
More Classifiers, Less Forgetting:
A Generic Multi-classifier Paradigm for

Incremental Learning

Yu Liu1, Sarah Parisot2,3, Gregory Slabaugh2, Xu Jia2, Ales Leonardis2, and
Tinne Tuytelaars1

1KU Leuven 2Huawei Noah’s Ark Lab 3Mila
{firstname.lastname}@kuleuven.be {firstname.lastname}@huawei.com

Abstract. Overcoming catastrophic forgetting in neural networks is a
long-standing and core research objective for incremental learning. No-
table studies have shown regularization strategies enable the network
to remember previously acquired knowledge devoid of heavy forgetting.
Since those regularization strategies are mostly associated with classi-
fier outputs, we propose a MUlti-Classifier (MUC) incremental learning
paradigm that integrates an ensemble of auxiliary classifiers to estimate
more effective regularization constraints. Additionally, we extend two
common methods, focusing on parameter and activation regularization,
from the conventional single-classifier paradigm to MUC. Our classifier
ensemble promotes regularizing network parameters or activations when
moving to learn the next task. Under the setting of task-agnostic evalu-
ation, our experimental results on CIFAR-100 and Tiny ImageNet incre-
mental benchmarks show that our method outperforms other baselines.
Specifically, MUC obtains 3%∼5% accuracy boost and 4%∼5% decline
of forgetting ratio, compared with MAS and LwF. Our code is available
at https://github.com/Liuy8/MUC.

Keywords: Incremental learning; Regularization; Classifier ensemble

1 Introduction

Incremental learning dates back decades, but has recently shown an increased
popularity due to the renewed interest in deep neural networks [33,20]. Unlike
standard multi-task learning, the tasks during incremental learning arrive se-
quentially, and the data of previous tasks is not accessible anymore (e.g. , due to
memory limits or privacy issues). Here, we consider the class-incremental learn-
ing setup [35,16], in which each new task learns a set of classes disjoint from the
old tasks. The network needs to learn feature representations for classifying the
images of old and new classes. Besides, we adopt a task-agnostic evaluation: at
test time it is unknown which task an image sample belongs to.

The major challenge in incremental learning is the so-called catastrophic for-
getting [29], a phenomenon where previously acquired knowledge is lost from
the network after it is trained on the newly incoming task. To reduce forgetting,

https://github.com/Liuy8/MUC


2 Y. Liu et al.

A

B

A

B

Single-classifier Incremental Learning Multi-classifier Incremental Learning

A

Before learning new task:

Old classes B

After learning new task:

AOld classes B

𝑓 𝑓1𝑓2

𝑓3

𝑓, 𝑓1, 𝑓2, 𝑓3

Decision boundary:

Fig. 1: Conceptual comparison between single-classifier and multi-classifier in-
cremental learning. Our multi-classifier paradigm is better at regularizing the
feature distributions of old classes than the single-classifier paradigm.

a large set of methods exploit regularization strategies to constrain changes of
network parameters or activations. When learning a new task, the network is
updated by combining the regularization loss with the standard classification
loss. The objective is to find the optimal trade-off between the adaptation to
new tasks and the preservation on previous tasks. Most regularization strate-
gies are closely associated with classifier outputs: (1) parameter regularization
methods such as EWC [18] and MAS [1] estimate an importance weight for each
parameter in the network and penalize changes to important parameters. The
computation of those importance weights is based on the loss or output of the
classifier. (2) activation regularization methods like LwF [24] introduce a knowl-
edge distillation based regularization that enforces the classifier outputs of the
new model to be close to those of the old model. In both regularization methods,
the classifier is crucial not only for classifying new tasks, but also for regulariz-
ing old ones. However, these existing methods learn a single classifier only for
each task and their regularization strategies are heavily limited by the output of
one single classifier. Motivated by the above finding, our work aims to address
the question: How to exploit more classifiers to improve the effectiveness of the
regularization strategies for incremental learning?

To this end, we propose a MUlti-Classifier (MUC) paradigm that integrate
classifiers ensemble to estimate more effective regularization constraints. First,
we train a standard neural network with in-distribution data of current task.
Then, we construct upon the network a set of new and auxiliary classifiers which
are trained on out-of-distribution data irrelevant to current task. To enhance the
discrepancy among those classifiers, we train a classifier discrepancy loss to max-
imize prediction disagreement on the out-of-distribution data and agreement on
the in-distribution data. Despite that those classifiers make different decision
boundaries for the same classification objective, they help to produce comple-
mentary and robust information to regularize forgetting of previously learned
classes. We show in Fig. 1 how MUC work differently from conventional single-
classifier paradigm. MUC is a generic method and can be integrated with most
pre-existing regularization strategies. Additionally, we show MUC leverages mul-
tiple classifiers for improving two common incremental learning methods, focus-
ing on parameter and activation regularization, respectively.

The contributions of this paper are summarized below:



A Generic Multi-classifier Paradigm for Incremental Learning 3

– We propose a novel and generic multi-classifier incremental learning paradigm,
coined MUC. which demonstrates the effectiveness of taking into account the
role of the classifier for reducing forgetting. This work is the first to exploit
the classifier discrepancy for incremental learning.

– We introduce two instantiations based on MUC, by extending parameter
and activation regularization, respectively. It suggests improving existing
regularization strategies is also important for incremental learning.

– In the setting of class-incremental learning, we experiment with CIFAR-100
and Tiny ImageNet incremental benchmarks, where MUC achieves consid-
erable and promising improvements over the single-classifier paradigm. Ex-
tensive analysis additionally verifies the strengths of MUC.

2 Related Work

In recent years, incremental learning has become one of the most critical yet chal-
lenging directions in a broad spectrum of application domains, including image
classification [24,35], object detection [39,10] and semantic segmentation [30,5].
Due to the “stability-plasticity” dilemma in neural networks [3,29], incremen-
tal learners perform well on the latest task but witness a dramatic degradation
of performance on previous tasks. To alleviate such a forgetting issue, exten-
sive regularization strategies have been proposed in the literature, which can be
grouped into two main categories below.

The first category is normally called parameter regularization [18,48,23,1,6,25]
that penalizes drastic updates of important parameters when the network is
learning a new task. The intuition is that keeping the important parameters for
old tasks intact can reduce forgetting while the remaining parameters learn to
adapt to the incoming new task. Being one of the most representative approaches,
Elastic Weight Consolidation (EWC) [18] estimated the parameters’ importance
to the change in loss function by the diagonal of the Fisher information matrix
(FIM). Memory Aware Synapses (MAS) [1] presented a new importance weight
through the gradient of the L2-normalization outputs w.r.t. the parameter. Nev-
ertheless, devising a robust manner to formulate importance weights is still an
open and challenging problem. The second category is activation regularization
that imposes regularization constraints on the feature activations in the net-
work rather than on the parameters themselves. Learning without Forgetting
(LwF) [24], being a fundamental approach in this category, fed the data of the
new task into the stored model and recorded the output probabilities as soft
targets. Then a knowledge distillation loss [13] was used to encourage the newly
updated model to produce similar predictions as the soft labels. Upon LwF,
many approaches have been proposed to improve the regularization based on
knowledge distillation [43,7,50,22,49]. For instance, LwM [7] considered adding
knowledge distillation on the feature activations of intermediate layers. Instead of
designing a specific regularization strategy, our work presents a generic paradigm
in which existing strategies can be improved to further reduce forgetting.



4 Y. Liu et al.

Next to the above regularization, other rehearsal based methods [35,26,17,15,2]
store some old data to make the network remember previous tasks, albeit vio-
lating the motivation of incremental learning to some extent. iCaRL [35] used
an external memory to store a subset of data samples (a.k.a. exemplars) for
old classes. It also employed a knowledge distillation loss to help regularize the
update of the network. Additionally, some research efforts are made to address
the data imbalance between a large amount of new classes samples and a small
budget of old classes samples [4,14,44]. Inspired by the success of Generative Ad-
versarial Networks (GANs), a few works [38,11,45] proposed training generative
networks to produce pseudo-rehearsal samples instead of storing the original and
real data. Unlike these works, our MUC is not limited by the need of storing
and re-using old data. Nevertheless, we empirically in the experiment show its
effectiveness under the rehearsal-based scenario.

Multi-classifier learners have been studied in several vision tasks [42,21,46].
On the one hand, the research objective is to maximize the consensus of out-
puts from multiple classifiers, to consolidate the transfer learning from source
domain to target domain [27,8]. On the other hand, the objective is to maximize
the discrepancy of the classifiers’ predictions. For example, the approach in [47]
enlarged the discrepancy between two classifiers to separate in-distribution sam-
ples from out-of-distribution samples. Focusing on unsupervised domain adap-
tation, the work in [36] combined the above two objectives in an adversarial
learning manner. It first maximized the discrepancy for the target samples and
then minimized the discrepancy for feature generation. However, our work aims
to exploit the classifier discrepancy for incremental learning.

3 Proposed Method

Overall idea. We focus on the class-incremental learning (CIL) setup, in which
the model continually learns more classes from new tasks while retaining the
recognition of old classes from previous tasks. Note that, we mainly follow the
standard setting, without re-using the image samples from previous tasks. First
of all, we introduce how the MUC paradigm is trained in a two-stage fashion
(in Sec. 3.1). In the first stage, we add a main classifier (i.e. the last layer of
the network) on top of the feature extractor (i.e. the earlier layers of the net-
work) and update the entire network to correctly classify the newly incremental
classes. During the second stage, we freeze the feature extractor and train a set
of additional side classifiers (i.e. newly auxiliary layers) in parallel to the main
classifier. Since most CIL methods heavily rely on a single classifier, we then
extend two instantiations based on MUC (Sec. 3.2 and Sec. 3.3), by utilizing
multiple classifiers for more robust and effective regularization.
Problem notation. Suppose that there are T of sequential tasks together with
their data {Xt, Y t}Tt=1. Xt = {xti}N

t

i=1 and Y t = {yti}N
t

i=1 are the input images
and their ground-truth labels, where N t denotes the number of image samples
in task t. Task t contains a number of Ct classes, and the classes from different
tasks should be disjoint. The feature extractor F is shared across all tasks, but



A Generic Multi-classifier Paradigm for Incremental Learning 5

𝑋𝑡
Feature Extractor

𝑀𝑡 Cross Entropy Loss

𝑋𝑜𝑢𝑡

Cross Entropy Loss

Main Classifier

𝑆1
𝑡

Side Classifiers

𝑆2
𝑡

𝑆𝐾
𝑡

…

Classifier Discrepancy LossFreeze 

Feature Extractor

Stage I

Stage II

𝐿𝐶𝐸(𝐹,𝑀
𝑡)

𝐹

𝐹

𝐿𝐶𝐸(𝐹, 𝑆1:𝐾
𝑡 )

𝐿𝐶𝐷(𝐹, 𝑆1:𝐾
𝑡 )

𝐿𝑅𝐸𝐺Regularization Loss

Fig. 2: Pipeline of training MUC in a two-stage fashion. The two stages optimize
the cross-entropy loss LCE for a main classifier M t and a set of K side classifiers
St1:K , respectively. The regularization term LREG in Stage I is used to reduce
forgetting for previous tasks. The classifier discrepancy loss LCD in Stage II

aims to diversify the side classifiers.

is updated continually by the data. The main classifier M t and K side classifiers
St1:K = {Stk}Kk=1 are associated with task t. After training all tasks, the sets of
main classifiers and side classifiers are denoted as {M t}Tt=1 and {St1:K}Tt=1.

3.1 Multi-classifier Incremental Learning

Our MUC for incrementally learning tasks is performed in two stages (Fig. 2).

Stage I: train feature extractor and main classifier. During incremen-
tal learning, the feature extractor is trained from scratch for the first task and is
then updated continually by subsequent tasks. For each task, its main classifier
is randomly initialized and newly trained. Given the training data {Xt, Y t} for
the new task t, we minimize the standard cross-entropy (CE) loss and optimize
the feature extractor F and the main classifier M t simultaneously. Additionally,
it is crucially necessary for incremental learning to impose a regularization loss
LREG that is used to constrain the updates of important parameters associated
with previous tasks. The objective in this stage becomes

LstageI = LCE(F,M t) + λLREG =

Nt∑
i=1

− log[p(yti |xti)] + λLREG, (1)

where p(yti |xti) is the Softmax probability for the ground-truth label yti . λ is a
trade-off hyper-parameter. We will detail LREG in later subsections.

Stage II: freeze feature extractor and train side classifiers. This
stage seeks to learn new side classifiers for task t. Specifically, the same feature
extractor F transferred from Stage I is frozen during the training of Stage II.
We develop upon the feature extractor a set of K side classifiers, each of which
learns to correctly classify the same Ct classes like M t. To jointly train these
side classifiers, we accumulate their CE loss to be

LCE(F,St1:K) =

Nt∑
i=1

K∑
k=1

− log[pk(yti |xti)], (2)



6 Y. Liu et al.

where pk(yti |xti) is the prediction probability from the k-th side classifier Stk.
However, training only with a classification objective leads to nearly identical

side classifiers. The side classifiers learn similar parameters including weights
and bias. Consequently, the identical classifiers produce the same regularization
terms that have no benefit for further reducing the forgetting ratio on the old
tasks. To make the side classifiers learn different parameters, we additionally
maximize the classifier discrepancy (or disagreement) when training the side
classifiers St1:K . Maximum classifier discrepancy (MCD) has been used in other
areas [47,36], but this work is the first to exploit it for incremental learning. First,
we need to choose an out-of-distribution (OOD) dataset Xout, which contains
Nout samples that are totally different from the in-distribution classes in the
tasks. The OOD samples can be unlabeled, as the classifier discrepancy loss
does not need to use their labels. Given any OOD sample xout ∈ Xout, we
compute the classifier discrepancy with the side classifiers’ probabilistic vectors.
The classifier discrepancy between any two probabilistic vectors is the L1-norm
distance of their absolute difference

d(pm(y|xout),pn(y|xout)) = |pm(y|xout)− pn(y|xout)|, (3)

where pm(y|xout) and pn(y|xout) represent the Ct-dimensional probabilistic vec-
tors predicted by Stm and Stn, respectively. For K side classifiers, there are

(
K
2

)
many possible pairs. The total classifier discrepancy loss is denoted by

LCD(F,St1:K) =

Nout∑
i=1

K∑
m=1

K∑
n=m+1

d(pm(y|xouti ),pn(y|xouti )). (4)

Finally, the objective of Stage II is to minimize the classification cost and
at the same time maximize the classifier discrepancy

LstageII = LCE(F,St)− LCD(F,St1:K). (5)

Consequently, these side classifiers become distinct by learning different pa-
rameters for the same task. In addition, they retain the agreement on the sam-
ples of task t while increasing the disagreement on the samples of OOD dataset.
The core in incremental learning is how to impose an extra regularization term
to consolidate previous knowledge when learning the next task. In the follow-
ing two subsections, we extend pre-existing regularization strategies from the
single-classifier paradigm to the MUC paradigm.

3.2 MUC with Parameter Regularization

Here, we present how to perform the parameter regularization (PR) methods
in our MUC paradigm. Without loss of generality, we employ the importance
weight defined in Memory aware synapses (MAS) [1], while MUC can also handle
with the importance weights in other PR methods. Our method, namely MUC-
MAS, enables to estimate importance weights from not only the main classifier,
but also additional side classifiers. To be specific, after training the task t− 1 in
Stage I, the importance weight per parameter is denoted by

αt−1
j =

1

N t−1

Nt−1∑
i=1

∣∣∣∣∣∣∣∣∂[l22(M t−1(F (xt−1
i )))]

∂θj

∣∣∣∣∣∣∣∣ , (6)



A Generic Multi-classifier Paradigm for Incremental Learning 7

where θj ∈ θ are the parameters in the feature extractor, and M t−1(F (·)) is the
output before the Softmax function. We do not compute importance weights for
the parameters of the classifiers, because they will be fixed once the network
starts to learn the next task. Likewise, the side classifiers learned in Stage II

are also used to estimate more importance weights. The feature extractor is
fixed during Stage II, the side classifiers, however, are able to provide diverse
outputs due to their different parameters. Thereby, the importance weight δt−1

j,k

based on the k-th side classifier St−1
k becomes

δt−1
j,k =

1

N t−1

Nt−1∑
i=1

∣∣∣∣∣∣∣∣∂[l22(St−1
k (F (xt−1

i )))]

∂θj

∣∣∣∣∣∣∣∣ . (7)

We further average the importance weights from K side classifiers by

δt−1
j =

1

K

K∑
k=1

δt−1
j,k . (8)

Moreover, we propose a new property called stability factor, which allows us
to assess how stable the parameters in the network are. For each parameter,
if its importance weights from the side classifiers are close with that from the
main classifier, it shows that this parameter is robust and stable to different
classifiers. In this case, we assign this parameter with a larger stability factor.
To be specific, we compute the standard deviation w.r.t. the importance weights

std(θj) =
1

αt−1
j

√∑K
k=1(δt−1

j,k − α
t−1
j )2

K
. (9)

This standard deviation std(θj) quantifies the differences of the importance
weights between the main classifier and the side classifiers. Based on the standard
deviation, we define the stability factor with

γt−1
j = e1−std(θj) ∈ (0, e]. (10)

The stability factor will be multiplied with δt−1
j , to adjust the impact of the

importance weights. Finally, the parameter regularization loss in MUC-MAS for
learning the t task is formulated by

LPRREG =

|θ|∑
j

αt−1
j (θj − θ̃j)2

︸ ︷︷ ︸
main classifier

+

|θ|∑
j

γt−1
j δt−1

j (θj − θ̃j)2

︸ ︷︷ ︸
side classifiers

, (11)

where θ̃j is the corresponding parameter weight stored in the old network.

3.3 MUC with Activation Regularization

Activation regularization (AR), which aims to compare the activations between
old and new networks, is driven by the idea of knowledge distillation [13]. In
LwF [24], the activations refer to the probability predictions, which act as soft
labels to constrain the updates of the network. Here, we demonstrate MUC-LwF
by extending LwF to the MUC paradigm. First, we compute the AR loss based



8 Y. Liu et al.

on the main classifier as follows

LAR(F,M1:t−1) =
1

N t

Nt∑
i=1

KD

(
log

[
σ

(
Q(xti)

ts

)]
, σ

(
Q̃(xti)

ts

))
, (12)

where KD is the function for computing the knowledge distillation term; σ is the
Softmax function; the temperature scalar ts is normally fixed with 2. Taking as
input a sample xti into the network, Q(xti) = M1:t−1(F (xti)) represents a con-
catenation vector output from the main classifiers corresponding to the previous
t− 1 tasks. Likewise, Q̃(xti) = M̃1:t−1(F̃ (xti)) is the vector derived from the old
network. Accordingly, we further accumulate the AR loss for K side classifiers
by

LAR(F, S1:t−1
1:K ) =

1

N t

1

K

Nt∑
i=1

K∑
k=1

KD

(
log

[
σ

(
Qk(xti)

ts

)]
, σ

(
Q̃k(xti)

ts

))
, (13)

where Qk(xti) = S1:t−1
k (F (xti)) is the concatenation vector of the k-th side clas-

sifier towards task 1 to task t− 1. Q̃k(xti) = S̃1:t−1
k (F̃ (xti)) is the corresponding

vector extracted from the old model. Lastly, the total activation regularization
loss in MUC-LwF when the network learns the t-th task becomes

LARREG = LAR(F,M1:t−1)︸ ︷︷ ︸
main classifier

+LAR(F, S1:t−1
1:K )︸ ︷︷ ︸

side classifiers

. (14)

It is worthy mentioning that our MUC is a generic framework for many incre-
mental learning methods, but is not limited to MAS and LwF. Particularly, in
the experiment we empirically demonstrate its effectiveness under the rehearsal
based scenario (Sec. 4.5).

4 Experiments

4.1 Datasets and Evaluation Metrics

We conducted the experiments on two widely-used benchmarks, CIFAR-100 [19]
and Tiny ImageNet [41]. CIFAR-100 contains 100 classes, each of which has 500
training images and 100 test images of size 32×32. In Tiny ImageNet, there
are 200 classes and each class contains 500 training images, 50 validation im-
ages and 50 test images of size 64×64. Since the class labels of test images
in Tiny ImageNet are not available, the performance is generally evaluated on
the validation set. Regarding the out-of-distribution dataset, we use the SVHN

dataset [31] that contains only digits classes and is different from CIFAR-100 and
Tiny ImageNet. In the setting of class-incremental learning, we split the classes
with g = 10 or 20 for CIFAR-100, and g = 20 or 40 for Tiny ImageNet, where
g indicates the number of classes in each task. This setting results in T = 10
or 5 tasks for both datasets. The first evaluation metric we use is the standard
top-1 classification accuracy. In addition, we report the forgetting ratio which
was defined in [37]. The ratio belongs to [−1, 0] and less negative ratios mean
less forgetting. Normally, it is unnecessary to compare the performance of the
first task, as it has no incremental learning yet.



A Generic Multi-classifier Paradigm for Incremental Learning 9

4.2 Implementation Details

For a fair comparison with previous works, the network architecture we use
is ResNet-32 [12]. We train the network from scratch for the first task and
then update it continually for subsequent tasks. We downsample images of Tiny
ImageNet to 32×32, so that they can use the same network as CIFAR-100. During
each incremental session, we train the network with 200 epochs. The learning rate
starts from 0.1 and decays with a factor of 10 after 120, 160 and 180 epochs.
We optimize the network using SGD with a momentum of 0.9 and a weight
decay of 5e-4. We use a batch size of 128 for all experiments. We use the same
hyper-parameters to train Stage II but terminate the training after 80 epochs.
Like iCaRL [35], we run the experiments several times and report the average
performance. At test time, we use the predictions from the main classifier to
compute the performance. We also test the predictions from the side classifiers,
and they have the similar performance as the main classifier. We employ the
‘single-head ’ (i.e. task-agnostic) evaluation which is more practical than the
‘multi-head ’ (i.e. task-conditioned) evaluation [9].

Notably, the parameter λ in Eq. 1 is significant for balancing the two loss
terms during incremental learning. After learning more tasks, it is needed to
increase the importance of the regularization loss, so as to avoid incessant for-
getting on old tasks. Specifically, we set λ = t−1 for MUC-LwF, similar with the
setting in BiC [44]. However, λ is fixed for MUC-MAS, because its regularization
loss has already accumulated new and old importance weights, as suggested in
MAS [1]. We set λ to be 0.01 for CIFAR-100 and 0.005 for Tiny ImageNet.

4.3 Comparison and Discussion

We implement two baseline methods, including MAS [1] and LwF [24], because
our MUC-MAS and MUC-LwF are build with their regularization. The same
hyper-parameters are used to train our methods and the baselines for a fair
comparison. In addition, we assess our methods with varying numbers (i.e. K)
of side classifiers. Figure 3 presents the accuracy results on the two datasets.
Results of parameter regularization. Compared with the baseline MAS, the
best accuracy from MUC-MAS achieves about 4%∼5% gains on CIFAR-100 and
3%∼4% gains on Tiny ImageNet. The comparison demonstrates the benefit of
exploiting side classifiers for parameter regularization. In terms of the number of
side classifiers, the MUC-MAS variant with K = 3 has about 1.5% improvement
over that with K = 2. When K reaches to 4 or 5, the accuracy results are close
with those when K = 3. This finding is consistent with prior works [47,36], where
they used only two classifiers and achieved promising performance. To maintain
the efficiency, we use the MUC-MAS variant with K = 3.
Results of activation regularization. It suggests in prior works [49,34] that
LwF performs better than MAS in the context of class-incremental learning.
Nevertheless, MUC-LwF surpasses LwF with a margin of 3%∼5% gains on
both datasets. Likewise, we also evaluate MUC-LwF with different numbers of
side classifiers. By comparing those MUC-MAS variants, the one with K = 3 is



10 Y. Liu et al.

10 20 30 40 50 60 70 80 90 100

Number of classes

10

20

30

40

50

60

70

80

90

A
cc

ur
ac

y 
(%

)

10 sequential tasks (g=10)

MAS
MUC-MAS, K=2
MUC-MAS, K=3
MUC-MAS, K=4
MUC-MAS, K=5

20 40 60 80 100

Number of classes

20

30

40

50

60

70

80

A
cc

ur
ac

y 
(%

)

5 sequential tasks (g=20)

LwF
MUC-LwF, K=2
MUC-LwF, K=3
MUC-LwF, K=4
MUC-LwF, K=5

(a) Results on CIFAR-100

20 40 60 80 100 120 140 160 180 200

Number of classes

0

10

20

30

40

50

60

A
cc

ur
ac

y 
(%

)

10 sequential tasks (g=20)

MAS
MUC-MAS, K=2
MUC-MAS, K=3
MUC-MAS, K=4
MUC-MAS, K=5

40 80 120 160 200

Number of classes

15

20

25

30

35

40

45

50

55

60

A
cc

ur
ac

y 
(%

)

5 sequential tasks (g=40)

LwF
MUC-LwF, K=2
MUC-LwF, K=3
MUC-LwF, K=4
MUC-LwF, K=5

(b) Results on Tiny ImageNet

Fig. 3: Results of classification accuracy on two datasets, each of which contains
10 or 5 sequential tasks. Our methods (MUC-MAS and MUC-LwF) outperform
the corresponding baselines (MAS and LwF) across tasks and datasets.

Table 1: Results of forgetting ratio (less negative indicates less forgetting) on
CIFAR-100 (top table) and Tiny ImageNet (bottom table). The average forget-
ting ratio (Avg.) excludes the first task as it has no incremental learning. MUC
methods exhibit less forgetting than the baselines.

CIFAR-100 Number of classes (10 tasks) Number of classes (5 tasks)

Method 10 20 30 40 50 60 70 80 90 100 Avg. 20 40 60 80 100 Avg.

MAS - -0.36 -0.47 -0.62 -0.61 -0.68 -0.69 -0.75 -0.75 -0.77 -0.55 - -0.21 -0.45 -0.53 -0.57 -0.44
MUC-MAS - -0.31 -0.42 -0.55 -0.56 -0.61 -0.62 -0.71 -0.70 -0.72 -0.50 - -0.17 -0.39 -0.48 -0.54 -0.39

LwF - -0.10 -0.35 -0.29 -0.34 -0.39 -0.44 -0.51 -0.56 -0.61 -0.33 - -0.10 -0.26 -0.33 -0.41 -0.28
MUC-LwF - -0.08 -0.31 -0.24 -0.29 -0.32 -0.39 -0.45 -0.51 -0.55 -0.29 - -0.07 -0.22 -0.30 -0.38 -0.24

Tiny ImageNet Number of classes (10 tasks) Number of classes (5 tasks)

Method 20 40 60 80 100 120 140 160 180 200 Avg. 40 80 120 160 200 Avg.

MAS - -0.43 -0.53 -0.65 -0.72 -0.75 -0.79 -0.80 -0.82 -0.85 -0.71 - -0.44 -0.58 -0.63 -0.70 -0.59
MUC-MAS - -0.40 -0.48 -0.60 -0.67 -0.71 -0.75 -0.76 -0.78 -0.81 -0.66 - -0.41 -0.53 -0.58 -0.66 -0.54

LwF - -0.21 -0.31 -0.44 -0.48 -0.53 -0.62 -0.63 -0.65 -0.68 -0.51 - -0.34 -0.41 -0.50 -0.52 -0.44
MUC-LwF - -0.17 -0.28 -0.40 -0.44 -0.49 -0.58 -0.60 -0.61 -0.65 -0.47 - -0.28 -0.37 -0.45 -0.49 -0.40

slightly better than others. For consistency and generalization, we also use three
side classifiers for MUC-LwF.

Results of forgetting ratio. We further report the forgetting ratio results in
Table 1. It shows that our methods outperform the baselines with an average
decline of 4%∼5% forgetting ratios. The results support our motivation: using
more classifiers leads to less forgetting.

Complexity analysis. Despite the fact that the side classifiers impose extra
computational cost, however, the number of their parameters is a small fraction
with respect to the number of all the parameters in the network. For the case
when K = 3 and g = 20 on CIFAR-100, the final network consumes about 20,000
extra parameters due to adding the side classifiers, while they are only 4% of
the total parameters. It suggests that MUC is a practical and efficient method
for incremental learning, without violating the memory limit much.



A Generic Multi-classifier Paradigm for Incremental Learning 11

Table 2: Euclidean distances
among the parameter vectors of
three side classifiers. By using
the classifier discrepancy loss,
the parameters of the classifiers
become dissimilar.

Side classifiers w/o LCD with LCD

S1 v.s. S2 0.057 5.284
S1 v.s. S3 0.059 5.110
S2 v.s. S3 0.054 5.662

Table 3: Accuracy results of one-stage and
two-stage training on CIFAR-100. The one-
stage training has higher accuracy at the
beginning, while largely underperforms the
two-stage training for subsequent tasks.

Method Training 20 40 60 80 100

MUC-MAS one-stage 83.5 58.9 44.8 35.2 28.8
MUC-MAS two-stage 82.6 58.4 46.3 37.9 31.7

MUC-LwF one-stage 83.5 70.8 58.0 47.6 38.4
MUC-LwF two-stage 82.6 69.6 59.4 49.5 41.6

0 0.5 1 1.5
0

2000

4000

6000

8000
St

1
 and St

2

Xt

Xout

0 0.5 1 1.5
0

2000

4000

6000

8000
St

1
 and St

3

Xt

Xout

0 0.5 1 1.5
0

2000

4000

6000

8000
St

2
 and St

3

Xt

Xout

Fig. 4: Histogram statistics of
prediction disagreements for
Xt and Xout. X axis indicates
the L1-norm discrepancy dis-
tance and Y axis counts the
number of samples.

4.4 Component Analysis

Analysis of classifier discrepancy. This study is to show how the the classifier
discrepancy loss LCD in Stage II diversify the side classifiers. Specifically, we
reshape the parameters (weights and bias) of each side classifier into a one-
dimensional vector, and then compute the Euclidean distance between a pair of
those parameter vectors. Table 2 reports the distances with or without using the
classifier discrepancy loss, in terms of K = 3 on CIFAR-100. Notably, this loss
succeeds in increasing the disagreement among the side classifiers in case that
they learn nearly identical parameters.

Comparison between in-distribution and OOD samples. Recall that the
objective of Stage II is to make the side classifiers produce consistent predic-
tions for in-distribution samples but distinct predictions for OOD samples. We
use the L1-norm distance in Eq. 3 to quantify the discrepancy among the pre-
dictions (Fig. 4). It can be seen that the disagreements for most in-distribution
samples are close to 0, while the OOD samples has much larger disagreements.
In this example, we show the results when t = 1 on CIFAR-100, while similar
behavior is observed as well for subsequent tasks.

Evaluation of different OOD datasets. This experiment shows the perfor-
mance when we choose OOD samples from different datasets. Apart from the
SVHN dataset, we additionally use another two datasets including FaceScrub [32]
and TrafficSign [40]. The results in Fig. 5 depict that our MUC is robust to dif-
ferent OOD datasets. We choose to use SVHN due to its popularity in the field.



12 Y. Liu et al.

20 40 60 80 100

Number of classes

30

40

50

60

70

80

A
cc

ur
ac

y 
(%

)

MUC-MAS, SVHN
MUC-MAS, FaceScrub
MUC-MAS, TrafficSign

20 40 60 80 100

Number of classes

40

50

60

70

80

90

A
cc

ur
ac

y 
(%

)

MUC-LwF, SVHN
MUC-LwF, FaceScrub
MUC-LwF, TrafficSign

(a) 5 sequential tasks on CIFAR-100

40 80 120 160 200
Number of classes

10

20

30

40

50

60

70

A
cc

ur
ac

y 
(%

)

MUC-MAS, SVHN
MUC-MAS, FaceScrub
MUC-MAS, TrafficSign

40 80 120 160 200
Number of classes

30

35

40

45

50

55

60

A
cc

ur
ac

y 
(%

)

MUC-LwF, SVHN
MUC-LwF, FaceScrub
MUC-LwF, TrafficSign

(b) 5 sequential tasks on Tiny ImageNet

Fig. 5: Performance of MUC-MAS and MUC-LwF by using different OOD
datasets. Our results are consistent across three OOD datasets.

Table 4: Effect of increasing the
trade-off parameter λ for incremen-
tally learning 5 tasks on CIFAR-100.

Method Parameter 20 40 60 80 100

MAS λ = 0.01 82.6 53.2 41.2 33.9 27.5
MAS λ = 0.02 82.6 57.6 45.4 36.7 30.8

MUC-MAS λ = 0.01 82.6 58.4 46.3 37.9 31.7
MUC-MAS λ = 0.02 82.6 59.5 48.2 40.8 34.4

Table 5: Analyzing the stability fac-
tor in MUC-MAS. This comparison
is performed on the five tasks of
CIFAR-100. The fixed factor is 1.5.

MUC-MAS 20 40 60 80 100

w/o stability factor 82.6 57.6 45.4 36.7 30.8
with fixed factor 82.6 57.0 45.6 37.0 31.0

with stability factor 82.6 58.4 46.3 37.9 31.7

Two-stage versus one-stage. We aim to show the advantage of the two-stage
fashion for training MUC. To this end, we also implement a one-stage training
fashion, in which the main and side classifiers are trained simultaneously. As
such, the total objective is composed of three terms: cross-entropy loss, classifier
discrepancy loss and regularization loss. We report the comparison results in
Table 3, where the two-stage training performs better than the one-stage training
for a larger number of tasks. The main reason is that the classifier discrepancy
loss has a negative effect on the regularization loss in the one-stage training.
Hence, we decouple these two loss terms in two stages.

Effect of the trade-off parameter λ. We fix λ to be 0.01 for MAS and
MUC-MAS, while it is encouraged to test the performance by increasing λ. In
Table 4, we compare the results when λ = 0.01 and λ = 0.02. First, both MAS
and MUC-MAS yield considerable gains due to a larger λ. Importantly, the
results of MUC-MAS with λ = 0.01 are even better than those of MAS with
λ = 0.02. The reason is that MUC-MAS learns complementary regularization
terms derived from the side classifiers, rather than simply increasing λ for the
regularization term from the main classifier. However, when λ = 0.02, we find
an impractical trend that the accuracy of new tasks is lower than that of old
tasks. In other words, the method tends to trade new tasks accuracy for higher
accuracy of old tasks. To avoid this issue, we instead choose to use λ = 0.01.

Effect of stability factors. Regarding MUC-MAS, we discuss the results with
or without using stability factors (Table 5). Using stability factors brings about
1% gains across the tasks. In addition, we consider using a fixed factor for all
parameters and compare it with our parameter-adaptive stability factor. For



A Generic Multi-classifier Paradigm for Incremental Learning 13

1 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

Im
po

rt
an

ce
 w

ei
gh

t Main Side-1 Side-2 Side-3

(a) Stable parameters

1 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

Im
po

rt
an

ce
 w

ei
gh

t Main Side-1 Side-2 Side-3

(b) Unstable parameters

Fig. 6: Importance weights derived from the main classifier (Main) and three side
classifiers (Side-1, Side-2 and Side-3). Based on the stability factors, we choose
to show (a) 100 stable parameters and (b) 100 unstable parameters.

fairness, The fixed factor is set with 1.5 which is the average value of all stability
factors. We see that the performance with fixed factors has no considerable gains.
It suggests the advantage of our stability factor that adapts to each individual
parameter. Although the performance gains are not significant, our stability
factor provides a new degree to analyze the parameters in the network.
Comparison of importance weights. For MUC-MAS, we investigate impor-
tant weights captured from the main classifier and side classifiers. Instead of
choosing the parameters randomly or manually, we provide a robust selection
based on the stability factors. To be specific, we rank all the parameters by their
stability factors, and choose 100 stable parameters that have the largest factors
and 100 unstable parameters being with the smallest factors. Figure 6 visually
compares the importance weights from the main classifier and side classifiers.
For 100 stable parameters, the importance weights from the side classifiers are
almost the same as those from the main classifier. On the other hand, regarding
100 unstable parameters, each classifier produces a different importance weight.
Our method allows to quantify the stability of the parameters and help to dis-
cover potentially stable parameters.
Visualization of soft labels. Regarding MUC-LwF, this experiment is to study
the soft labels from the classifiers. Specifically, we pick up one class from task
t = 5 and feed its data into four old models when t = 1 to t = 4. Then, we
extract the soft labels from each old model and visualize the distributions with
t-SNE [28] (Fig. 7). First, the distributions with three side classifiers are different
from that with the main classifier. In addition, the distributions associated with
three side classifiers tend to differ more largely from t = 1 to t = 4.

4.5 Learning with Exemplars

It is feasible to extend MUC to the scenario of storing some exemplars for old
classes, even though it is not the core of our work. Following iCaRL [35], we
store a fixed budget of 2000 exemplars. Instead of using the herding algorithm
in iCaRL, we select an equal number of samples for new and old classes, and
additionally run a balanced fine-tuning stage. As suggested in recent work [4,49],
this simple fine-tuning stage achieves competitive performance with iCaRL. We
adapt exemplars to the methods including MAS, LwF, MUC-MAS and MUC-
LwF (Fig. 8). In the case of using exemplars, MUC-LwF∗ yields 3% gains against



14 Y. Liu et al.

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

Main
Side-1
Side-2
Side-3

(a) t=1

-40 -30 -20 -10 0 10 20 30 40 50
-50

0

50
Main
Side-1
Side-2
Side-3

(b) t=2

-50 -40 -30 -20 -10 0 10 20 30 40
-50

-40

-30

-20

-10

0

10

20

30

40

Main
Side-1
Side-2
Side-3

(c) t=3

-50 -40 -30 -20 -10 0 10 20 30 40
-50

-40

-30

-20

-10

0

10

20

30

40

Main
Side-1
Side-2
Side-3

(d) t=4

Fig. 7: Visualization of soft labels extracted from the main classifier (M) and
three side classifiers (Side-1, Side-2 and Side-3). Given the image samples from
one class, it visually shows how their soft labels from each classifier change over
a sequence of tasks (more details when zoomed in).

20 40 60 80 100

Number of classes

30

40

50

60

70

80

A
cc

ur
ac

y 
(%

)

5 sequential tasks (g=20)

MAS

MUC-MAS

LwF

MUC-LwF

MAS*

MUC-MAS*

LwF*

iCaRL*

MUC-LwF*

20 40 60 80 100

Number of classes

20

30

40

50

60

A
cc

ur
ac

y 
(%

)

5 sequential tasks (g=40)

MAS

MUC-MAS

LwF

MUC-LwF

MAS*

MUC-MAS*

LwF*

iCaRL*

MUC-LwF*

Fig. 8: Results of incrementally learning 5 tasks in the setting of using exemplars
for (Left) CIFAR-100 and (Right) Tiny ImageNet. The methods with ‘*’ store
a fixed budget of 2000 exemplars for old tasks; otherwise are exemplar-free.

LwF∗ and 1.5% gains against iCaRL∗. Despite the fact that the performance gap
becomes slight due to using exemplars, it will be a promising direction about
how to fully leverage exemplars in the MUC paradigm.

5 Conclusion

We have proposed a generic multi-classifier incremental learning paradigm, based
on which we further develop two instantiations to improve the effectiveness of
parameter and activation regularization, respectively. Compared with the single-
classifier methods, our MUC has achieved higher accuracy and less forgetting
across tasks and datasets. Through additional component analysis, MUC demon-
strated more insights which were not shown in the single-classifier paradigm. This
work makes us realize that the classifiers play a crucial role in the scenario of
incrementally learning tasks. In the future, it is promising to exploit MUC for
other vision applications in the context of incremental learning, such as object
detection and semantic segmentation.

Acknowledgements

This research was funded by Huawei as part of an HIRP Open project and by
the FWO project “Structure from Semantics” (grant number G086617N).



A Generic Multi-classifier Paradigm for Incremental Learning 15

References

1. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory
aware synapses: Learning what (not) to forget. In: ECCV. pp. 144–161 (2018)

2. Belouadah, E., Popescu, A.: IL2M: class incremental learning with dual memory.
In: ICCV. pp. 583–592 (2019)

3. Carpenter, G.A., Grossberg, S.: Art 2: self-organization of stable category recog-
nition codes for analog input patterns. Appl. Opt. 26(23), 4919–4930 (1987)

4. Castro, F.M., Maŕın-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end
incremental learning. In: ECCV. pp. 241–257 (2018)

5. Cermelli, F., Mancini, M., Bulò, S.R., Ricci, E., Caputo, B.: Modeling
the background for incremental learning in semantic segmentation. CoRR
abs/2002.00718 (2020)

6. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.S.: Riemannian walk for
incremental learning: Understanding forgetting and intransigence. In: ECCV. pp.
556–572 (2018)

7. Dhar, P., Singh, R.V., Peng, K., Wu, Z., Chellappa, R.: Learning without memo-
rizing. In: CVPR. pp. 5138–5146 (2019)

8. Duan, L., Tsang, I.W., Xu, D., Chua, T.: Domain adaptation from multiple sources
via auxiliary classifiers. In: ICML. pp. 289–296 (2009)

9. Farquhar, S., Gal, Y.: Towards robust evaluations of continual learning. CoRR
abs/1805.09733 (2018)

10. Hao, Y., Fu, Y., Jiang, Y., Tian, Q.: An end-to-end architecture for class-
incremental object detection with knowledge distillation. In: ICME. pp. 1–6 (2019)

11. He, C., Wang, R., Shan, S., Chen, X.: Exemplar-supported generative reproduction
for class incremental learning. In: BMVC. p. 98 (2018)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

13. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
NIPS Deep Learning and Representation Learning Workshop (2015)

14. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Lifelong learning via progressive
distillation and retrospection. In: ECCV. pp. 452–467 (2018)

15. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incre-
mentally via rebalancing. In: CVPR. pp. 831–839 (2019)

16. Hsu, Y., Liu, Y., Kira, Z.: Re-evaluating continual learning scenarios: A catego-
rization and case for strong baselines. CoRR abs/1810.12488 (2018)

17. Kemker, R., Kanan, C.: Fearnet: Brain-inspired model for incremental learning.
In: ICLR (2018)

18. Kirkpatrick, J., Pascanu, R., Rabinowitz, N.C., Veness, J., Desjardins, G., Rusu,
A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D.,
Clopath, C., Kumaran, D., Hadsell, R.: Overcoming catastrophic forgetting in neu-
ral networks. PNAS 114 13, 3521–3526 (2016)

19. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto. (2009)

20. Lange, M.D., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh,
G.G., Tuytelaars, T.: Continual learning: A comparative study on how to defy
forgetting in classification tasks. CoRR abs/1909.08383 (2019)

21. Lee, C., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: AIS-
TATS (2015)



16 Y. Liu et al.

22. Lee, K., Lee, K., Shin, J., Lee, H.: Overcoming catastrophic forgetting with unla-
beled data in the wild. In: ICCV. pp. 312–321 (2019)

23. Lee, S., Kim, J., Jun, J., Ha, J., Zhang, B.: Overcoming catastrophic forgetting by
incremental moment matching. In: NIPS. pp. 4652–4662 (2017)

24. Li, Z., Hoiem, D.: Learning without forgetting. In: ECCV. pp. 614–629 (2016)
25. Liu, X., Masana, M., Herranz, L., van de Weijer, J., López, A.M., Bagdanov, A.D.:

Rotate your networks: Better weight consolidation and less catastrophic forgetting.
In: ICPR. pp. 2262–2268 (2018)

26. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In:
NIPS. pp. 6467–6476 (2017)

27. Luo, P., Zhuang, F., Xiong, H., Xiong, Y., He, Q.: Transfer learning from multiple
source domains via consensus regularization. In: CIKM. pp. 103–112 (2008)

28. van der Maaten, L., Hinton, G.: Visualizing high-dimensional data using t-sne.
JMLR 9, 2579–2605 (2008)

29. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks:
The sequential learning problem. Psychology of Learning and Motivation, vol. 24,
pp. 109 – 165. Academic Press (1989)

30. Michieli, U., Zanuttigh, P.: Incremental learning techniques for semantic segmen-
tation. In: ICCV, Workshop on TASK-CV (2019)

31. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning (2011)

32. Ng, H., Winkler, S.: A data-driven approach to cleaning large face datasets. In:
International Conference on Image Processing. pp. 343–347 (2014)

33. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong
learning with neural networks: A review. Neural Networks 113, 54–71 (2019)

34. Rajasegaran, J., Hayat, M., Khan, S., Khan, F.S., Shao, L.: Random path selec-
tion for incremental learning. Advances in Neural Information Processing Systems
(2019)

35. Rebuffi, S., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: Incremental classifier
and representation learning. In: CVPR. pp. 5533–5542 (2017)

36. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy
for unsupervised domain adaptation. In: CVPR. pp. 3723–3732 (2018)

37. Serrà, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forget-
ting with hard attention to the task. In: ICML. pp. 4555–4564 (2018)

38. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative
replay. In: NIPS. pp. 2990–2999 (2017)

39. Shmelkov, K., Schmid, C., Alahari, K.: Incremental learning of object detectors
without catastrophic forgetting. In: ICCV. pp. 3420–3429 (2017)

40. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German Traffic Sign Recog-
nition Benchmark: A multi-class classification competition. In: IEEE International
Joint Conference on Neural Networks. pp. 1453–1460 (2011)

41. Stanford: Tiny imagenet challenge, cs231n course. https://tiny-imagenet.

herokuapp.com/

42. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR. pp. 1–
9 (2015)

43. Triki, A.R., Aljundi, R., Blaschko, M.B., Tuytelaars, T.: Encoder based lifelong
learning. In: ICCV. pp. 1329–1337 (2017)

44. Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., Fu, Y.: Large scale incre-
mental learning. In: CVPR. pp. 374–382 (2019)

https://tiny-imagenet.herokuapp.com/
https://tiny-imagenet.herokuapp.com/


A Generic Multi-classifier Paradigm for Incremental Learning 17

45. Xiang, Y., Fu, Y., Ji, P., Huang, H.: Incremental learning using conditional adver-
sarial networks. In: ICCV. pp. 6618–6627 (2019)

46. Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV. pp. 1395–1403 (2015)
47. Yu, Q., Aizawa, K.: Unsupervised out-of-distribution detection by maximum clas-

sifier discrepancy. In: ICCV. pp. 9517–9525 (2019)
48. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence.

In: ICML. pp. 3987–3995 (2017)
49. Zhang, J., Zhang, J., Ghosh, S., Li, D., Tasci, S., Heck, L.P., Zhang, H., Kuo, C.J.:

Class-incremental learning via deep model consolidation. CoRR abs/1903.07864
(2019)

50. Zhou, P., Mai, L., Zhang, J., Xu, N., Wu, Z., Davis, L.S.: M2KD: multi-
model and multi-level knowledge distillation for incremental learning. CoRR
abs/1904.01769 (2019)


	More Classifiers, Less Forgetting: A Generic Multi-classifier Paradigm for Incremental Learning

