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1 Implementation details

1.1 Neural 3D mapping

Our 3D convolutional network f has the following architecture. The input is a 4-
channel 3D grid shaped 128×32×128. The four channels are RGB and occupancy.
“Unoccupied” voxels have zeros in all channels. This input is passed through a
3D convolutional network, which is an encoder-decoder with skip connections.
There are three encoder layers: each have stride-2 3D convolutions, with kernel
size 4 × 4 × 4, and the output channel dimensions are 64, 128, 192. There are
three decoder layers: the first two have stride-2 transposed convolutions with
stride 2 and 4 × 4 × 4 kernels with 256 output channels; after each of these we
concatenate the same-resolution layer from the encoder half; the last layer has
a 1 × 1 × 1 kernel and 64 channels.

At training time f encodes a metric space sized 32 × 4 × 32 meters. At test
time we “zoom in” on the area of interest (i.e., the search region), and encode a
space sized 16 × 4 × 16 meters.

We train with the Adam optimizer [5] and train for 200, 000 iterations at a
learning rate of 1e− 4.

1.2 Baselines

– Unsupervised 3D flow [3]. The original work by Harley et al. [3] only
estimated flow for pairs of frames. We extend this into a 3D tracker by de-
ploying the flow module in an object-centric manner, and by “chaining” the
flows together across time. We effectively compute the flow from the first
frame directly to every other frame in the sequence, but with an alignment
step designed to keep the object within the field of view of the flow module.
Specifically, given the object location in the first frame, we extract a vol-
ume of flow vectors in the object region, and run RANSAC to find a rigid
transformation that explains the majority of the flow field. We apply this
rigid transform to the box, yielding the object’s location in the next frame.
Then, we back-warp the next frame according to the box transformation,
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to re-center the voxel grid onto the object. Estimating the flow between the
original frame and the newly backwarped frame yields the residual flow field;
adding this residual to the original flow provides the new cumulative motion
of the object. We repeat these steps across the length of the input video,
back-warping according to the cumulative flow and estimating the residual.

– 2.5D dense object nets [2]. While the original work used a margin loss
for contrastive learning, we update this to a cross entropy loss with a large
offline dictionary and a coupled “slow” encoder, consistent with state-of-the-
art contrastive learning [4]. We extend this model into a 3D tracker as follows.
First, we use the available depth data to “unproject” the learned embeddings
into sparse 3D scene maps. Then, we use the same tracking pipeline as our
own model (with search regions and soft argmaxes and RANSAC). The
differences between this model and our own are (1) it learns a 2D CNN
instead of a 3D one, and (2) its 3D output is constrained to the locations
observed in the depth map, instead of producing features densely across the
3D grid.

– 2.5D tracking by colorization [7,6]. We use the latest iteration of this
method [6], which uses the LAB colorspace at input and output, and color
dropout at training time; this outperforms the quantized-color cross entropy
loss of the original work. We extend this model into a 3D tracker in the same
way that we extended the “dense object nets” baseline. Therefore, the only
difference between the two 2.5D methods is in the training: this method can
train on arbitrary data but has an objective that only indirectly encourages
correspondence (through an RGB reconstruction loss), while “2.5D dense
object nets” requires static scenes and directly encourages correspondences
(through a contrastive loss).

– 3D neural mapping with random features. We use the same inputs, ar-
chitecture, outputs, and the same hyperparameters for resolution and search
regions, but do not train the parameters.

– 3D fully convolutional siamese tracker (supervised) [1]. We use the
same resolutions and feature encoders for this model as we do for our main
model. The cosine window adds a zero-velocity bias into the model, and
makes it less likely for the model’s outputs to make large jumps [1].

2 Detailed results

In Tables 1 and 2, we provide the numerical values of the data plotted in the
main paper. The notation IOU@N denotes 3D intersection over union at the
Nth frame of the video. Note that IOU@0 = 1.0 in this task, since tracking is
initialized with a ground-truth box in the zeroth frame.
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Table 1. Single-object tracking accuracy, in mean IOU across time, in CARLA.

Method IOU@2 IOU@4 IOU@6 IOU@8

Zero motion 0.63 0.33 0.21 0.17
Random 3D neural mapping 0.13 0.07 0.05 0.03
Random 3D siamese 0.05 0.02 0.01 0.00
Random 3D siamese + cosine 0.48 0.22 0.10 0.05
2.5D colorization 0.41 0.29 0.25 0.19
2.5D dense object nets 0.66 0.47 0.39 0.33
Harley et al. [3] 0.58 0.47 0.38 0.29
Ours 0.80 0.69 0.66 0.61

3D siamese (supervised) 0.69 0.65 0.63 0.61
3D siamese + cosine (supervised) 0.75 0.71 0.69 0.65

Table 2. Single-object tracking accuracy, in mean IOU across time, in KITTI.

Method IOU@2 IOU@4 IOU@6 IOU@8

Zero motion 0.59 0.28 0.18 0.13
Random 3D neural mapping 0.10 0.04 0.03 0.02
Random 3D siamese 0.00 0.01 0.00 0.00
Random 3D siamese + cosine 0.40 0.11 0.03 0.01
2.5D colorization 0.30 0.20 0.11 0.10
2.5D dense object nets 0.68 0.55 0.40 0.31
Harley et al. [3] 0.55 0.42 0.39 0.22
Ours 0.66 0.58 0.52 0.46

3D siamese (supervised) 0.61 0.60 0.58 0.58
3D siamese + cosine (supervised) 0.60 0.56 0.55 0.55
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