
More Classifiers, Less Forgetting:
A Generic Multi-classifier Paradigm for

Incremental Learning

Yu Liu1, Sarah Parisot2,3, Gregory Slabaugh2, Xu Jia2, Ales Leonardis2, and
Tinne Tuytelaars1

1KU Leuven 2Huawei Noah’s Ark Lab 3Mila
{firstname.lastname}@kuleuven.be {firstname.lastname}@huawei.com

Content of this supplementary material:

1. Incremental Learning Pipeline of MUC-MAS and MUC-LwF

2. Experimental Details and Evaluation Metrics

3. Analysis of Hyper-parameter λ in MUC-MAS

4. Histogram Statistics of Stability Factors in MUC-MAS

5. Quantitative Analysis for Soft Labels in MUC-LwF

6. Analysis of Memory Cost and Training Time

7. Training Procedure of Learning with Exemplars



2 Y. Liu et al.

1. Incremental Learning Pipeline of MUC-MAS and MUC-LwF

In the main paper, we introduce how to train MUC with parameter regular-
ization (PR) and activation regularization (AR), respectively. In addition, we
present the objective functions for MUC-MAS and MUC-LwF. Due to limited
space in the paper, we move the algorithmic pipeline in this supplementary ma-
terial. Algorithm 1 and Algorithm 2 summarize the incremental learning pipeline
for MUC-MAS and MUC-LwF, respectively. MUC-MAS and MUC-LwF employ
two different regularization strategies, and one major difference is that MUC-
MAS performs a post-training step to estimate the importance weights and sta-
bility factors for the current task. However, MUC-LwF has no need to do this
post-training step. It is worthy noting that both MUC-MAS and MUC-LwF
are generic methods. Here, we use the regularization terms from MAS [1] and
LwF [4]. Following these pipelines, other PR and AR methods can be applied to
MUC as well.

Algorithm 1: Incremental Learning Pipeline of MUC-MAS

Input: In-distribution data {Xt, Y t}Tt=1; Out-of-distribution data Xout; Feature

extractor F ; Main classifiers {Mt}Tt=1; Side classifiers {St
1:K}

T
t=1.

for t = 1; t ≤ T do
if t == 1 then

// Learn the first task
Train F and M1: optimize LCE(F,M1), in Eq.1.
Freeze F and train S1

1:K : optimize LCE(F, S1
1:K) + LCD(F, S1

1:K), in Eq.5.

Estimate importance weights and stability factors: α1,γ1, δ1, in Eq.6,10,7.
else

// Learn subsequent tasks

Update F and train Mt: optimize LCE(F,Mt) + λLPR
REG, in Eq.1,11.

Freeze F and train St
1:K : optimize LCE(F, St

1:K) + LCD(F, St
1:K), in Eq.5.

Estimate importance weights and stability factors: αt,γt, δt, in Eq.6,10,7.
end

end

Algorithm 2: Incremental Learning Pipeline of MUC-LwF

Input: In-distribution data {Xt, Y t}Tt=1; Out-of-distribution data Xout; Feature

extractor F ; Main classifiers {Mt}Tt=1; Side classifiers {St
1:K}

T
t=1.

for t = 1; t ≤ T do
if t == 1 then

// Learn the first task
Train F and M1: optimize LCE(F,M1), in Eq.1.
Freeze F and train S1

1:K : optimize LCE(F, S1
1:K) + LCD(F, S1

1:K), in Eq.5.
else

// Learn subsequent tasks

Update F and train Mt: optimize LCE(F,Mt) + λLAR
REG, in Eq.1,14.

Freeze F and train St
1:K : optimize LCE(F, St

1:K) + LCD(F, St
1:K), in Eq.5.

end

end



A Generic Multi-classifier Paradigm for Incremental Learning 3

2. Experimental Details and Evaluation Metrics

We employ a “single-head” evaluation that does not require task identities. The
decision space contains all seen classes learned from a sequence of tasks. This
“single-head” evaluation is widely-used for class-incremental learning, despite
that it is more challenging than the “multi-head” evaluation [3]. In addition to
the top-1 accuracy, we evaluate the methods with the forgetting ratio introduced
in [6] as follows:

ρ≤t =
1

t

t∑
i=1

ρi≤t, (1)

ρi≤t =
Ai≤t −AtR
Ai≤tJ −AtR

− 1, (2)

where Ai≤t is the accuracy of task i after learning task t, AtR is the accuracy

through random guess, and Ai≤tJ is the upper-bound accuracy with joint training.
Note that, the forgetting ratio belongs to [−1, 0] and less negative ratio means
less forgetting.

3. Analysis of Hyper-parameter λ in MUC-MAS

As discussed in Table 4 of the main paper, we study the effect of the hyper-
parameter λ. Despite the fact that the accuracy performance when λ=0.02 is
better, we find the accuracy of new tasks becomes even lower than that of old
tasks in the end. To be specific, we show the accuracy on new and old tasks in
Fig. 1. By increasing λ from 0.01 to 0.02, MUC-MAS trades new tasks accuracy
for higher accuracy of old tasks. The accuracy of new tasks will be lower than
that of old tasks when λ = 0.02, This behavior is opposite to some practical
scenarios. For incremental learning, it is important to retain new tasks accuracy
instead of purely pushing old tasks accuracy with larger λ. Hence, we choose to
use λ = 0.01 in the experiments.

4. Histogram Statistics of Stability Factors in MUC-MAS

Although our MUC-MAS is built on the pre-existing importance weight, we
expand it with a new stability factor, which is able to quantify how stable the
importance weight per parameter is. In Fig. 2, we further provide the statistics of
stability factors of all parameters in the feature extractor. Here, we focus on the
five tasks from CIFAR-100 and depict the number of parameters according to the
stability factors. We can see that each task has a different histogram statistics
with respect to the stability factors. It suggests that each parameter adaptively
learns different stability factors for the five tasks. Intuitively, it is consistent with
the fact that one certain parameter is stable for one task while it may become
unstable for other tasks.



4 Y. Liu et al.

20 40 60 80 100

Number of classes

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

λ=0.01

New task
Old tasks

20 40 60 80 100

Number of classes

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

λ=0.02

New task
Old tasks

Fig. 1: The accuracy of old and new tasks on CIFAR-100 when λ=0.01 or 0.02.
When λ = 0.02, the new tasks accuracy begins to be lower than that of old
tasks quickly. It is not a desirable behavior in practice. Instead, we choose to set
λ=0.01.

1 1.2 1.4 1.6 1.8 2
Stability factor

0

2

4

6

8

N
um

be
r 

of
 p

ar
am

et
er

s

#104

Task 1
Task 2
Task 3
Task 4
Task 5

Fig. 2: Histogram statistics of stability factors of network parameters when in-
crementally learning five tasks in CIFAR-100. The tasks demonstrate different
statistics distributions. Most parameters learn stability factors ranging between
1.2 and 1.6.



A Generic Multi-classifier Paradigm for Incremental Learning 5

5. Quantitative Analysis for Soft Labels in MUC-LwF

In Fig.7 of the main paper, we has shown the qualitative analysis for the soft
labels in MUC-LwF when incrementally learning a few tasks. This test aims to
further analyze the soft labels in a quantitative way. Specifically, when learning
task t, we feed its data into the old model and capture the soft labels from the
main classifier and three side classifiers. Then, we use the L1-norm distance to
measure the discrepancy among the soft-labels vectors. Notably, the dimension of
the vectors keeps on increasing together with learning more tasks. As reported
in Table 1, the side classifiers have a remarkable discrepancy with the main
classifier. In particular, the discrepancy increases largely after t = 2. This verifies
the effectiveness of the classifier discrepancy loss used in MUC.

Table 1: L1-norm distances for the soft labels captured from the main classifier
(Main) and three side classifiers (Side-1, Side-2 and Side-3). #Dim indicates the
dimension of soft labels. Based on the large distances, we can know that the
side classifiers learn different soft labels, compared with the main classifier. This
experiment is conducted for the 5-tasks scenario in CIFAR-100.

Tasks #Dim Side-1 v.s. Main Side-2 v.s. Main Side-3 v.s. Main

t=2 20 0.238 0.248 0.238
t=3 40 1.568 0.820 1.160
t=4 60 1.662 1.590 1.398
t=5 80 1.640 1.560 1.408

6. Analysis of Memory Cost and Training Time

In this section, we analyze the complexity for the methods including MUC and
the baselines (Table 2). (1) Compared with MAS, MUC-MAS has a slight in-
crease in the number of network parameters while it needs more memory to store
the importance weights and stability factors. In addition, MUC-MAS spends
more training time to compute those auxiliary information. (2) Like LwF, MUC-
LwF does not need extra memory to store auxiliary information. These two
methods are comparable in terms of memory and time cost. In one word, MUC
spends some extra cost, however, being able to leverage multiple classifiers is its
main strength.

7. Training Procedure of Learning with Exemplars

Here, we demonstrate the details about how MUC is trained with access to a
fixed budget of exemplars (Sec.4.5 in the main paper). Following iCaRL [5], the
budget memory stores B = 2000 exemplars for previous tasks. Suppose that
the model has learned t tasks and each task contains g classes, we randomly



6 Y. Liu et al.

Table 2: Detailed analysis of memory cost and training time for T=5 tasks on
CIFAR-100. Both MUC-MAS and MUC-LwF use K=3 side classifiers.

Method Network Importance Stability Total Total
parameters weights factors memory cost training time

MAS 472.8K 472.8K - 945.6K 0.92h
MUC-MAS 492.3K 984.6K 492.3K 1969.2K 1.83h

LwF 472.8K - - 472.8K 0.67h
MUC-LwF 492.3K - - 492.3K 0.85h

select b B
t · g
c exemplars per old class and store them into the budget memory.

Similar with the observation in [2,7], using the herding algorithm [5] to select the
exemplars does not show remarkable improvements against random selection.
Next, we perform an additional fine-tuning stage after learning the new task

t+ 1. We need to select b B
t · g
c exemplars for each new class, to make a balanced

exemplar set between old and new classes. Then we fine-tune the model with
the mixed exemplars from old and new classes. After the fine-tuning stage, task
t + 1 will be added into the set of old tasks, and we thereby need to update

the number of exemplars per old class to be b B

(t+ 1) · g
c. Likewise, the fine-tune

step will be performed after learning the task t+ 2.

References

1. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory
aware synapses: Learning what (not) to forget. In: ECCV. pp. 144–161 (2018)

2. Castro, F.M., Maŕın-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end
incremental learning. In: ECCV. pp. 241–257 (2018)

3. Farquhar, S., Gal, Y.: Towards robust evaluations of continual learning. CoRR
abs/1805.09733 (2018)

4. Li, Z., Hoiem, D.: Learning without forgetting. In: ECCV. pp. 614–629 (2016)
5. Rebuffi, S., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier

and representation learning. In: CVPR. pp. 5533–5542 (2017)
6. Serrà, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting

with hard attention to the task. In: ICML. pp. 4555–4564 (2018)
7. Zhang, J., Zhang, J., Ghosh, S., Li, D., Tasci, S., Heck, L.P., Zhang, H., Kuo, C.J.:

Class-incremental learning via deep model consolidation. CoRR abs/1903.07864
(2019)


	More Classifiers, Less Forgetting: A Generic Multi-classifier Paradigm for Incremental Learning

