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A  Model Architectures

For both ¢cMNIST and CelebA we parameterise the coupling layers with the
same convolutional architecture as in [11], consisting of 3 convolutional layers
each with 512 filters of, in order, sizes 3 x 3, 1 x 1, and 3 x 3. Following [1], we
Xavier initialise all but the last convolutional layer of the s and ¢ sub-networks
which itself is zero-initialised so that the coupling layers begin by performing an
identity transform. We used a Glow-like architecture [11] (affine coupling layers
together with checkerboard reshaping and invertible 1 x 1 convolutions) for the
convolutional INNs. Table 1 summarises the INN architectures used for each
dataset.

For the image datasets each level of the cVAE encoder consists of two gated
convolutional layers [16] with ReLU activation. At each subsequent level, the
number of filters is doubled, starting with an initial value 32 and 64 in the case
of CelebA and cMNIST respectively. In the case of the Adult dataset, we use
an encoder with one fully-connected hidden layer of width 35, followed by SeLLU
activation [12]. For both ¢cMNIST and CelebA, we downsample to a feature map
with spatial dimensions 8 x 8, but with 3 and 16 channels respectively. For the
Adult dataset, the encoding is a vector of size 35. The output layer specifies
both the parameters (mean and variance) of the representation’s distribution.
In all cases the KL-divergence is computed with respect to a standard isotropic
Gaussian prior. Details of the encoder architectures can be found in Table 2. The
loss pre-factors were sampled from a logarithmic scale; without proper balancing
the networks can exhibit instability, especially during the early stages of training.

Table 1. INN architecture used for each dataset.

Dataset Levels Level depth  Coupling channels Input to discriminator(s)
UCI Adult 1 1 35 Null-samples
cMNIST 3 16 512 Encodings

CelebA 3 32 512 Encodings
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Table 2. cVAE encoder architecture used for each dataset. The decoder architecture
in each case mirrors that of its encoder counterpart through use of transposed convolu-
tions. For the adult dataset we apply 2 and cross-entropy losses to the reconstructions
of the continuous features and discrete features, respectively.

Dataset Initial channels Levels B Recon. loss
UCIT Adult 35 - 0 {2 + CE
cMNIST 32 4 0.01 123

CelebA 32 5 1 2

B Additional results

B.1 Multinomial sensitive attributes
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Fig. 1. For hair color, s takes on the values Blond, Brown and Black. For age+gender,
s takes on the values Young/Female, Young/Male, Old/Female and Old/Male.

In addition to binary sensitive attribute s, we also investigate multinomial s in
the CelebA dataset. First, we do experiments with hair color, where s has three
possible values: blond hair, brown hair and black hair. The other experiment is
with a combination of age and gender, where s has four possible values, each
of which is a combination of a gender and an age: Young/Female, Young/Male,
Old/Female and Old/Male. To evaluate the fairness for multinomial s, we use the
Hirschfeld-Gebelein-Rényi Maximum Correlation Coefficient (HGR) [15] that is
defined on the domain [0, 1] and gives HGR(Y,S) =0 iff Y L S and 1 if there is
a deterministic function to map between them. Results can be found in Figure 1.

B.2 Investigation into the size of z

In the cFlow model, the size of z;, is an important hyperparameter which can
affect the result significantly. Here we investigate the sensitivity of the model to
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Table 3. Results on the CelebA dataset with different sizes of zp.

|28 EAVH Accuracy DP diff
1 0.0082% 0.60 0.63
3 0.0245% 0.60 0.63
5 0.0410% 0.84 0.12
10 0.0820% 0.84 0.12
30 0.2442% 0.74 0.23
50 0.4070% 0.68 0.27

the choice of z; size. Table 3 shows accuracy and fairness (as measured by DP
diff ) for different sizes of z,. The results show that both too large and too small
zp is detrimental. However, they also show that the model is not overly sensitive
to this parameter: both sizes 5 and 10 achieve nearly identical results.

B.3 Additional fairness metrics

Table 4. Additional fairness metrics for the experiments on the CelebA dataset (Fig.
5 from the main text). TPR diff. refers to the difference in true positive rate. TNR
diff. refers to the difference in true negative rate. Left: n = 0. Right: n = 1.

Method Accuracy DP diff TPR diff TNR diff Method Accuracy DP diff TPR diff TNR diff

cFlow 0.83 0.10 0.15 0.25  cFlow 0.82 0.33 0.28 0.21
cVAE 0.82  0.05 0.09 0.18 cVAE 0.81 0.16 0.10 0.05
CNN 0.61 0.63 0.70 0.64 CNN 0.67  0.75 0.66 0.76
Ln2L[10] 0.52  0.00 0.00 0.00 Ln2L[10] 0.51  0.08 0.06 0.09

In addition to DP diff, we report here the result from other fairness measures.
These results are from the same setup as those reported in the main paper. We
report the difference in true positive rates (TPR) between the two groups (male
and female), which corresponds to a measure of Equality of Opportunity, and
the difference in true negative rates (TNR) between the two groups.

C Optimisation Details

All our models were trained using the RAdam optimiser [13] with learning rates
3 x 107* and 1 x 1072 for the encoder/discriminator pair and classifier respec-
tively. A batch size of 128 was used for all experiments.

We now detail the optimisation settings, including the choice of adversary,
specific to each dataset. Details of the cVAE and cFlow architectures can be
found in Table 2 and Table 1, respectively.
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C.1 UCI Adult

For this dataset our experiment benefited from using null-samples as inputs to
the adversary of the cFlow model. Unlike for the image datasets, we found a
single adversary to be sufficient. This was realised as a multi-layer perceptron
(MLP) with one hidden layer, 256 units wide. The INN performs a bijection
of the form f : R™ — R™. However, the adult dataset is composed of mostly
discrete (binary/categorical) features. To achieve good performance, we found
it necessary to first pre-process the inputs with a pretrained autoencoder, using
its encodings as the input to the cFlow model, as well as to the adversary. The
learned representations were evaluated with a logistic regression model from
scikit-learn [17], using the standard settings. All baseline models were trained
for 200 epochs. The Ln2L [10] and MLP baselines share the architecture of the
c¢VAE’s encoder, only with a classification layer affixed.

C.2 Coloured MNIST

Each level of the architecture used for the downstream classifier and naive base-
line alike consists of two convolutional layers, each with kernel size 3 and followed
by Batch Norm [8] and ReLU activation. For the Ln2L baseline, we use an a
setup identical to that described in [10]. Each level has twice the number of
filters in its convolutional layer and half the spatial input dimensions as the last.
The original input is downsampled to the point of the output being reduced to
a vector, to which a fully-connected classification layer is applied.

To allow for an additional level in the INN (the downsampling operations
requiring the number of spatial dimensions to be even), the data was zero-padded
to a size of 32 x 32. The ¢VAE and cFlow models were trained for 50 and 200
epochs respectively, using {5 reconstruction loss for the former. The downstream
classifier and all baselines were trained for 40 epochs. For both of our models, an
ensemble of 5 adversaries was applied to the encodings, with each member taking
the form of a fully-connected ResNet, 2 blocks in depth, with SeLLU activation
[12]. The adversaries were reinitialised independently with probability 0.2 at the
end of each epoch. While the adversaries could equally well take null-samples as
input, as done for the Adult dataset, doing so requires the performing of both
forward and inverse passes each iteration, which, for the convolutional INNs of
the depths we require for the image datasets, introduces a large computational
overhead, while also showing to be the less stable of the two approaches in our
preliminary experiments.

C.3 CelebA

The downstream classifier and naive baseline take the same form as described
above for cMNIST, but with an additional level with 32 filters in each of its
convolutions at the top of the network. For this dataset we adapt the Ln2L
model by simply considering it as an augmentation the naive baseline’s objective
function, with the entropy loss applied to the output of the final convolutional
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layer. These models were again trained for 40 epochs, which we found to be
sufficient for convergence for the tasks in question. The cVAE and cFlow models
were respectively trained for 100 epochs and 30 epochs, using ¢; reconstruction
loss for the former. Compared with cMNIST, the size of the adversarial ensemble
was increased to 10, the reinitialisation probability to 0.33, but no changes were
made to the architectures of its members.

C.4 The Pitfalls of Adversarial Training

Adversarial learning has become one of the go-to methods for enforcing invari-
ance in fair representation learning [7] with MMD [14] and HSIC [18], being
popular non-parametric alternatives. [7] proposed adversarial learning for do-
main adaptation problems, with [5] soon after making this and learning a rep-
resentation promoting demographic parity. The adversarial approach carries the
benefits of being both efficient and scalable to multi-class categorical variables,
which many sensitive attributes are in practice, whereas the non-parametric
methods only permit pair-wise comparison.

However, when realised as a neural network, the adversary is both sensitive
to the values of the inputs as well as their ordering (though exchangeable ar-
chitectures, such as [20] do exist, but which sacrifice expressiveness). Thus, it
can happen that the representation learner optimises for the surrogate objective
of eluding the adversary rather than the real objective of expelling s-related
information. Moreover, the non-stationarity of the dynamics can lead to cyclic-
equilibria, irrespective of the capacity of the adversary.

When working with a partitioned latent space, this behaviour can be averted
by instead encouraging z, to be predictive of s, acting as a kind of information
“sink “, as in [9]. However, this does not have the guarantee of making z,, invariant
to s - there are often many indicators for s, not all of which are needed to
predict the label perfectly. Training the network to convergence before taking
each gradient step with the representation learner is one way one to attempt to
tame the unstable minimax dynamics [6]. However, this does not prevent the
emergence of the aforementioned cyclicity.

We try to mitigate the aforementioned degeneracies by maintaining a diverse
set of adversaries, as has shown to be effective for GAN training [4], and by
decorrelating the individual trajectories by intermittently re-initialising them
with some small probability following each iteration.

C.5 Tuning the Partition Sizes.

There are several ways of ensuring that z, is of sufficient size to capture all s
dependencies, while at time is minimised such as that information unrelated to s
is maximally preserved. We adopt the straightforward search strategy of, starting
from some initial guess, calibrating the value according to accuracy attained by
a classifier trained to predict s from z, on a held-out subset of the representative
set, which is measured whenever the adversarial loss plateaus. If the accuracy
is above chance level then that suggests the size of the z, partition, |zp|, needs
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to be increased to accommodate more information about s. If the accuracy is
found to be at chance level then are two possibilities: 1) |z3| is already optimal;
2) |z| is large enough that it fully contains both information s as well as that
of a portion of y. If the former is true, then perturbations around the current
value allow us to confirm this; if the latter is true then decreasing the value was
indeed the correct decision.

D Synthesising Coloured MNIST

We use a colourised version of MNIST as a controlled setting investigate learning
from biased data in the image domain. In the biased training set, each digit is as-
signed a unique mean RGB value parameterising the multivariate Gaussian from
which its colour is drawn. These values were chosen to be maximally dispersed
across the 8-bit colour spectrum and are listed in Table 5. By adjusting the stan-
dard deviation, o, of the Gaussians, we adjust the degree of bias in the dataset.
When o = 0, there is a perfect and noiseless correspondence between colour and
digit class which a classifier can exploit. The classifier can favour the learning
of the low-level spurious feature over those higher level features constituent of
the digit’s class. As the standard deviation increases, the sampled RGB values
are permitted to drift further from the mean, leading to overlap between the
samples of the colour distributions and reducing their reliability as indicators
of the digit class. In the test and representative sets alike, however, the colour
of each sample is sampled from one of the 10 distributions randomly, such that
colour can no longer be leveraged as a shortcut to predicting the digit’s class.

E Stabilising the Coupling layers

Heuristically, we found that applying an additional nonlinear function to the
scale coefficient of the form

s=o(f(u))+0.5

greatly improved the stability of the affine coupling layers. Here, ¢ is the logistic
function, which we shift to be centred on 1 so that zero-initialising f results in
the coupling layers initially performing an identity-mapping.

F Qualitative Results for CelebA

Learning a representation alongside its inverse mapping, be it approximate or
exact, enables us to probe the behaviour of the model that produced it, and any
biases it may have implicitly captured due to entanglement between the sensitive
attribute and other attributes present in the data. We highlight a few examples
of such biases manifesting in the cFlow model’s CelebA null-samples in Fig. 3. In
these cases, makeup and hair style have been inadvertently modified during the
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Table 5. Mean RGB values (in practice normalised to [0,1]) parameterising the Mul-
tivariate Gaussian distributions from which each digit’s colour is sampled in the biased
(training) dataset. In the representative and test sets, the colour of each digit is sampled
from one of the specified Gaussian distributions at random.

Digit Colour Name Mean RGB
0 Cyan (0, 255, 255)
1 Blue (0, 0, 255)
2 Magenta (255, 0, 255)
3 Green (0, 128, 0)
4 Lime (0, 255, 0)
5 Maroon (128, 0, 0)
6 Navy (0, 0, 128)
7 Purple (128 0, 128)
8 Red (255, 0, 0)
9 Yellow (255, 255, 0)

null-sampling due to the tight correlation between these two attributes and the
sensitive attribute, gender, to which we had aimed to make our representations
invariant. Additionally, in all highlighted images, the skin tone has changed: from
male to gender-neutral, the skin becomes lighter and from female to gender-
neutral, the skin becomes darker; in the change from male to gender-neutral,
glasses are also often removed. As the model cannot know that the label is
meant to only refer to gender, and not to these other (correlated) attributes,
the links cannot be disentangled by the model. However, the advantage of our
method is that we can at least identify such biases due to the interpretability
that comes with the representations being in the data domain.

G Transfer Learning

For our method, we require a representative set which follows the same distri-
bution as that observed during deployment. Such a representative set might not
always be available. In such a scenario, we can resort to using a set that is merely
similar to that in the deployment setting and leverage transfer learning.

One of the advantages of using an invertible architecture over conventional,
surjective ones that we stressed in the main text is its losslessness. Since the
transformations are necessarily bijective, the information contained in the input
can never be destroyed, only redistributed. This makes such models particularly
well-suited, in our minds, for transferring learned invariances: even if the input
is unfamiliar, no information should be lost when trying to transform it. This
works as long as only the information about s ends up in the z, partition. If s
takes a form similar to that which we pre-trained on, and can thus be correctly
partitioned in the latent space, by complement we have the information about
—s stored in the z, partition, without presupposing similarity to the —s observed
during pre-training.
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(a) Original images. (b) & null-samples gener-  (c) @ null-samples gener-
ated by the cVAE model. ated by the cVAE model.

Fig. 2. CelebA null-samples learned by our cVAE model, with gender as the sensi-
tive attribute. (a) The original, untransformed samples from the CelebA dataset (b)
Reconstructions using only information unrelated to s. (¢) Reconstruction using only
information related to —s. The model learns to disentangle gender from the non-gender
related information. Compared with the cFlow model, there is a severe degradation in
reconstruction quality due to the model trying to simultaneously satisfy conflicting
objectives.

Transferring from mixed-NIST to MNIST. We test our hypothesis by
comparing the performance of the cFlow and ¢VAE models pre-trained on a
mixture of datasets belonging to the NIST family, colourised in the same way
as cMNIST, while the downstream train and test sets remain the same as in the
original cMNIST experiments. Specifically, we create this representative set by
sampling 24,000 images (to match the cardinality of the original representative
set) from EMNIST (letters only) [3], FashionMNIST [19] and KMNIST [2], in
equal proportion. We use the same architectures for the cVAE and cFlow models
as we did in the non-transfer learning setting. In terms of hyperparameters, the
only change made was to the KL-divergence’s pre-factor, finding it necessary to
increase it to 1 to guarantee stability.

The results for the range of o values are shown in Fig. 4a. Unsurprisingly, the
performance of both models suffers when the representative and test sets do not
completely correspond. However, the cFlow model consistently outperforms the
c¢VAE model, with the gap increasing as the bias decreases. Although some colour
information is retained in the cFlow null-samples, symptomatic of an imperfect



4

-

§ e
' B

¢

.
-
-

¥

(a) Original images. (b) @, null-samples gener-  (¢) xp null-samples gener-
ated by the cFlow model. ated by the cFlow model.

Fig. 3. CelebA null-samples learned by our cFlow model, with gender as the sensi-
tive attribute. (a) The original, untransformed samples from the CelebA dataset (b)
Reconstructions using only information unrelated to s. (¢) Reconstruction using only
information related to —s. The model learns to disentangle gender from the non-gender
related information. Attributes such as makeup and hair length are also often modified
in the process (prime examples framed with red) due to inherent correlations between
them and the sensitive attribute, which the interpretability of our representations al-
lows us to easily identify.

transfer, semantic information is almost entirely retained as well. Conversely,
the cVAE is very much flawed in this respect; as can be seen in the bottom
row of Fig. 4a, for some samples, semantic information is degraded to the point
of the digit’s identity being altered. As a result of this semantic degradation,
the performance of the downstream classifier is curtailed by the noisiness of the
digit’s identity and is relatively unchanging across o-values, in contrast to the
monotonic improvement of that achieved on the cFlow null-samples.
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(a) Performance on cMNIST test data after pre-
training on the mixed NIST dataset.

(b) Test data input to the (c) x, null-samples gener-
cFlow model. ated by the cFlow model.

(d) Test data input to the (e) x, null-samples gener-
cVAE model. ated by the cVAE model.

Fig. 4. Results for the transfer learning experiments in which the representative set
consists of colourised samples from EMNIST, KMNIST, and FashionMNIST, while
the downstream dataset remains as cMNIST. (a) Quantitative results for different o-
values. (b-c) Qualitative results for the cFlow model. (d-e) Qualitative results for the
cVAE model. The qualitative results provide comparisons of the images before (left)
and after (right) null-sampling. Note that for some of the cVAE samples, the clarity of
the digits has clearly changed due to null-sampling, serving as an explanation for the
non-increasing downstream performance.
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