
Supplementary Materials

1 Proof of Drawback of Reward Normalization

Here we provide a short proof on our claim in the main text about the drawback
of using reward normalization in sparse reward functions where the reward is
only provided at the end of each episode (sequence of actions) leads to non-
convergence.

Let the reward function Rt be of the form

Rt =

{
k, if t = N

0, otherwise,

where the reward signal k only appears at the final timestep (t = N), and k
can take on multiple values depending on the actions taken in the whole episode
(i.e. k ∈ {K1,K2, . . . }). The discounted reward Qt at each timestep is defined
as

Qt = Rt + γRt+1,

where γ ∈ [0, 1] is called the discount factor that dictates how important
future rewards are to the policy. Applying this formula recursively to propagate
the reward signal back to the previous action gives us the relationship

Qt = γN−tk,

which is a geometric series relative to t. A common trick that is used in many
RL implementations is to normalize the discounted rewards by subtracting the
mean followed by dividing the standard variation for stability issues in back-
propagation, as this restricts the gradient updates contributed by each timestep
to be in some specified range. We can easily calculate the mean and variance of
this geometric series to be

µQ =
k(1− γN)

N(1− γ)
= k · α,

σQ = k

√
1− γ2N
N(1− γ2)

− (1− γN)2

N2(1− γ)2
= k · β,

where α and β do not depend on the reward signal k. Applying the normal-
ization scheme gives us

Qnorm, t =
Qt − µQ

σQ
=
γN−tk − k · α

k · β
=
γN−t − α

β
.

2

We can see from the result that the reward signal k disappears in the normal-
ized discounted reward terms Qnorm, t. This implies that no matter the actions
taken, all the rewards seen by the algorithm is same, which means that there
is no objective to be optimized for. Thus, optimizing does not happen, and the
policy never converges. We leave this proof as a reminder for readers interested
in re-implementation to pay attention to the reward normalization schemes em-
ployed by existing RL packages.

2 Network Architectures

In this section, we detail the network architectures used in our experiments for
reproduce-ability. We use a fixed size of 64 for the dimensions of the extracted
patch across all experiments such that the patches contain meaningful informa-
tion of object parts or textures. An open source implementation1 of the Dense
CRF was used during inference for smoothing the raw predictions as discussed
in Section 3.3.

2.1 Neural Batch Sampler

The policy of the neural batch sampler is defined by a convolutional neural
network with 5 convolutional layers and 2 fully-connected layers. In addition,
Batch Normalization is applied to the ReLU outputs following each convolutional
layer (i.e., Conv-ReLU-BN), and a softmax is applied to the outputs of the
final fully-connected layer to produce a probability distribution of the policy.
To extract a patch, we crop the image based on the current center point of the
patch (initialized at random). We shift the center point of the patch by a pixel
distance of 24 if the sampled action from the policy corresponds to one of the
eight directions and randomly select a new image (and a random initial center
point) if the sampled action corresponds to change image.

We provide information around the current 64 × 64 extracted patch to the
neural batch sampler such that it can best decide its actions (shifting patch
centers or changing images) by using a 128 × 128 × 5 tensor as input, which
corresponds to the concatenation of the RGB channels (3 channels), the current
reconstruction loss (1 channel), and the binary sampling history (1 channel) of a
128×128 window centered at the current extracted patch. The network structure
for the neural batch sampler is given in Table 1.

2.2 Autoencoder

The autoencoder is built in the form of an convolutional encoder-decoder with
one added shortcut connection to speed up training. We apply LeakyReLUs
with a negative slope of 0.2 and Batch Normalization to every layer except to
the output layers of the encoder and decoder. Since the sampled training batches

1 https://github.com/lucasb-eyer/pydensecrf/tree/master/pydensecrf

Supplementary Materials 3

Table 1. Network architecture for the neural batch sampler.

Layer Parameters
Input Dimensions Output Dimensions Kernel Size Stride Padding

Conv 1 128× 128× 5 64× 64× 16 3× 3 2 1
Conv 2 64× 64× 16 32× 32× 32 3× 3 2 1
Conv 3 32× 32× 32 16× 16× 32 3× 3 2 1
Conv 4 16× 16× 32 8× 8× 64 3× 3 2 1
Conv 5 8× 8× 64 4× 4× 64 3× 3 2 1

FC 6 1024 256 - - -
FC 7 256 9 - - -

are not sampled uniformly from the data, we do not learn the running mean
or variance for the Batch Normalization layers and use the empirical mean and
variance instead as the running mean or variance can differ dramatically across
different training batches. The network structure for the neural batch sampler
is given in Table 2.

Table 2. Network architecture for the autoencoder. Note that we add a shortcut
connection from the output of Conv5 to the output of Deconv3, doubling the input
channels to Deconv4. We set K = 200 for MVTec AD and CrackForest and K = 500
for NanoTWICE due to the more complex textures.

Layer Parameters
Input Dimensions Output Dimensions Kernel Size Stride Padding

Conv 1 64× 64× 3 32× 32× 64 4× 4 2 1
Conv 2 32× 32× 64 32× 32× 64 3× 3 1 1
Conv 3 32× 32× 64 16× 16× 128 4× 4 2 1
Conv 4 16× 16× 128 16× 16× 128 3× 3 1 1
Conv 5 16× 16× 128 8× 8× 256 4× 4 2 1
Conv 6 8× 8× 256 8× 8× 128 3× 3 1 1
Conv 7 8× 8× 128 8× 8× 64 3× 3 1 1
Conv 8 8× 8× 64 1× 1×K 8× 8 1 0

Deconv 1 1× 1×K 8× 8× 64 8× 8 1 0
Deconv 2 8× 8× 64 8× 8× 128 3× 3 1 1
Deconv 3 8× 8× 128 8× 8× 256 3× 3 1 1
Deconv 4 8× 8× 512∗ 16× 16× 256 4× 4 2 1
Deconv 5 16× 16× 256 16× 16× 128 3× 3 1 1
Deconv 6 16× 16× 128 32× 32× 128 4× 4 2 1
Deconv 7 32× 32× 128 32× 32× 64 3× 3 1 1
Deconv 8 32× 32× 64 64× 64× 3 4× 4 2 1

4

2.3 Predictor

The predictor takes heavy inspiration from existing object segmentation works
and is built using dilated convolutions. This allows the receptive field to scale
exponentially w.r.t to the number of layers instead of linearly as with normal
convolutions. In addition, we apply LeakyReLUs with a negative slope of 0.2 and
Batch Normalization to every layer except for the output, where a sigmoid acti-
vation is used to provide the labels. The input is the reconstruction loss profile
of individual pixels in images, which we define to be the 10 most recent losses in
the history across our experiments. The network structure for the predictor on
MVTec AD is given in Table 3. For NanoTWICE and CrackForest, we doubled
the amount of channels in the hidden layers as we noticed that the predictor
experienced significant underfitting.

Table 3. Network architecture for the predictor on MVTec AD. For NanoTWICE
and CrackForest, the amount of channels in the hidden layers are doubled. W and H
corresponds to the width and height of the input.

Layer Parameters
Input Dimensions Output Dimensions Kernel Size Stride Dilation Padding

Conv 1 W ×H × 10 W ×H × 32 3× 3 1 1 1
Conv 2 W ×H × 32 W ×H × 16 3× 3 1 2 2
Conv 3 W ×H × 16 W ×H × 8 3× 3 1 4 4
Conv 4 W ×H × 8 W ×H × 4 3× 3 1 8 8
Conv 5 W ×H × 4 W ×H × 1 1× 1 1 0 0

3 Hyperparameter Choice

In this section we discuss how the hyperparameters are chosen for our experi-
ments. Apart from the hyperparameters that are calculated solely from dataset
statistics, other hyperparameters mentioned below are fixed across experiments.

α reweighs the prediction loss contributed by the anomalous and non-anomalous
pixels since anomalous pixels are much fewer in quantity (see in Eq. 2 in main
text). It is defined and calculated mathematically as follows using the data in
labeled subset:

α =
non-anomalous pixels

anomalous pixels

β is calculated from the current number of trained epochs j and L (see in Eq.
3 in main text). For choosing L, it is important that the chosen hyperparameter
allows the right amount of transition between the two reward terms. In practice,
we first looked at how long it takes for the network to learn to imitate/clone the
pre-defined strategy (i.e., if we only trained on Rclone and Rcoverage alone), and
set L accordingly such that half the weight of the reward (β) is placed on Rclone

Supplementary Materials 5

as it nears convergence. Empirically, this value can change and fluctuate across
tasks, but we set K = 40000 and calculate β accordingly, which seems to work
well.

W and H is set to 256, which is the recommended input size for the im-
ages in the datasets used for evaluation. We use a batch size of N = 8 for our
experiments.

K determines how often the autoencoder is reset (see Alg. 1 in main text).
To choose this hyperparameter, we trained the autoencoder and observed how
long it takes for the reconstruction losses to converge, and we set K = 100 as
the gradient updates become small, which suggests that the network produces
very similar loss history profiles after 100 training epochs.

M determines when we start collecting the loss history profiles after resetting
and reinitializing the autoencoder (also see Alg. 1 in main text). The choice for
this hyperparameter is rather forgiving provided that K is properly chosen, as
the “noisy” loss history profiles will only make up a small amount of training
data for the loss profile based predictor. We set M = 15 in all our experiments.

The length of the loss history profiles T is chosen as 10. Since we want to
reduce the amount of overlap between two adjacent loss history profile windows,
we generally want this value to be as low as possible while being able to capture
a meaningful loss curve to serve as a feature to the predictor.

4 Additional Results

Here we present some additional results of the visualizations of our algorithm
on the various datasets in Fig. 1, 2, and 3. Some visualization of more unseen
anomaly modes during training in MVTec AD can be found in Fig. 4.

6

Fig. 1. Visualizations of our predictions on various classes in MVTec AD. The ordering
of the rows per class are the original images, the predictions, and the ground truth.

Supplementary Materials 7

Fig. 2. Visualizations of our predictions on CrackForest. The ordering of the rows are
the original images, the predictions, and the ground truth. In general, our algorithm
produce thicker/larger predictions, leading to overall lower precision despite good lo-
calization of the anomalies.

Fig. 3. Visualizations of our predictions on NanoTWICE. The ordering of the rows are
the original images, the predictions, and the ground truth. In general, our algorithm
predict larger anomalies, leading to overall lower precision despite good localization of
the anomalies.

8

Fig. 4. Visualizations of our predictions on unseen anomaly modes in various classes in
MVTec AD. The ordering of the rows are the original images, the predictions, and the
ground truth. Our model has some capability to generalize to unseen anomaly modes
not observed during training.

