

We evaluate our model on various tasks against the state of the art methods.
Since no other model can solve all these tasks, we evaluate against different
methods in each task. Depending on availability, some baselines were pre-trained
models released by the authors and some were trained from scratch with the
authors’ official code and instructions.
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Fig. 5. Conditional Generation. From left
to right: (i) real images, (ii-vi) generation
of images with the encoded parent and
child codes and a different vector z per col-
umn, (vii) FineGAN [26] + our encoders,
(viii) StackGANv2 [34] + our encoders.

Fig. 6. Style Transfer. From left to right:
(i) real images. (ii-vi) reconstructed im-
ages when the child code ec is switched
with a code from a selected category,
(vii) FineGAN [26] + our encoders, (viii)
StackGANv2 [34] + our encoders.

Table 1. Quantitative generation results. FID↓, IS↑, CFID↓, CIS↑

Birds Dogs Cars

Model FID IS CFID CIS FID IS CFID CIS FID IS CFID CIS

Dataset 0 163.6 0 47.9 0 114.2 0 77.1 0 163.1 0 55.4

StackGANv2 21.4 67.0 96.8 15.0 56.7 82.4 184.7 10.2 25.0 88.1 190.3 13.3
FineGAN 23.0 66.4 65.3 24.7 54.9 83.1 100.4 15.7 24.8 86.2 126.0 13.6

OneGAN 20.5 67.4 55.2 30.7 48.7 89.7 92.0 19.6 24.2 90.3 100.7 18.7
no real recon 22.3 65.6 58.6 25.6 55.4 84.2 95.3 17.0 25.1 88.2 104.3 15.5
Phase I only 23.9 63.2 59.1 21.6 56.1 82.0 97.8 16.8 25.4 87.7 106.1 13.4
no multi-phase196.5 11.0 356.1 2.3 217.8 16.9 543.2 1.7 264.7 23.4 767.9 3.9

Datasets We evaluate our model with three datasets of fine-grained catego-
rization. Caltech-UCSD Birds-200-2011 (Birds) [29]: This dataset consists
of 11,788 images of 200 classes of birds, annotated with bounding boxes and seg-
mentation masks. Stanford Dogs (Dogs) [20]: This dataset consists of 20,580
images of 120 classes of dogs, annotated with bounding boxes. For evaluation,
target segmentation masks were generated by a pre-trained DeepLabV3 [5] model
on the COCO [22] dataset. The pre-trained model was acquired from the gluoncv
toolkit [12]. Stanford Cars (Cars) [17]: This dataset consists of 16,185 images
of 196 classes of cars, annotated with bounding boxes. Segmentation masks were
generated as above with the pre-trained DeepLabV3 model.

Similarly to FineGAN, before training the model, we produced a background
subset by cutting background patches with the bounding boxes. In addition to
FineGAN, the bounding boxes were not used in any other way to train our
method and we made sure that no image was used for both foreground and
background examples. This was done by splitting the dataset in a 80/20 ratio,
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Table 2. Segmentation and clustering results. §unfair upper bound results, obtained
by selecting the best result out of many. †provided by [26]. ∗model performed task by
using our encoders. 7model cannot perform task. Higher is better in all scores.

Segmentation Clustering

Birds Dogs Cars Birds Dogs Cars

Model IOU DICE IOU DICE IOU DICE ACC NMI ACC NMI ACC NMI

ReDO 46.5 60.2 38.4 52.8 16.2 26.2 7 7 7 7 7 7

WNet 24.8 38.9 47.7 62.1 52.8 67.6 7 7 7 7 7 7

UISB§ 44.2 60.1 62.7 75.5 64.7 77.5 7 7 7 7 7 7

IIC-seg stf-3§ 36.5 50.2 58.5 71.5 58.5 71.5 7 7 7 7 7 7

IIC-seg stf§ 35.2 50.4 56.6 70.2 58.8 71.7 7 7 7 7 7 7

JULE† 7 7 7 7 7 7 .045 .204 .043 .142 .046 .232

DEPICT† 7 7 7 7 7 7 .061 .290 .052 .182 .063 .329
IIC-cluster 7 7 7 7 7 7 .084 .345 .060 .200 .056 .254
StackGANv2 7 7 7 7 7 7 .057∗ .253∗ .040∗ .139∗ .039∗ .174∗

FineGAN 44.5∗ 56.9∗ 48.7∗ 59.3∗ 53.2∗ 60.3∗ .086∗ .349∗ .059∗ .194∗ .051∗ .233∗

OneGAN 55.5 69.2 71.0 81.7 71.2 82.6 .101 .391 .073 .211 .060 .272
no real recon 53.5 67.7 67.1 78.6 69.8 81.1 .095 .389 .062 .194 .057 .250
Phase I only 45.7 60.6 65.1 77.3 64.8 75.9 .084 .352 .058 .175 .052 .244
no multi-phase 28.2 43.2 7.4 13.6 45.9 60.5 .050 .216 .019 .082 .041 .208

Table 3. Ablation studies on CUB: (a) normalization methods, (b) modules’ behaviour,
and (c) losses. Measuring FID and C-IS for generation and IOU for segmentation.

Model FID C-IS IOU

OneGAN 20.5 30.7 55.5
GLU-INorm 122.0 10.2 31.3
LNorm 87.5 14.5 45.4
INorm 103.4 9.8 30.1

Model FID C-IS IOU

OneGAN 20.5 30.7 55.5
no bypass 21.2 22.8 53.3
no mixup(1,2) 22.6 17.5 54.1
no mixup(3,4) 20.9 22.2 53.8

Model FID C-IS IOU

OneGAN 20.5 30.7 55.5
no loss LRM 97.2 19.5 35.3
no loss LVAE 44.1 18.5 39.6
no loss LPER 25.5 24.1 53.0

(a) (b) (c)

and use the larger subset as foreground Xc and only the smaller subset for
background Xbg.

Due to the different size of classes in each dataset, there is also a different size
of child and parent classes in the design for each dataset. Birds: NC = 200, NP =
20, Dogs: NC = 120, NP = 12, Cars: NC = 196, NP = 14.

Image generation We compare our image generation results to FineGAN [26]
and StackGANv2 [34], by relying on an InceptionV3 fine-tuned on each dataset.
We evaluate our method in both IS [25] and FID [13]. In addition, we measure
the conditional variants of these metrics (CIS, CFID), as presented in [2]. The
conditional metrics measure the similarity between real and fake images within
each class, which cannot be measured by the unconditional metrics.
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Our results, reported in Tab. 1 show that OneGAN outperforms in both
conditional and unconditional image generation. In unconditional generation, our
method and the baselines performed roughly the same, since the generators are
very similar. In conditional generation, our method improves on the baseline by
a large margin. StackGANv2 was the worst performing model. This suggest that
the mask-based generation, that FineGAN and our method rely on, generates
a stronger conditioning on the object in the image. In addition, our multi-path
training method improves conditional generation further, as is shown in the
ablation tests. For illustration of conditional generation, see Fig. 5.

Unsupervised foreground segmentation We compare our mask predic-
tion from the reconstruction path to the real foreground mask. We evaluate ac-
cording to IOU and DICE scores. We compare against three baselines, ReDO [6],
WNet [32] and UISB [16] which are trained for each dataset separately, and a
third one, IIC-seg [14], which was trained on coco-stuff and coco-stuff-3 (a sub-
set). While coco-stuff is a different dataset than the ones we used, it contains
all the relevant classes. ReDO and WNet produce a foreground mask which we
compare to the ground-truth similarly to how we evaluate our model. UISB is an
iterative method that produces a final segmentation with a varying number of
classes between 2 and 100. We iterated UISB on each image 50 times. The output
was usually between 4-20 classes. Since there is no labeling of the foreground or
background classes, this method cannot be immediately used for this task. In
order to get an evaluation, we look for each image for the class that has the high-
est IOU with the ground-truth foreground. The rest of the classes are merged
to a single background class. We then repeat with a single background class and
the rest merged into foreground. Finally, taking the best out of the two options,
each obtained by using an oracle to select out of many options, which provides a
liberal upper bound on the performance of UISB. IIC also produces a multi-class
segmentation map, we use it in the same way we use UISB by taking the best
class for either background or foreground in respect to IOU. IIC has 2-headed
output, one for the main task and one for over-clustering. For coco-stuff trained
IIC, we look for the best mask in one of the 15 classes of the main head. For coco-
stuff-3 trained IIC, the main head is trained to cluster sky/ground/plants, so we
look for the best mask in one of the 15 classes of the over-clustering head. Fine-
GAN cannot perform segmentation, since it does not have a reconstruction path.
But we added an additional baseline by training FineGAN with our encoders to
allow such path. The results in Table. 2 show that our method outperforms all
the baselines. The ablation show that the biggest contribution comes from the
reconstruction path and the multi-phase scheduling.

Unsupervised clustering We compare our method against JULE [33], DE-
PICT [10] and IIC-cluster [14]. In addition, we added the baselines of Stack-
GANv2 and FineGAN trained with our encoders. We evaluate how well the
encoders cluster the real images. OneGAN outperforms the other methods for
both Birds and Dogs. For Cars, our model was second after DEPICT. By looking
at the generated images, this can be explained by the fact our method clusters
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the cars based more on color and less on car model. This aligns with the lower
conditional generation score for Cars than for the other datasets.
Image to image translation To further evaluate our model, we show its
capability to transfer an input image to a target category. The results can be
seen in Fig. 6. Even though our model was never trained on this task, the dis-
entanglement between the shape and the texture enables this translation simply
by passing a different child code during reconstruction. In contrast, FineGAN
and StackGANv2 are unable to perform this task correctly as there is no learned
disentanglement in StackGANv2 and no bypass connection in FineGAN.
Object removal and inpainting Our model is also capable of performing
automatic object removal and background reconstruction, see Fig. 4. Due to the
lack of perfect ground-truth mask, our model does not only fill the missing pixels
but fully reconstructs the background image. As a result, the background image
is not identical to the original background, but it is semantically similar to it.
we compare our method with previous work in the supplementary.
Ablation study In Tab. 1,2, we provide multiple versions of our method
for ablation. In the version without real reconstruction, we only add fake image
reconstruction in Phase II, meaning that real images did not pass through the
network during training. Another variant employs only the first phase of training.
Finally, a third variant trains without multi-phase scheduling. These tests show
the contribution of the multiple paths and the multi-phase scheduling. In Tab. 3,
we provide an extensive ablation study on three aspects. In (a), we compared
layer and instance normalization [28] methods in the generators. Our “GLU layer
normalization” outperformed all other options. In (b), we turned of intersection
modules between encoders and generators. The experiment shows that these
models strongly improve the CIS, which explains why our method outperformed
FineGAN and StackGANv2 in conditional generation. In (c), we evaluated the
contribution of selected novel losses, which affected all scores. Together, all these
experiments show the contribution of the proposed novelties in our method.

6 Conclusions

By building a single model to handle multiple unsupervised tasks at once, we con-
vincingly demonstrate the power of co-training, by surpassing the performance
of the best in class methods for each task. This capability is enabled by a com-
plex architecture with many sub-networks. However, supporting this complexity
during training is challenging. We introduce a mixup module that integrates
multiple pathways in a homogenized manner and a multi-phase training, which
helps to avoid some tasks dominating over the others.
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