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Abstract. Recovering the scene depth from a single image is an ill-posed
problem that requires additional priors, often referred to as monocu-
lar depth cues, to disambiguate different 3D interpretations. In recent
works, those priors have been learned in an end-to-end manner from
large datasets by using deep neural networks. In this paper, we propose
guiding depth estimation to favor planar structures that are ubiquitous
especially in indoor environments. This is achieved by incorporating a
non-local coplanarity constraint to the network with a novel attention
mechanism called depth-attention volume (DAV). Experiments on two
popular indoor datasets, namely NYU-Depth-v2 and ScanNet, show that
our method achieves state-of-the-art depth estimation results while using
only a fraction of the number of parameters needed by the competing
methods. Code is available at: https://github.com/HuynhLam/DAV

Keywords: Monocular depth · Attention mechanism · Depth estima-
tion.

1 Introduction

Depth estimation is a fundamental problem in computer vision due to its wide va-
riety of applications including 3D modeling, augmented reality and autonomous
vehicles. Conventionally it has been tackled by using stereo and structure from
motion techniques based on multiple view geometry [11,32]. In recent years, the
advances in deep learning have made monocular depth estimation a compelling
alternative [2,5,8,10,13,19,20,24,26,27,28,40,44].

In learning-based monocular depth estimation, the basic idea is simply to
train a model to predict a depth map for a given input image, and to hope
that the model can learn those monocular cues that enable inferring the depth
directly from the pixel values. This kind of a brute-force approach requires a
huge amount of training data and leads to large network architectures. It has
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been a common practice to use a deep encoder such as VGG-16 [5], ResNet-50
[19,26,27], ResNet-101 [8], ResNext-101 [40], SeNet-154 [2,13] followed by some
upsampling and fusion strategy including the up-projection module [19], multi-
scale feature fusion [13] or adaptive dense feature fusion [2] that all result in
bulky networks with a large number of parameters. Because high computational
complexity and memory requirements limit the use of these networks in practical
applications, also fast monocular depth estimation models such as FastDepth [36]
have been proposed, but their speed increase comes with the price of reduced
accuracy. Moreover, despite of good results achieved with standard benchmark
datasets such as NYU-Depth-v2, it still remains questionable if these networks
are able to generalize well to unseen scenes and poses that are not present in the
training data.

Instead of trying to learn all the monocular cues blindly from the data, in
this paper, we investigate an approach where the learning is guided by exploit-
ing a simple coplanarity constraint for scene points that are located on the same
planar surfaces. Coplanarity is an important constraint especially in indoor en-
vironments that are composed of several non-parallel planar surfaces such as
walls, floor, ceiling, tables, etc. We introduce a concept of depth-attention vol-
ume (DAV) to aggregate spatial information non-locally from those coplanar
structures. We use both fronto-parallel and non-fronto-parallel constraints to
learn the DAV in an end-to-end manner.

It should be noticed that plane approximations have already been used pre-
viously in monocular depth estimation, for example, in PlaneNet [24], where
3D planes were explicitly segmented and estimated from the images, but in
contrast to these works, we embed the coplanarity constraint implicitly to the
model by using the DAV, which is a building block inspired by the non-local
neural networks [35]. Unlike the convolutional operation, it operates non-locally
and produces a weighted average of the features across the whole image paying
attention on planar structures, and favoring depth values that are originating
from those planes. By using the DAV we not only incorporate an efficient and
important geometric constraint to the model, but also enable shrinking the size
of the network considerably without sacrificing the accuracy. To summarize, our
key contributions include:

– A novel attention mechanism called depth-attention volume that captures
non-local depth dependencies between coplanar points.

– An end-to-end neural network architecture that implicitly learns to recognize
planar structures from the scene and use them as priors in monocular depth
estimation.

– State-of-the-art depth estimation results on NYU-Depth-v2 and ScanNet
datasets with a model that uses considerably less parameters than previous
methods achieving similar performance.
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Fig. 1. Visualization of depth-attention maps. The input image with four query points
is shown on the left. The corresponding ground-truth and predicted depth maps are in
the middle. Because of the coplanarity prior the depth of the textureless white wall can
be accurately recovered. The ground-truth and predicted depth-attention maps for the
query points are on the right. Warm colour indicates strong depth prediction ability
for the query point.

2 Related work

Learning-based monocular depth estimation: Saxena et al. [29] is one of
the first studies using Markov Random Field (MRF) to predict depth from a
single image. Later on Eigen et al. proposed method to estimate depth using
multi-scale deep network [6] and a multi-task learning model [5]. Since then,
various studies using deep neural networks (DNNs) have been introduced. Laina
et al. [19] employed a fully convolutional residual network (FCRN) as the encoder
and four up-projection modules as the decoder to up-sample the depth map res-
olution. Fu et al. [8] successfully formulated monocular depth estimation as an
ordinal regression problem. Qi et al. [26] proposed a network called GeoNet that
investigate the duality between depth map and surface normal. The DNNs from
Ren et al. [28] classified input images as indoor or outdoor before estimating the
depth values. Lee et al. [20] suggested an idea of using a DNNs to estimate the
relative depth between pairs of pixels. The proposed method from Jiao et al. [15]
incorporated object segmentation into the training to increase depth estimation
accuracy. Hu et al. [13] introduced an architecture that included an encoder, a
decoder, a multi-scale feature fusion (MFF), and a new loss term for preserving
edge structures. Inspired by [13], Chen et al. [2] used adaptive dense feature
fusion (ADFF), and residual pyramid decoder in their network. The study by
Facil et al. [7] proposed a DNNs that aims to learn calibration-aware patterns to
improve the generalization capabilities of monocular depth prediction. Recently,
Ramamonjisoa et al. [27] presented SharpNet that exploits occluding contours
as an additional driving factor to optimize the depth estimation model besides
the depth and the surface normal.

Plane-based approaches: Liu et al. [24] was the first study to consider using
the planar constraint to predict depth maps from single images. Later the same
authors published an incremental study to refine the quality of plane segmenta-
tion [23]. Yin et al. [40] formed a geometric constraint called virtual normal to
predict the depth map as well as a point cloud and surface normals. Note that
methods by Liu et al. focused explicitly on estimating a set of plane parameters
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Fig. 2. Depth-attention volume (DAV) is a collection of depth-attention maps (Eq. 3,
Figure 1) obtained using each image location as a query point at a time. Therefore,
the DAV for an image of size 8H × 8W is a 4D tensor of size H ×W ×H ×W .

and planar segmentation masks, while Yin et al. calculated a large virtual plane
to train a DNNs that is robust to noise in the ground truth depth.

Attention mechanism: Attention was initially used in machine translation and
it was brought to computer vision by Xu et al. [39]. Since then, attention mech-
anism has evolved and branched into channel-wise attention [12,33], spatial-wise
attention [1,35] and mix attention [34] in order to tackle object detection and
image classification problems. Some recent monocular depth estimation studies
also followed this line of work. Xu et al. [38] proposed multi-scale spatial-wise
attention to guide a Conditional Random Fields (CRFs) model. Li et al. [22]
proposed a discriminative depth estimation model using channel-wise attention.
Kong et al. [18] embedded a discrete binary mask, namely the pixel-wise atten-
tional gating unit, into a residual block to modulate learned features.

In this paper, we propose using depth-attention volume (DAV) to encode
non-local geometric dependencies. It can be seen as an attention mechanism that
guides depth estimation to favor depth values originating from planar surfaces
that are ubiquitous in man-made scenes. In contrast to previous plane-based
approaches, we do not train the network to segment the planes explicitly, but
instead, we let the network to learn the coplanarity constraint implicitly.

3 Proposed Method

This section describes the proposed depth estimation method. The first subsec-
tion defines the depth-attention volume and the following two subsections outline
the network architecture and the loss functions. Further details are provided in
the supplementary material.

3.1 Depth-attention volume

Given two image points P0 = (x0, y0) and P1 = (x1, y1) with corresponding
depth values d0 and d1, we define that the depth-attention A(P0, P1) is the
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ability of P1 to predict the depth of P0. This ability is quantified as a confidence
in the range [0, 1] so that 0 means no ability and 1 represents maximum certainty
of being a good predictor.

To estimate A we make the assumption that the scene contains multiple non-
parallel planes, which is common particularly in indoor environments. The depth
values of all points belonging to the same plane are linearly dependent. Hence,
they are good depth predictors of each other. To exploit this property, we detect
N prominent planes from the training images and parameterize each plane with
S = (nx, ny, nd, c), where (nx, ny, nd) is the plane normal and c is the orthogonal
distance from the origin. We construct the first-order depth-attention volumes
for all N planes:

Ai(P0, P1) = 1− σ(|Si ·X0|+ |Si ·X1|), i = 1, . . . , N (1)

where σ is the sigmoid function, X0 = (x0, y0, d0, 1) and X1 = (x1, y1, d1, 1).
These volumes are represented as 4-D tensors of size H ×W ×H ×W , where H
and W are the vertical and horizontal sizes, respectively. In practice, one needs
to subsample the volumes to keep the memory requirements reasonable. In all
our experiments, we used a subsampling factor of 8.

In addition, we assume that all points located on the same fronto-parallel
plane are good depth predictors of each other, because they share the same
depth value. We use the ground-truth depths, and create a zero-order depth-
attention volume (DAV) for every training image

A0(P0, P1) = 1− σ(|d0 − d1|). (2)

Finally, we combine these volumes by taking the maximum attention value
of all volumes:

AD(P0, P1) = max(Ai(P0, P1)), i = 0, . . . , N (3)

It is easy to observe that DAV is a symmetric function, i.e. AD(P0, P1) =
AD(P1, P0).

If we consider P0 to be a query point in the image as illustrated in Figure 1
(left), we can visualize the DAV as a two-dimensional attention map shown in
Figure 1 (right). Figure 2 provides an example of a depth-attention volume
generated from the ground truth depth map.

3.2 Network Architecture

Figure 3 gives an overview of our model that includes three main modules: an
encoder, a non-local depth-attention module, and a decoder.

We opt to use a simplified dilated residual networks (DRN) with 22 layers
(DRN-D-22) [41,42] as our encoder, which extracts high-resolution features and
downsamples the input image only 8 times. The DRN-D-22 is a variation of
DRN that completely removes max-pooling layers as well as smoothly distributes
the dilation to minimize the gridding artifacts. This is crucial to our network,
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because to make training feasible, the non-local depth-attention module needs to
operate on a sub-sampled feature space. However, to capture meaningful spatial
relationships this feature space also needs to be large enough.

The decoder part of our network contains a straightforward up-scaling scheme
that increases the spatial dimension from 29×38 to 57×76 and then to 114×152.
Upsampling consists of two bilinear interpolation layers followed by convolutional
layers with a kernel size of 3× 3. Two convolutional layers with a kernel size of
5× 5 are then used to estimate the final depth map.

The non-local depth-attention module is located between the encoder and
the decoder. It maps the input features X to the output features Y of the same
size. The primary purpose of the module is to add the non-local information
embedded in the depth-attention volume (DAV) to Y, but it is also used to
predict and learn the DAV based on the ground-truth data. The structure of the
module is presented in Figure 4.

We implement the DAV-predictor by first transforming X into green and blue
embeddings using 1×1 convolution. We exploit the symmetry of DAV, and maxi-
mize the correlation between these two spaces by applying cross-denormalization
on both green and blue embeddings. Cross-denormalization is a conditional nor-
malization technique [4] that is used to learn an affine transformation from the
data. Specifically, the green embedding is first normalized to zero mean and unit
standard deviation using batch-normalization (BN). Then, the blue embedding
is convolved to create two tensors that are multiplied and added the normalized
features from the green branch, and vise versa. The denormalized representations
are then activated with ReLUs and transformed by another 1 × 1 convolution
before multiplying with each others. Finally, the DAV is activated using the sig-
moid function to ensure that the output values are in range [0, 1]. We empirically
verified that applying cross-modulation in two embedding spaces is superior than
using a single embedding with double the number of features.

Furthermore, X is fed into the orange branch and multiplied with the esti-
mated DAV to amplify the effect of the input features. Finally, we add a residual
connection (red) to prevent the vanishing gradient problem when training our
network.

Non-local
depth-attention

module
Decoder

attentionL
depthL

Image Depth

Encoder

Fig. 3. The pipeline of our proposed network. An image is passed through the encoder,
then the non-local depth-attention module, and finally the decoder to produce the
estimated depth map. The model is trained using Lattention and Ldepth losses, which
are described in Subsection 3.3.
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3.3 Loss Function

As illustrated in Figure 3 our loss function consists of two main components:
attention loss and depth loss.
Attention loss: The primary goal of this term is to minimize the error between
the estimated (output of the DAV-predictor in Figure 4) and the ground-truth
DAV. The Lmae is defined as the mean absolute error between the predicted and
the ground truth depth-attention values:

Lmae =
1

(HW )2

∑
i

∑
j

|Âi,j −Ai,j | (4)

where Âi,j ≡ ÂD(Pi, Pj) and Ai,j ≡ AD(Pi, Pj) are the predicted and ground
truth depth-attention volumes.

In addition, we minimize the angle between the predicted and the ground
truth depth-attention maps for all query positions i and j:

Lang =
1

HW

∑
i

∣∣∣∣∣∣1−
∑

j Âi,jAi,j√∑
j Â

2
i,j

∑
j A

2
i,j

∣∣∣∣∣∣+
∑
j

∣∣∣∣∣∣1−
∑

i Âi,jAi,j√∑
i Â

2
i,j

∑
iA

2
i,j

∣∣∣∣∣∣


(5)
The full attention loss is defined by

Lattention = Lmae + λLang (6)

where λ ∈ R+ is the weight loss coefficient.

Depth loss: Moreover, we define depth loss as a combination of three terms
Llog, Lgrad and Lnorm that were originally introduced in [13]. The Llog loss is a
variation of the L1 norm that is calculated in the logarithm space and defined
as

Llog =
1

M

M∑
i=1

F (|d̂i − di|) (7)
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where M is the number of valid depth values, di is the ground truth depth, d̂i is
the predicted depth, and F (x) = log(x+α) with α set to 0.5 in our experiments.

Another loss term is Lgrad, which is used to penalize sudden changes of edge
structures in both x and y directions. It is defined by

Lgrad =
1

M

M∑
i=1

F (∆x(|d̂i − di|)) + F (∆y(|d̂i − di|)) (8)

where ∆x and ∆y is the gradient of the error with respect to x and y. Finally,
we use Lnorm to emphasize small details by minimizing the angle between the
ground truth (ni) and the predicted (n̂i) surface normals:

Lnorm =
1

M

M∑
i=1

|1− n̂i · ni|. (9)

where surface normals are estimated as n ≡ (−∇x(d), −∇y(d), 1) using Sobel
filter, like [13]. The depth loss is then defined by

Ldepth = Llog + µLgrad + θLnorm (10)

where µ, θ ∈ R+ are weight loss coefficients. Our full loss is

L = Lattention + γLdepth (11)

where γ ∈ R+ is a weight loss coefficient. Subsection 4.2 describes in detail how
the network is trained using these loss functions.

4 Experiments

In this section, we evaluate the performance of the proposed method by com-
paring it against several baselines. We start by introducing datasets, evaluation
metrics, and implementation details. The last three subsections contain the com-
parison to the state-of-the-art, ablation studies, and a cross-dataset evaluation.
Further results are available in the supplementary material.

4.1 Datasets and evaluation metrics

Datasets: We assess the proposed method using NYU-Depth-v2 [30] and Scan-
Net [3] datasets. NYU-Depth-v2 contains ∼ 120K RGB-D images obtained from
464 indoor scenes. From the entire dataset, we use 50K images for training and
the official test set of 654 images for evaluation. ScanNet dataset comprises of
2.5 million RGB-D images acquired from 1517 scenes. For this dataset, we use
the training subset of ∼ 20K images provided by the Robust Vision Challenge
2018 [9] (ROB). Unfortunately, the ROB test set is not available, so we report
the results on the Scannet official test set of 5310 images instead. SUN-RGBD
is yet another indoor dataset consisting of ∼ 10K images collected with four
different sensors. We do not use it for training, but only for cross-evaluating the
pre-trained models on the test set of 5050 images.
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Evaluation metrics: The performance is assessed using the standard met-
rics provided for each dataset. That is, for NYU-Depth-v2 [30] we calculate the
mean absolute relative error (REL), root mean square error (RMS), and thresh-
olded accuracy (δi). For the ScanNet and SUN-RGBD dataset, we provide the
mean absolute relative error (REL), mean square relative error (sqREL), scale-
invariant mean squared error (SI), mean absolute error (iMAE), and root mean
square error (iRMSE) of the inverse depth values. For iBims-1 benchmark [17],
we compute 5 similar metrics as for NYU-Depth-v2 plus the root mean square
error in log-space (log10), planarity errors (εplan, εorie), depth boundary errors
(εacc, εcomp), and directed depth error (ε0, ε−, ε+). Detailed definitions of the
metrics are provided in the supplementary material.

4.2 Implementation Details

The proposed model is implemented with the Pytorch [25] framework, and
trained using a single Tesla-V100, batch size of 32 images, and Adam optimizer
[16] with (β1, β2, ε) = (0.9, 0.999, 10−8). The training process is split into three
parts. During the first phase, we replace the DAV-predictor (Figure 4) with the
DAVs computed from the ground truth depth maps. We train the model for
200 epochs using only the depth loss (Eq. 10) and the learning rate of 10−4. In
the second phase, we add the DAV-predictor to the model, freeze the weights
of other parts of the model, and train for 200 epochs with the learning rate of
7.0× 10−5. In the last phase, we train the entire model for 300 epochs using the
learning rate of 7.0×10−5 for the first 100 epochs and then reduce it at the rate
of 5% per 25 epochs. The last two stages employ the full loss function defined
in Equation (11). We set all the weight loss coefficients λ, µ, θ, and γ as 1.

We augment the training data using random scaling ([0.875, 1.25]), rota-
tion ([-5.0, +5.0] degrees), horizontal flip, rectangular window droppings, and
colorization. Planes, required for training, are obtained by fitting a paramet-
ric model to the back-projected 3D point cloud using RANSAC with the inlier
threshold of 1 cm. We select at most the best N-planes in terms of the inlier
count with a maximum of 100 iterations. Furthermore, we keep only planes that
cover more than 7% of the image area.

4.3 Comparison with the state-of-the-art

In this section, we compare the proposed approach with the current state-of-the-
art monocular depth estimation methods.

NYU-Depth-v2: Table 1 contains the performance metrics on the official
NYU-Depth-v2 test set for our method and for [2,5,8,10,13,19,20,24,26,27,28,40,44].
In addition, the table shows the number of model parameters for each method.
The performance figures for the baselines are obtained using the pre-trained
models provided by the authors [2,8,13,24,27,40] or from the original papers if
the model was not available [5,10,19,20,26,28,44]. Methods indicated with ?? and
‡ are trained using the entire training set of 120K images or with external data,
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Table 1. Evaluation results on the NYU-Depth-v2 dataset. Metrics with ↓ mean lower
is better and ↑ mean higher is better. Timing is the average over 1000 images using a
NVIDIA GTX-1080 GPU, in frames-per-second (FPS).

Methods #params Memory FPS REL↓ RMS↓ δ1↑ δ2↑ δ3↑
Eigen’15 [5]?? 141.1M - - 0.215 0.907 0.611 0.887 0.971

Laina’16 [19]?? 63.4M - - 0.127 0.573 0.811 0.953 0.988

Liu’18 [24]‡ 47.5M 124.6MB 93 0.142 0.514 0.812 0.957 0.989

Fu’18 [8] ?? 110.0M 489.1MB 42 0.115 0.509 0.828 0.965 0.992

Qi’18 [26] 67.2M - - 0.128 0.569 0.834 0.960 0.990

Hao’18 [10] 60.0M - - 0.127 0.555 0.841 0.966 0.991

Lee’19 [20] 118.6M - - 0.131 0.538 0.837 0.971 0.994

Ren’19 [28] ?? 49.8M - - 0.113 0.501 0.833 0.968 0.993

Zhang’19 [44] 95.4M - - 0.121 0.497 0.846 0.968 0.994

Ramam.’19 [27]‡ 80.4M 336.6MB 47 0.139 0.502 0.836 0.966 0.993

Hu’19 [13] 157.0M 679.7MB 15 0.115 0.530 0.866 0.975 0.993

Chen’19 [2] 210.3M 1250.9MB 12 0.111 0.514 0.878 0.977 0.994

Yin’19 [40] 114.2M 437.6MB 37 0.108 0.416 0.875 0.976 0.994

Ours 25.1M 96.1MB 218 0.108 0.412 0.882 0.980 0.996

respectively. For instance, Ramamonjisoa et al. [27] trained the method using
synthetic dataset PBRS [43] before fine-tuning on NYU-Depth-v2. The best per-
formance is achieved by the proposed model that also contains the least amount
of parameters. The best performing baselines, Yin et al. [40], Hu et al. [13], and
Chen et al. [2], have 4.5, 6.2, and 8.3 times more parameters compared to ours,
respectively. Figure 5 provides an additional illustration of the model parameters
with respect to the performance.

Figure 6 shows qualitative examples of the obtained depth maps. In this case,
the maps for the baseline methods are produced using the pre-trained models
provided by the authors. The method by Eigen and Fergus [5] performs well on
uniform regions, but has difficulties in detailed structures. Laina et al. [19] pro-
duces overly smoothed depth maps losing many small details. In contrast, Fu et
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Fig. 5. Analyzing the accuracy δ1(%) and mean absolute relative error (%) with respect
to the number of parameters (millions) for recent monocular depth estimation methods
on NYU-Depth-v2. The left picture presents the thresholded accuracy where higher
values are better, while the right picture shows the absolute relative error where lower
values are better.
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Fig. 6. Qualitative results on the official NYU-Depth-v2 [30] test set from different
methods. The color indicates the distance where red is far and blue is close. Our
estimated depth maps are closer to the ground truth depth when comparing with
state-of-art methods.

al. [8] returns many details, but with the expense of discontinuities inside objects
or smooth areas. The depth images by Ramamonjisoa et al. [27] contain noise
and are prone to miss fine details. Yin et al. [40], Hu et al. [13], and Chen et al.
[2] provide the best results among the baselines. However, they have difficulties
e.g. on the third (near the desk and table) and the fourth examples from the
left (wall area). We provide further qualitative examples in the supplementary
material.

ScanNet: Table 2 contains the performance figures on the official ScanNet test
set for our method, Ren et al. [28] (taken from the original paper), Hu et al. [13]
and Chen et al. [2]. We use the public code from [2,13] to train their models.
Unfortunately, the other baselines do not provide the results for ScanNet official
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Table 2. Evaluation results on ScanNet [3].

Architecture #params REL sqREL SI iMAE iRMSE Test set

CSWS E ROB [21] 65.8M 0.150 0.060 0.020 0.100 0.130
ROBDORN ROB [8] 110.0M 0.140 0.060 0.020 0.100 0.130

DABC ROB [22] 56.6M 0.140 0.060 0.020 0.100 0.130

Hu’19 [13] 157.0M 0.139 0.081 0.016 0.100 0.105

Official
Chen’19 [2] 210.3M 0.134 0.077 0.015 0.093 0.100
Ren’19 [28] 49.8M 0.138 0.057 - - -
Ours 25.1M 0.118 0.057 0.015 0.089 0.097

test set. Moreover, the test set used in the Robust Vision Challenge (ROB) is
not available at the moment and we are unable to report our performance on
that. Nevertheless, we have included the best methods from the ROB challenge
in Table 2 to provide indicative comparison. Note that all methods are trained
with the same ROB training split. The proposed model outperforms [28] with a
clear margin in terms of REL. The results are also substantially better compared
to ROB challenge methods, although the comparison is not strictly fair due
to different test splits. Figure 7 provides qualitative comparison between our
method and [2,13,22], using the sample images provided in [22]. The geometric
structures and details are clearly better extracted by our method.

OursImage Ground
truth

Hu'19 [13]
  DABC
ROB [22] Chen'19 [2]

Fig. 7. Predicted depth maps from our model with baselines on the official ScanNet
[3] test set.

Table 3. The iBims-1 benchmark

Method REL↓ log10↓ RMS↓ δ1↑ δ2↑ δ3↑ εplan↓ εorie↓ εacc↓ εcomp↓ ε0↑ ε−↓ ε+↓
Liu’18 [24] 0.29 0.17 1.45 0.41 0.70 0.86 7.26 17.24 4.84 8.86 71.24 28.36 0.40

Ramam.’19 [27] 0.26 0.11 1.07 0.59 0.84 0.94 9.95 25.67 3.52 7.61 84.03 9.48 6.49

Ours 0.24 0.10 1.06 0.59 0.84 0.94 7.21 18.45 3.46 7.43 84.36 6.84 6.27
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Planarity error analysis: We also evaluated our method on the iBims-1
benchmark [17] and compared it with two recent works [24,27]. The results,
shown in Table 3, indicate that we outperform the baselines in most of the met-
rics, including plane related ones. Extensive planarity analysis is provided in the
supplementary material.

4.4 Ablation studies

Firstly, we assess how the number of prominent planes, used to estimate the
ground truth DAVs in the training phase, affects the performance (see Sec. 3.1).
To this end, we train our model using the fronto-parallel planes (see Eq. 2) plus
three, five, and seven non-fronto-parallel planes (N in Eq. 1). The corresponding
results for the NYU-Depth-v2 test set are provided in Table 4. One can observe
that the results improve by increasing the number of planes up to five and
decrease after that. Possible explanation for this could be that the images used
in the experiments do not typically contain more than five significant planes that
can predict the depth values reliably. We also re-trained our model without the
non-local depth attention (DAV) module (and any planes) and the performance
degraded substantially as shown in Table 4.

Secondly, we study the impact of the attention loss term (Eq. 6). For this
purpose, we first train our model with and without the attention loss, and then
continue training by dropping the attention loss after convergence. We report
the results in Table 5. The model without the attention loss has clearly inferior
performance indicating the importance of this loss term. Furthermore, continuing
training by dropping the attention loss also degrades the performance.

Table 4. Performance of our model using different types of depth-attention volume.

DAV-types REL↓ RMS↓ δ1↑ δ2↑ δ3↑
w/o DAV-module 0.140 0.577 0.827 0.960 0.989

||-Plane-DAV 0.116 0.442 0.867 0.976 0.995

3-Plane-DAV 0.110 0.421 0.879 0.978 0.995

5-Plane-DAV 0.108 0.412 0.882 0.980 0.996

7-Plane-DAV 0.111 0.447 0.851 0.970 0.993

Table 5. Ablation studies of models without and with the attention loss on the NYU-
Depth-v2. This shows the importance of the DAV in guiding the monocular depth
model.

Training REL↓ RMS↓ δ1↑ δ2↑ δ3↑
w/o Lattention 0.126 0.540 0.841 0.967 0.992

w/ full loss 0.108 0.412 0.882 0.980 0.996

continue w/o Lattention 0.109 0.415 0.882 0.979 0.995
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Table 6. Cross-dataset evaluation with training on NYU-Depth-v2 and testing on
SUN-RGBD.

Models #params REL sqREL SI iMAE iRMSE

w/o DAV-module 17.5M 0.254 0.416 0.035 0.111 0.091

Hu’19 [13] 157.0M 0.245 0.389 0.031 0.108 0.087

Chen’19 [2] 210.3M 0.243 0.393 0.031 0.102 0.069

Ours 25.1M 0.238 0.387 0.030 0.104 0.075

Image Ground truth Ours Hu'19 Chen'19

Fig. 8. Direct results on SUN RGB-D dataset [31] without fine-tuning. Some regions
in the white boxes show missing or incorrect depth values from the ground truth data.

4.5 Cross-dataset evaluation

To assess the generalisation properties of the model, we perform a cross-dataset
evaluation, where we train the network using NYU-Depth-v2 and test with SUN-
RGBD [14,31,37] without any fine-tuning. We also evaluate the baseline methods
from [2,13] and report the results in Table 6. As can be seen our model performs
favourably compared to the other methods. Figure 8 contains a few examples
of the results with the SUN-RGBD dataset. One can observe that our model is
able to well estimate the geometric structures and details of the scene despite the
differences in data distributions between the training and testing sets. Moreover,
we evaluated our model without the DAV-module in the same cross-dataset
setup. The results, shown in Table 6, clearly demonstrates that the DAV-module
improves the generalization.

5 Conclusions

This paper proposed a novel monocular depth estimation method that incorpo-
rates a non-local coplanarity constraint with a novel attention mechanism called
depth-attention volume (DAV). The proposed attention mechanism encourages
depth estimation to favor planar structures, which are common especially in in-
door environments. The DAV enables more efficient learning of the necessary
priors, which results in considerable reduction in the number of model parame-
ters. The performance of the proposed solution is state-of-the-art on two popular
benchmark datasets while using 2-8 times less parameters than competing meth-
ods. Finally, the generalisation ability of the method was further demonstrated
in cross dataset experiments.
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