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Abstract. We show that simple patch-based models, such as epitomes
(Jojic et al., 2003), can have superior performance to the current state of
the art in semantic segmentation and label super-resolution, which uses
deep convolutional neural networks. We derive a new training algorithm
for epitomes which allows, for the first time, learning from very large
data sets and derive a label super-resolution algorithm as a statistical
inference over epitomic representations. We illustrate our methods on
land cover mapping and medical image analysis tasks.
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1 Introduction

Deep convolutional neural networks (CNNs) have become a tool of choice in
computer vision. They typically outperform other approaches in core tasks such
as object recognition and segmentation, but suffer from several drawbacks. First,
CNNs are hard to interpret, which makes them difficult to improve by adding
common-sense priors or invariances into the architecture. Second, they are usu-
ally trained in a supervised fashion on large amounts of labeled data, yet in most
applications labels are sparse, leading to various domain adaptation challenges.
Third, there is evidence of failure of the architecture choices that were meant to
promote CNNs’ reasoning over large distances in images. The effective receptive
field [17] of CNNs – the distance at which faraway pixels stop contributing to
the activity of deeper neurons – is often a small fraction of the theoretical one.

With the third point in mind, we ask a simple question, the answer to which
can inform an agenda in building models which are interpretable, can be pre-
trained in an unsupervised manner, adopt priors with ease, and are amenable
to well-understood statistical inference techniques: If deep CNNs effectively use
only small image patches for vision tasks, and learn from billions of pixels, then
how would simple exemplar-like approaches perform, and can they be made prac-
tical computationally? We show that models based on epitomic representations
[14], illustrated in Fig. 2, match and surpass deep CNNs on several weakly su-
pervised segmentation and domain transfer tasks.
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(d) Pixel evaluated (e) Grad. bottleneck (f) Grad. last layer

Fig. 1. Gradient-based effective receptive field estimation: We use the gradients from
selected intermediate layers to the input image to estimate the size of the effective
receptive field. In (e), we visualize the normalized gradient map (at a single coordinate
shown on green in (d)) of the U-Net’s bottleneck (highest downsampling) layer with
respect to the input image; (f) shows gradients of the final layer for the same pixel. The
dark squares show the theoretical receptive field of the layers in question (139 × 139
for the bottleneck and 183 × 183 for the final layer). However, the gradient map (f)
suggests that the effective receptive field is only about 13× 13 pixels on average

For example, in Fig. 1 we show a patch of aerial imagery and the output of a
U-Net [29] trained to predict land cover. The network misclassifies as vegetation
the road pixels that appear in tree shadows. The model was trained on a large
land cover map [3,27] that presents many opportunities to learn that roads are
long and uninterrupted. The land cover data contains many more patterns that
would help see rivers through a forest, recognize houses based on their proximity
to roads, etc., but the U-Nets do not seem to learn such long-range patterns.
This myopic behavior has been observed in other architectures as well [17,2,9].

In contrast, our algorithms directly model small image patches, forgoing
long-range relationships. As generative models of images, epitomes are highly
interpretable: they look like the images they were trained on (Fig. 2). Our gen-
erative formulation of image segmentation allows the inference of labels in the
latent variable space, with or without high-resolution supervision (Fig. 4). They
achieve comparable performance to the state-of-the-art CNNs on semantic seg-
mentation tasks, and surpass the CNNs’ performance in domain transfer and
weakly supervised (label super-resolution) settings.

In summary, our contributions are as follows:

(1) As previous training algorithms fail to fit large epitomes well, we develop
new algorithms that are suitable for mining self-similarity in very large datasets.

(2) We develop a new label super-resolution formulation that mines image
self-similarity using epitomes or directly in a single (small) image.
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Fig. 2. A quarter of an epitome (µ parameters shown) trained on aerial imagery (left)
and an epitome trained on pathology slides (right). Any 31× 31 training data patch is
generated by, and likely similar to, some 31× 31 window in the epitome. Note the two
overlapping windows: the patches are distant in color space, but their corresponding
mixture components share parameters on the intersection. The epitomes are 200× and
30000× smaller, respectively, than their total training data

(3) We show how these models surpass the recent (neural network) state of
the art in aerial and pathology image analysis.

(4) We illustrate that our approaches allow and even benefit from unsuper-
vised pre-training (separation of feature learning from label embedding).

(5) We show that our models deal with data size gracefully: We can train
an epitome on a large fully labeled aerial imagery / land cover map and obtain
better transfer in a new geography than CNNs [18,27], but we get even better
results by analyzing one 512×512 tile at a time, with only low-resolution labels.

2 Epitomes as segmentation models

Epitomes [14] are an upgraded version of a Gaussian mixture model of image
patches. In this section we present, for completeness, the definition of these
models. We then explain how they can be turned into segmentation models.

Consider a training set consisting of image patches xt unwrapped as vectors
xt = {xti,j,k}, where i, j are coordinates in the patch and k is the spectral channel
(R,G,B,. . . ), and the corresponding vector of one-hot label embeddings yt =
{yti,j,`}, ` ∈ {1, . . . , L}. In a mixture model, the distribution over the (image,
label) data is represented with the aid of a latent variable s ∈ {1, . . . , S} as

p(xt, yt) =

S∑
s=1

p(xt|s)p(yt|s)p(s), (1)

where p(s) is the frequency of a mixture component s, while the conditional
probability p(xt|s) describes the allowed variation in the image patch that s
generates and p(yt|s) describes the likely labels for it. Under this model, the
estimate for ŷ, the expected segmentation of a new image x, is

p(y|x) =
∑
s

p(s|x)p(y|s). (2)
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A natural choice for p(x|s) is a diagonal Gaussian distribution,

p(x|s) =
∏
i,j,k

exp
(
− 1

2 (xi,j,k − µs,i,j,k)2/σ2
s,i,j,k

)
(2πσ2

s,i,j,k)
1
2

(3)

and for p(y|s) a product of categorical distributions over labels at each pixel
position. The mean of the mixture component s contains pixel values µs,i,j,k,
while the covariance matrix is expressed in terms of its diagonal elements σ2

s,i,j,k,
the variances of different color channels k for individual pixels i, j.

Epitomic representations [14] compress this parametrization by recognizing
that patches of interest come from overlapping regions and that different com-
ponents s should share parameters. The component index s = (s1, s2) lives on a
N ×N grid, so 0 ≤ s1, s2 ≤ N − 1, and the parameters are shared:

µs,i,j,k = µs1+i,s2+j,k σ2
s,i,j,k = σ2

s1+i,s2+j,k (4)

(Indices are to be interpreted modulo N , i.e., with toroidal wrap-around.) Thus,
the epitome is a large grid of parameters µm,n,k,σm,n,k, so that the parameters
for the mixture component s = (s1, s2) start at position s1, s2 and extend to the
left and down by the size of the patch, as shown in Fig. 2. ModelingK×K patches
will take K2 times fewer parameters for the similar expressiveness as a regular
mixture model trained on K ×K patches. The posterior p(s|x) ∝ p(x|s)p(s) is
efficiently computed using convolutions/correlations, e.g.,

p(s1, s2|x) ∝ exp
∑
i,j,k

−1

2

(
x2i,j,k

σ2
s1+i,s2+j,k

−
2xi,j,kµs1+i,s2+j,k

σ2
s1+i,s2+j,k

+
µ2
s1+i,s2+j,k

σ2
s1+i,s2+j,k

+ logσ2
s1+i,s2+j,k

)
· p(s1, s2). (5)

Epitomes are a summary of self-similarity in the images on which they are
trained. They should thus contain a much smaller number of pixels than the
training imagery, but be much larger than the patches with which they are
trained. Each pixel in the epitome is contained in K2 patches of size K×K and
can be tracked back to many different positions in many images.

Conversely, this mapping of images enables embedding of labels into the
epitome after the epitome of the images x has been trained. Every location in
the epitome m,n will have (soft) label indicators zm,n,`, computed as

p(`|m,n) ∝ zm,n,` =
∑
t

∑
s1,s2:(m,n)∈Ws1,s2

p(s1, s2|xt)ytm−s1,n−s2,`, (6)

where Ws1,s2 is the epitome window starting at (s1, s2), i.e. the set of K2 coordi-
nates (m,n) in the epitome that belong to the mixture component (s1, s2). The
posterior tells us the strength of the mapping of the patch xt to each component
s that overlaps the position (m,n). The corresponding location in the patch of
labels yt is (m− s1, n− s2), so ytm−s1,n−s2,` is added to the count zm,n,l of label
` at location (m,n). Finally, we declare p(yi,j,`|s1, s2) ∝ zs1+i,s2+j,`, allowing
inference of ` for a new image patch by (2).
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Fig. 3. Numerical near-fixed points of näıve epitome training by SGD without location
promotion, caused by vanishing posteriors, and a 399× 399 epitome trained with loca-
tion promotion (left); non-diversifying and self-diversifying 499× 499 epitomes trained
on imagery of forests (right)

3 A large-scale epitome training algorithm

Epitomes have been used in recognition and segmentation tasks, e.g. [30,21,1,20,23,34,24,35].
However, the standard EM training algorithm [14] that maximizes the data log-
likelihood

∑
t log

∑
s p(x

t|s)p(s) is not suitable to building large epitomes of large
data sets due to the problem of “vanishing posterior”. As training advances, the
dynamic range of the posterior p(s|xt) becomes too big for machine precision,
and the small probabilities are set to zero. Further parameter updates discour-
age mapping to these unlikely positions, leading to a die-off of chunks of “real
estate” in the epitome. The problem is exacerbated by the size of the data (and
of the epitome). Due to stability issues or computational cost, previous solutions
to this [15] do not allow the models to be trained on the scale on which neural
networks are trained. The analogous problem exists in estimating the prior p(s)
over epitome positions, which also needs to have a large dynamic range. If the
range is flatter (e.g., if we use a uniform prior) then maximization of likelihood
requires that the epitome learn only the most frequent patterns in the data,
replicating slight variations of them everywhere. As imagery is mostly uniform
and smooth, this creates blurry epitomes devoid of rarer features with higher
variances, like various edges and corners.

Instead of EM, we develop a large-scale epitome learning algorithm combin-
ing three important ingredients: stochastic gradient descent, location promotion
techniques, and the diversity-promoting optimization criterion:

Stochastic gradient descent. Instead of changing the parameters of the
model based on all data at once, we update them incrementally in the direc-
tion of the gradient of the log-likelihood of a batch of individual data points
d
dθ log

∑
t

∑
s p(x

t|s)p(s), where θ = {µm,n,k,σ2
m,n,k, p(s1, s2)}. Note that gradi-

ent descent alone does not solve the vanishing posterior problem, as the posterior
also factors into the expression for the gradient (see the SI). In fact, SGD makes
the situation worse (Fig. 3): the model parameters evolve before all of the data
is seen, thus speeding up the extinction of the epitome’s “real estate”.

Location promotion. To maintain the relatively uniform evolution of all
parts of the epitome, we directly constrain the learning procedure to hit all areas
of the epitome through a form of posterior regularization [8]. Within an SGD
framework, this can be accomplished simply by keeping counters Rs1,s2 at each
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position s1, s2 and incrementing them by the posterior p(s1, s2|xt) upon every
sample xt, then disallowing mapping to the windows s1, s2 which contain the
most frequently mapped pixels. In particular, we compute a mask M = {Rs1,s2 <
c/N2}, where N ×N is the size of the epitome, for some small constant c < 1,
and optimize only log

∑
(s1,s2)∈M p(xt|s1, s2)p(s1, s2) at each gradient descent

step. When |M | > (1− δ)|N |2 for some small δ, all counters are reset to 0.
Diversification training. As illustrated in Fig. 3 (right), standard SGD

tends to learn uniform patterns, especially when trained on large datasets. Just
like EM, it has to rely on the prior p(s) to avoid learning blurry epitomes, but
the dynamic range needed to control this is too high. Additionally, through
location promotion, we in fact encourage more uniform coverage of locations.
Thus, we change the optimization criterion from log-likelihood of all data to
log-likelihood of the worst modeled subset of each batch,

∑
t∈Lp

∑
s p(x

t|s), were

Lp is the set of data in the worst-modeled quantile p (the lowest quarter, in our
experiments) in terms of data likelihood, either under a previously trained model
or under the model being trained (self-diversification). This version of a max-min
criterion avoids focusing on outliers while ensuring that the data is uniformly
well modeled. The resulting epitomes capture a greater variety of features, as
seen in the right panel of Fig. 3. The diversification criterion also helps the model
generalize better on the test set, as we show in the experiments.

In the SI, we provide the details of the training parameters and analysis of
execution time. The simple and runnable example training code4 illustrates all
three features of the algorithm.

4 Label super-resolution by self-similarity

Labeling images at a pixel level is costly and time-consuming, so a number of
semi-supervised approaches to segmentation have been studied, e.g., [22,5,12,25].
Recently, [18] proposed a “label super-resolution” (LSR) technique which uses
statistics of occurrence of high-resolution labels within coarse blocks of pixels
labeled with a different set of low-resolution classes. (For clarity, we refer to
low-res information as classes and high-res information as labels.) Each class,
indexed by c, has a different composition of high-resolution labels, indexed by `.

The label super-resolution technique in [18] assumes prior knowledge of the
compositions p(`|c) of high-res labels in low-res classes and uses them to define
an alternative optimization cost at the top of a core segmentation network that
predicts the high-res labels. Training the network end-to-end with coarse classes
results in a model capable of directly predicting the high-res labels of the in-
dividual pixels. Backpropagation through such alternative cost criteria is prone
to collapse, and [18] reports best results when the data with high-res labels
(HR) is mixed with data with low-res labels (LR). Furthermore, the problem
is inherently ill-posed: given an expressive enough model and a perfect learn-
ing algorithm, many solutions are possible. For example, the model could learn

4 https://github.com/anthonymlortiz/epitomes_lsr

https://github.com/anthonymlortiz/epitomes_lsr
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to recognize an individual low-res block and then choose an arbitrary pattern
of high-res labels within it that satisfies the counts p(`|c). Thus the technique
depends on the inductive biases of the learning algorithm and the network ar-
chitecture to lead to the desirable solutions.

On the other hand, following statistical models we discuss here, we can de-
velop a statistical LSR inference technique from first principles. The data x is
modeled by a mixture indexed by the latent index s. Using this index to also
model the structure in the joint distribution over labels ` inside the patches
generated by component s and classes c to which the patches belong, the known
distribution of labels given the classes should satisfy p(`|c) =

∑
s p(`|s)p(s|c).

Thus, we find the label embedding p(`|s) by minimizing the KL distance between
the known p(`|c) and the model’s prediction

∑
s p(`|s)p(s|c), i.e, by solving

p(`|s) = arg max
p(`|s)

∑
c

p(c)
∑
`

p(`|c) log
∑
s

p(`|s)p(s|c), (7)

where p(c) are the observed proportions of low-res classes in the data and p(s|c)
is obtained as the posterior over s for data of label c, as we will discuss in a
moment. First, we derive an EM algorithm for solving the problem in Eq. 7
using auxiliary distributions q`,c(s) to repeatedly bound log

∑
s p(`|s)p(s|c) and

reestimate p(`|s). To derive the E step, we observe that

log
∑
s

p(`|s)p(s|c) = log
∑
s

q`,c(s)
p(`|s)p(s|c)
q`,c(s)

≥
∑
s

q`,c(s) log
p(`|s)p(s|c)
q`,c(s)

.

The bound holds for all distributions q`,c and is made tight for

q`,c(s) ∝ p(`|s)p(s|c). (8)

Optimizing for p(`|s), we get

p(`|s) ∝
∑
c

p(c)p(`|c)q`,c(s). (9)

Coordinate ascent on the ql,c(s) and p(`|s) by iterating (8) and (9) converges to
a local maximum of the optimization criterion.

Therefore, all that is needed for label super-resolution are the distributions
p(s|c) that tell us how often each mixture component is seen within the class c.
Given low-res labeled data, i.e., pairs (xt, ct) and a trained mixture model for
image patches xt, the answer is

p(s|c) ∝
∑
t:ct=c

p(s|xt). (10)

In other words, we go through all patches, look at the posterior of their assign-
ment to prototypes s, and count how many times each prototype was associated
with each of the classes.

The epitomic representation with its parameter sharing has an additional
advantage here. With standard Gaussian mixtures of patches, the level of the
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Fig. 4. Two image patches are shown mapped to a piece of an epitome (left). Below
the source image, we show class labels for 30×30m blocks. Below the epitome we show
a piece of the class embedding p(m,n|c) at a pixel level (Eqn. 11) using the same
color scheme, with colors weighted by the inferred class probabilities. Below the class
embedding we show the piece of the output of the label super-resolution algorithm in
Section 4. We also show the full epitome and its embeddings (right)

super-resolution we can accomplish is defined by the size of the patch x we use
in the analysis, because all of the reasoning is performed on the level of the
patch index s, not at individual pixels. Thus, to get super-resolution at the level
of a single pixel, our mixture model would have to be over individual pixels,
i.e., a simple color clustering model (see the SI for examples). With epitomes,
however, instead of using whole patch statistics, we can assign statistics p(m,n|c)
to individual positions in the epitome,

p(m,n|c) ∝
∑
t

∑
i,j

p((s1, s2) = (m− i, n− j)|xt)[ct = c], (11)

where p(·, ·|xt) is the posterior over positions. This equation represents counting
how many times each pixel in the epitome was mapped to by a patch that was
inside a block of class c, as illustrated in Fig. 4: While the two patches map close
to each other into the epitome, the all-forest patch is unlikely to cover any piece
of the road. Considering all patches in a larger spatial context, the individual
pixels in the epitome can get statistics that differ from their neighbors’. This
allows the inference of high-res labels ` for the entire epitome, shown with its
embedding of low-res classes c and super-resolved high-res labels ` on the right.

In summary, our LSR algorithm first uses the epitome model of K × K
patches to embed class labels on an individual pixel level using Eq. 11. This
then allows us to run the EM algorithm that iterates Eqs. 8 and 9 on positions
m,n associated with the shared parameters in the epitome instead of mixture
components s, using p(m,n|c) in Eq. 11 in place of p(s|c). Once the estimate of
the high-res labels p(`|m,n) is computed for each position in the epitome, we
can predict labels in imagery using Eq. 2. This procedure performs probabilistic
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Fig. 5. Epitomes (total area 2 · 106 pixels) trained on 5 · 109 pixels of South imagery
(left); land cover embeddings (argmax label shown) derived from high-resolution South
ground truth (middle), land cover embeddings derived by epitomic LSR from North
30m-resolution NLCD data (right)

reasoning over the frequencies of repeating patterns in imagery labeled with
low-resolution classes to reason over individual pixels in these patterns.

5 Experiments

5.1 Land cover segmentation and super-resolution

Our first example is the problem of land cover segmentation from aerial imagery.
We work with the data studied by [27], available for 160,000km2 of land in the
Chesapeake Bay watershed (Northeast US):

(1) 1m-resolution 4-band aerial imagery (NAIP) taken in the years 2013-4;
(2) High-resolution (1m) land cover segmentation in four classes (water, for-

est, field/low vegetation, built/impervious) produced by [3];
(3) Low-resolution (30m) land cover labels from the National Land Cover

Database (NLCD) [11].
As in [27], the data is split into South and North regions, comprising the

states of MD, VA, WV, DE (S) and NY and PA (N). Our task is to produce 1m-
resolution land cover maps of the North region, using only the imagery, possibly
the low-res classes, and possibly the high-res labels from just the South region.
The predictions are evaluated against high-res ground truth in the North region.

Despite the massive scale of the data, differences such as imaging conditions
and frequency of occurrence of vegetation patterns make it difficult for neural
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networks trained to predict high-res labels from imagery in the South region
to transfer to North. However, in their study of this problem using data fusion
methods, [27] obtained a large improvement in North performance by multi-task
training: the networks were trained to predict high-res labels with the objectives
of (1) cross-entropy loss against high-res labels in South and (2) super-resolution
loss [18] against the distributions determined by low-res NLCD labels in North
(see the first and third rows of Table 1).

Epitome training. We fit eight 499× 499 epitomes to all available South
imagery. To encourage a diversity of represented land types, for each of the
four high-res labels ` (water, forest, field, built), we trained a self-diversifying

epitome E
(`)
0 on patches of size 11× 11 to 31× 31 containing at least one pixel

labeled with label `. We then trained a model E
(`)
1 on the quarter of such patches

with lowest likelihood under E
(`)
0 and a model E

(`)
2 on the quarter with lowest

likelihood under E
(`)
1 . The first epitome E

(`)
0 was then discarded.5 The final

model is a uniform mixture of the E
(`)
i (i = 1, 2). The µm,n parameters of its

components can be seen in the left column of Fig. 5. (Notice that while the
epitomes in each row were trained on patches containing pixels of a given label
`, other label appear in them as well. For example, we see roads in the forest
epitome (second row), since roads are sometimes found next to trees, and indeed
are poorly modeled by a model of only trees, cf. Fig. 3.)

High-resolution label embedding. We derive high-resolution soft label
embeddings p(`|m,n) from high-res South labels by the following procedure:
for 10 million iterations, we uniformly sample a 31×31 patch of South imagery
xt and associated high-res labels yt and evaluate the posterior over positions
p(s1, s2|xt), then embed the center 11 × 11 patch of labels yt weighted by the
posterior (sped up by sampling; see the SI for details). The label embeddings
p(`|m,n) ∝ zm,n,` are proportional to the sum of these embeddings over all
patches; these quantities estimate the probability that a patch generated by an
epitome window with center near (s1, s2) would generate label ` at the corre-
sponding position. These embeddings are shown in the middle column of Fig. 5.

Low-resolution NLCD embedding. Using the same set of epitomes trained
on South, we derive the posteriors p(m,n|c) given a low-resolution class c: we
sample 11 × 11 patches xt from North with center pixel labeled with low-res
class ct and embed the label ct weighted by the posterior p(s1, s2|xt). By (11),
p(m,n|c) is then proportional to the sum of these embeddings. An example of
the embeddings in one epitome component is shown in Fig. 4.

Epitomic label super-resolution. The joint distribution of high-res and
low-res classes, p(`|c), can be estimated on a small subset of jointly labeled data;
we use the statistics reported by [18]. We apply our LSR algorithm to the low-
res embeddings p(m,n|c), the joint p(c, `), and the known distribution p(c) to
arrive at high-res label probabilities at each epitome position, p(`|m,n). They
are shown in the right column of Fig. 5.

5 E
(`)
2 is trained to model the patches poorly modeled by the self-diversifying E

(`)
1 .

Hence, E
(`)
2 simply has much higher posteriors and more diversity of texture.
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Fig. 6. Self-epitomic LSR on a 1024 × 1024 patch of land (1). The low-res classes (2)
are embedded at locations similar in appearance, yielding (3). The inference procedure
described in Sec. 4 produces (4), which closely resembles the ground truth (5)

Table 1. Performance of various methods on land cover segmentation in the North
region. We report overall accuracy and mean intersection/union (Jaccard) index

Model Label training set Acc. IoU

U-Net [27] HR (S) 59.4% 40.5%
Epitome (S imagery) HR (S) 79.5 59.3

U-Net neural LSR [18,27] HR (S), LR (N) 86.9 62.5

U-Net neural LSR [18] LR (N) 80.1 41.3
2562 self-epitomic LSR LR (N) 85.9 63.3
5122 self-epitomic LSR LR (N) 87.0 65.3

10242 self-epitomic LSR LR (N) 87.8 66.9
20482 self-epitomic LSR LR (N) 88.0 67.8

All-tile epitomic LSR LR (N) 83.9 58.5

We evaluate the two epitome embeddings p(`|m,n), derived from high-res
labels in South or from low-res classes in North, on a sample of 1600km2 of
imagery in the North region in the following fashion: we select 31×31 patches xt

and reconstruct the labels in the center 11× 11 blocks as the posterior-weighted
mean of the p(`|m,n). At the large scale of data, this requires an approximation
by sampling, see the SI for details. The results are shown in the second and last
rows of Table 1.

When the area to be super-resolved is small, we can perform epitomic LSR
using the imagery itself as an epitome. We experiment with small tiles from
North (256 × 256 up to 2048 × 2048 pixels). For a given tile, we initialize an
epitome with the same size as the tile, with uniform prior, mean equal to the
true pixel intensities, and fixed variance σ2 = 0.01. We then embed low-res
NLCD labels from the tile into this epitome just as described above and run the
LSR inference algorithm. The probabilities p(`|m,n) are then the predicted land
cover labels6. An example appears in Fig. 6, and more in the SI. The results of
this self-epitomic LSR, performed on a large evaluation set dissected into tiles
of different sizes, can be seen in Table 1.

Results. From Table 1, we draw the following conclusions:

6 We found it helpful to work with 2× downsampled images and use 7× 7 patches for
embedding, with approximately 0.05|W |2 patches sampled for tiles of size W ×W .
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Epitomes trained only on imagery and high-res labels in South transfer better
to North than U-Nets that use the same data. The U-Nets trained only on
imagery and high-res labels in the South region transfer poorly to North:
patterns associated, for example, with forests in the North are more frequently
associated with fields in South, and the discriminatively trained models couple
the high-frequency patterns in South with their associated land cover labels.
Most surprisingly, even the U-Nets trained on the LR North imagery perform
worse than any of the epitome models trained on the same data.7

There is evidence that the far better transfer performance of the epitomes is
due to generative training. First, it is nearly unsupervised: no labels are seen in
training, except to weakly guide the sampling of patches. Second, diversification
training ensures, for example, that forests resembling those found in North,
while rare, still appear in the epitomes trained on South imagery and receive
somewhat accurate label embeddings. The posterior on those areas of the epito-
mes is then much higher in the North. (In the SI we show the mean posteriors
over epitome positions illustrating this point.)

The self-similarity in images that defines the repetition of patterns in certain
classes is highly local. If we were to study self-similarity in a large region, we
would be bound to find that some imagery patterns that are associated with a
particular high-res label in one area are less so in another. Therefore, the size of
the area on which to perform LSR reasoning is an important design parameter.
If the area is too small, then we may not get enough observations of coarse
classes to unambiguously assign high-res patterns to them: indeed, self-epitomic
LSR accuracy increases with the size of the tile. It is remarkable that we can get
better high-res segmentation results than the state of the art by studying one
512× 512 patch at a time, together with low-res classes for 30× 30 blocks, and
no other training data or high-res labels.

On the other hand, when the area is too large, then the pattern diversity in-
creases and ambiguity may reduce the effectiveness of the method. Furthermore,
when the area is too large, self-epitomic LSR is not computationally practicable
– the imagery must be compressed in an epitome to mine self-similarity. All-
tile epitomic LSR improves over the baseline models although no high-res labels
are seen, while the best-performing U-Nets required high-res labels in South,
low-res classes in North, and imagery from both South and North in training.

5.2 Lymphocyte segmentation in pathology images

Our second example is the task of identifying tumor-infiltrating lymphocytes
(TILs) in pathology imagery. We work with a set of 50000 240 × 240 crops of
0.5µm-resolution H&E-stained tumor imagery [31]. There is no high-res segmen-
tation data available for this task. However, [13] produced a set of 1786 images
centered on single cells, labeled with whether the center cell is a TIL, on which
our methods can be evaluated.
7 We used training settings identical to those of [18]. The training collapsed to a

minimum in which the “water” class was not predicted, but the accuracy would be
lower than that of all-tile epitomic LSR even if all water were predicted correctly.
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Table 2. Performance of various methods on the TIL segmentation task. We report
the area under the ROC curve

Model Label training set AUC

Manual features SVM [36,13] HR 0.713
CNN [13] HR 0.494

CNN with pretraining [13] HR 0.786

U-Net neural LSR [18] LR + color masks 0.783
Non-div. epitomic LSR LR 0.794

Div. epitomic LSR LR 0.801

The best results for this task that used high-resolution supervision required
either a manually tuned feature extraction pipeline and SVM classifier [36,13]
or, in the case of CNNs, a sparse autoencoder pretraining mechanism [13]. More
recently, [18] nearly matched the supervised CNN results using the neural la-
bel super-resolution technique: the only guidance available to the segmentation
model in training was low-resolution estimates of the probability of TIL infiltra-
tion in 100 × 100 regions for the entire dataset derived by [31], as well as weak
pixel-level rules (masking regions below certain thresholds of hematoxylin level).

We address the same problem as [18], using the low-res probability maps as
the only supervision in epitomic LSR:

Epitome training. We train 299×299 epitomes on patches of size 11×11 to
31×31 intersecting the center pixels of the images to be segmented. The resulting
models trained with and without self-diversification are shown in Fig. 7.

Low-resolution embedding. Following [18], we define 10 classes c, for each
range of density estimates [0.1 · n, 0.1 · (n+ 1)]. We find the posteriors p(m,n|c)
by embedding 1 million 11× 11 patches from the entire dataset.

Epitomic label super-resolution. We estimate the mean TIL densities in
each probability range, p(`|c) and set a uniform prior p(c). We then produce the
probabilities of TIL presence per position p(`|m,n) by the LSR algorithm.

We then evaluate our models on the data for which high-res labels exist by
sampling 11× 11 patches x containing the center pixel – 100 for each test image
– and computing the mean probability of TIL presence

∑
s p(`|s)p(s|x) as the

final prediction score. We obtained better results when we instead averaged the
probability of TIL presence anywhere in an embedded patch in the epitome, that
is, convolved p(`|s) with a 11× 11 uniform filter before computing this sum.

Results. As summarized in Table 2, our epitomic LSR outperforms all pre-
vious methods, including both the supervised models and the neural LSR, with
self-diversifying epitomes providing the greatest improvement. The results sug-
gest that TIL identification is a highly local problem. Deep CNNs, with their
large receptive fields, require hand-engineered features or unsupervised pretrain-
ing to reach even comparable performance. In addition, epitomes are entirely
unsupervised and thus amenable to adaptation to new tasks, such as classifying
other types of cells: given coarse label data, we may simply embed it into the
pretrained epitomes and perform LSR.
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Fig. 7. Epitomes trained on tumor imagery and the embedding of the tumor-infiltrating
lymphocyte label. The model on the right was trained with self-diversification

6 Conclusion

Motivated by the observation that deep convolutional networks usually have a
small effective receptive field, we revisit simple patch mixture models, in particu-
lar, epitomes. As generative models that allow addition of latent variables, these
approaches have several advantages. They are interpretable: an epitome looks
like the imagery on which it was trained (Fig. 2), and examining the posteriors
over epitome positions is akin to understanding weights for many neurons at
once. The desired invariances can be directly modeled with additional hidden
variables, just as [7] modeled illumination. They can be combined with other sta-
tistical procedures, as we show with our novel label super-resolution formulation
(Sec. 4). They can be pretrained on a large amount of unlabeled data so that a
small number of labeled points are needed to train prediction models, and they
can be a base of hierarchical or pyramidal models that reason over long ranges,
e.g., [4,26,33,6,16]. Using epitome-derived features in tasks that require long-
range reasoning, such as common benchmarks for segmentation or classification
of large images, is an interesting subject for future work.

Just as deep neural networks suffered from the vanishing gradient problem for
years, before such innovations as stagewise pretraining [10], dropout [32], and the
recognition of the numerical advantages of ReLU units [19], epitomic representa-
tions had suffered from their own numerical problems stemming from the large
dynamic range of the posterior distributions. As a remedy, we designed a new
large-scale learning algorithm that allowed us to run experiments on hundreds
of billions of pixels. We showed that simply through mining patch self-similarity,
epitomic representations outperform the neural state of the art in domain trans-
fer and label super-resolution in two important application domains.

We direct the reader to the SI for more examples, code, results on another
competition dataset (in which epitomes were the basis for the winning method
[28]), and discussion on future research.

Acknowledgments: The authors thank Caleb Robinson for valuable help with
experiments [28] and the reviewers for comments on earlier versions of the paper.
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