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Abstract. We are interested in the detection and segmentation of anoma-
lies in images where the anomalies are typically small (i.e., a small tear
in woven fabric, broken pin of an IC chip). From a statistical learn-
ing point of view, anomalies have low occurrence probability and are
not from the main modes of a data distribution. Learning a generative
model of anomalous data from a natural distribution of data can be dif-
ficult because the data distribution is heavily skewed towards a large
amount of non-anomalous data. When training a generative model on
such imbalanced data using an iterative learning algorithm like stochas-
tic gradient descent (SGD), we observe an expected yet interesting trend
in the loss values (a measure of the learned models performance) after
each gradient update across data samples. Naturally, as the model sees
more non-anomalous data during training, the loss values over a non-
anomalous data sample decreases, while the loss values on an anomalous
data sample fluctuates. In this work, our key hypothesis is that this
change in loss values during training can be used as a feature to identify
anomalous data. In particular, we propose a novel semi-supervised learn-
ing algorithm for anomaly detection and segmentation using an anomaly
classifier that uses as input the loss profile of a data sample processed
through an autoencoder. The loss profile is defined as a sequence of recon-
struction loss values produced during iterative training. To amplify the
difference in loss profiles between anomalous and non-anomalous data,
we also introduce a Reinforcement Learning based meta-algorithm, which
we call the neural batch sampler, to strategically sample training batches
during autoencoder training. Experimental results on multiple datasets
with a high diversity of textures and objects, often with multiple modes
of defects within them, demonstrate the capabilities and effectiveness of
our method when compared with existing state-of-the-art baselines.
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1 Introduction

Given a small set of labeled images along with a set of unlabeled images, our
goal is to utilize the limited labeled data efficiently to detect and segment the
anomalies in the unlabeled set. Anomaly detection and segmentation is useful
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for applications manufacturing industry, optical inspection tasks are concerned
with picking out defective products such that they are not sold to the consumers.
Meanwhile, in safety inspection tasks such as in construction sites, cracks in
concrete or rust on metal may indicate that the structure or the foundation of
the building is unsafe, and would require workers to reinforce the problematic
sections such that it does not pose as safety risks.

Although supervised segmentation algorithms have seen significant advances
in recent years [17, 22, 7], they are difficult to apply directly to such tasks due
to the rare occurrence of anomalies during data collection. This results in an
extremely imbalanced dataset, with non-anomalous images dominating the data
while the anomalous images only making up a small fraction of the dataset. Fur-
thermore, the collected anomalies are usually underrepresented, as it is difficult
to capture all possible modes of anomalies during data collection.

Due to these challenges, it is unsurprising that the majority of the work has
been directed towards novelty detection in images using little to no supervision
from anomalous data. A family of work is interested in detecting if a new input
is out-of-distribution when compared with the training data (i.e. from differ-
ent classes), which is commonly referred to as one-class-classification or outlier
detection [10, 13, 28, 27, 15, 19]. While this type of classification on the class or
image level is important, we are concerned with a different type of “novelty” (or
anomaly), where they usually occur only in small areas in the object or image
(i.e. crack on a surface). Some works have investigated this problem with the
prior assumption that there exists a large set of anomaly-free images to be used
as training data, often referred to as unsupervised anomaly detection [6, 3, 1].

In our work, we wish to explore semi-supervised methods for anomaly detec-
tion and segmentation in images. To put more generally, this can be framed as a
binary semi-supervised segmentation task with significant skew in its data dis-
tribution. We observe that while training a generative model on the imbalanced
data using an iterative learning algorithm like SGD, the majority of the gradient
updates are dominated by the more frequently occurring non-anomalous data,
resulting in unstable and possibly non-converging behaviors for the anomalous
data. This suggests that we can use loss profiles as an informative cue for detect-
ing anomalies. Thus, we introduce an anomaly classifier to detect and segment
anomalies using the loss profiles of the data from training an autoencoder. By
periodically re-initializing and re-training the autoencoder, the resulting loss pro-
files change due to differences in both the initial weights and sampled training
batches, which provides diversified inputs to the classifier, preventing overfitting.

One question to consider is what the optimal way of sampling training batches
for the autoencoder is, such that it produces the most discriminative loss profiles.
Conventionally, heuristics-based methods such as random sampling are used to
train neural networks with the intention of providing stable gradient estimates,
but that is different from what we desire. Another heuristics-based method is
to sample on non-anomalous regions only, but this can only be done on the
small amount of labeled data as the majority of data is unlabeled. Instead of us-
ing heuristics, we introduce a Reinforcement Learning (RL) based neural batch
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sampler that is trained to produce training batches from the data for the au-
toencoder to maximize the difference of the loss profiles between the anomalies
and non-anomalies. Under this formulation, the neural batch sampler and the
classifier work together such that it achieves satisfactory prediction error on the
small labeled set of images, while the autoencoder acts as a “proxy” with the
sole purpose of providing loss profiles as input to the classifier.

In summary, the contributions of our paper is as follows:

– We propose a semi-supervised learning framework for a binary segmenta-
tion task with significant data imbalance, with the application to anomaly
detection and segmentation.

– We introduce an anomaly classifier that takes as input the reconstruction loss
profiles from an autoencoder. The autoencoder is periodically re-initialized
and re-trained, producing diversified loss profiles as input.

– We train a RL-based neural batch sampler that supplies the autoencoder
with training batches. It aims to maximize the difference of the loss profiles
between anomalous and non-anomalous regions.

– Empirical results on multiple datasets spanning a large variety of objects
and textures show our superiority over existing works.

2 Related Work

2.1 Anomaly Detection and Segmentation

Existing literature on anomaly detection and segmentation are mostly focused
on what is so called “unsupervised” anomaly detection, where it is assumed that
a known set of non-anomalous images is available as training data. Note that this
is strictly different from the formal definition of unsupervised learning, where no
knowledge on the labels are available. The goal is to then detect and segment
anomalous regions that appears differently (i.e., defects on a surface) from the
training data. Carrera et al [6] takes inspiration from traditional reconstruction-
based unsupervised anomaly detection algorithms and trains an autoencoder on
the non-anomalous images such that it overfits and uses the magnitude of re-
construction loss on test images to determine anomalous regions. There has also
been works that builds upon this, proposing to use structural losses instead of
per-pixel MSE losses [4] or to replace autoencoders with VAE [1] and GANs [21].

The aforementioned methods tries to learn features directly from the giving
training data. An alternate approach [14] uses pretrained ResNet [11] features
from ImageNet [9], but their method is restricted to per-image predictions in-
stead of spatial anomaly maps. There are also methods that apply hand-crafted
features from non-anomalous images using GMMs [5] or variational models [24],
but they have been shown to achieve subpar performance compared to the pre-
viously mentioned methods [3].

There has also been some works on applying supervised learning based ap-
proaches to tasks like crack detection in roads [8, 23]. While supervised segmen-
tation algorithms have seen significant advances in recent years [17, 22, 7], it is
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generally difficult to apply to anomaly detection tasks as argued earlier due to
the difficulty in collecting a large amount of anomalous data. In contrast to un-
supervised and fully-supervised method which are arguably at the two ends of
the spectrum, we consider a semi-supervised setting which only uses a handful
of labeled anomalous data to train a classifier. This allows us to combine the
advantages of the precision found in supervised methods and the substantially
reduced need for large amounts of data in unsupervised methods.

2.2 One-Class Classification

One-class classification, sometimes referred to as outlier detection, is concerned
about detecting out-of-distribution samples relative to the training set. While
this sounds similar to anomaly detection and can also be broadly encompassed
under novelty detection, the definition of “novelty” is extremely different for the
two tasks. One-class classification is concerned about outliers on a class-level or
image-level, where the anomalies and non-anomalies in anomaly detection tasks
generally belong to the same class. For example, while anomaly detection tasks
may be concerned about finding rust on metal, one-class classification may be
interested in distinguishing cats from a dataset of dogs.

One line of work for one-class classification focuses on using statistical mod-
eling to detect out-of-distribution samples. For example, some works fit distribu-
tions on features that are extracted from samples in the training set and denote
samples far from this distribution as outliers [10, 13, 28]. Other works [27, 15]
are based on PCA and assumes that inlier samples have high correlations and
can be spanned in low dimensional subspaces, often forming large clusters. As a
result, samples that don’t accord well in the low dimension subspace or forming
small individual clusters are denoted as outliers.

Another line of work uses deep adversarial learning for one-class classification.
Ravanbakhsh et al. [16] proposed to learn the generator as a reconstructor of
normal events, and labels chunks of events that are not reconstructed well as
anomalies. The work by Sabokrou et al. [20] takes a similar approach, but learns
a generator that refines and reconstructs noisy inlier images and distorts noisy
outlier images. This amplifies the difference in reconstruction even further and
leads to an increase in performance.

Recently, there has been work on semi-supervised one-class classification us-
ing information theoretic approaches [19]. They formulate a training objective
to model the latent distribution of the normal data to have low entropy, and the
latent distribution of anomalies to have high entropy.

3 Method

Here we introduce our algorithm for semi-supervised anomaly detection and
segmentation. Our data D is split into two sets: Dl, which contains a small
amount of image-label pairs with some collected anomalous data, and Du, which
is a large unlabeled set of images. Our goal is to leverage the entire dataset
(Dl ∪ Du) to predict the corresponding labels of the images in Du.
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Fig. 1. High-level overview of our algorithm. The solid lines represent the pipeline of
the forward pass and the red dashed lines represent the flow of the loss and reward
terms to train the predictor and the neural batch sampler. Note that we do not perform
any data augmentation nor use the FIFO buffer during inference.

3.1 Overview

On a high level, our framework contains 3 modules, a neural batch sampler, a
convolutional autoencoder, and an anomaly predictor, as depicted in Figure 1.
First, consider what happens when we train an autoencoder (AE) over the highly
imbalanced data we have. When we calculate the reconstruction loss for the AE
and update its weights, most of the loss is contributed by the non-anomalous
regions. As a result, the AE mostly optimizes for the reconstruction of the non-
anomalous regions, leading to highly fluctuating loss profiles in the anomalous
regions and more converging loss profiles in the non-anomalous regions. Based
on this observation, we train a CNN-based predictor to classify anomalies based
on the produced loss profiles. To amplify the difference between the loss profiles
of the anomalous and non-anomalous regions, and make classification easier for
the predictor, a neural batch sampler is trained using Reinforcement Learning
to supply training batches to the AE.

Having gone over the high level concepts, we now elaborate on the specific
designs of the 3 modules. Implementation details such as network architectures
and hyperparameter choices can be found in the supplementary materials.

Neural Batch Sampler The neural batch sampler is introduced to produce
training batches for the AE such that the difference between the loss profiles of
anomalous and non-anomalous regions are maximized. There are two possible
sources where this information can be inferred from: the RGB information xi and
the current pixel-wise reconstruction loss li of an image. Intuitively, the neural
batch sampler may realize that specific patterns may lead to less discriminative
loss profiles (i.e., patches that contain anomalies), while larger loss values may
correspond to anomalies due to them being harder to train. To give the sampler
an idea of what has already been sampled, we additionally supply the binary
sampling history hi as input, which are binary values indicating if the pixels
in an image have been previously sampled in the episode. These 3 sources of
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information (xi, li, hi) are concatenated to represent the state, then fed into 5
convolutional and 2 fully-connected layers, producing an output tensor which
represents the action probabilities of the policy. The action space of the policy
contains 9 actions, which corresponds to eight different directions in which to
shift the center of the extracted patch in (by a pre-specified value) and an addi-
tional action that allows the neural batch sampler to switch to a (random) new
image, with the initial center of the patch selected at random.

Autoencoder The AE is used solely to produce loss profiles for the predictor.
As a result, the design of the AE is fairly standard: it takes the input patch and
compresses it spatially into a 1 × 1 × K bottleneck tensor using convolutional
layers, then decodes it back into the original input with transpose convolution
layers. Additionally, we add some shortcut connections between the encoder and
decoder to speed up the training. A problem here is that as the AE trains and
converges, the updates become smaller, leading to decreased variety in the loss
profiles. To combat this issue, we periodically re-initialize and re-train the AE.
This is crucial to producing diversified loss profiles for training the predictor, as
every time the AE is re-trained it starts from a different set of weights and is
optimized towards different local minimas. To store the loss profiles for training
the predictor, we add them to a FIFO buffer of fixed size.

Predictor Intuitively, the predictor is a classifier performing object segmen-
tation in the “loss space” instead of the RGB space. As such, we draw many
inspirations from existing object segmentation works [17, 22, 7]. The predictor
is implemented with a fully convolutional network using dilated convolutions,
which scales up the receptive field exponentially w.r.t. the number of layers. It
takes as input loss history profiles of size W × H × T , where W and H corre-
sponds to the width and height of the image, and outputs binary segmentation
masks of size W × H × 1. We perform normalization on the raw loss history
profiles as a form of pre-processing via dividing the loss history profiles by its
mean. This allows the predictor to focus on the relative differences between the
loss profiles at individual pixels instead of their absolute values, which changes
dramatically throughout the training of the autoencoder.

3.2 Training

There are 3 modules that require training: the neural batch sampler, the AE,
and the predictor. At the high level, training steps for the three components
are repeated in an alternating fashion until convergence. First, the neural batch
sampler samples training batches for the AE, which the AE uses to performs an
update and then re-evaluates its reconstruction loss l. The reconstruction loss is
appended to the loss profile h, with the oldest element popped off (h← h[1 : ] _
l), and saved to a FIFO buffer. The predictor then samples loss profiles from
the buffer and updates itself, while producing a prediction loss for computing
the reward of the neural batch sampler. The neural batch sampler then uses the
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reward to perform an update, and the whole process repeats. As reference, the
pseudocode of the training algorithm is provided in Algorithm 1. Note that the
AE is periodically re-initialized every K update steps and we skip the first M
updates for the neural batch sampler after re-initializing the AE as the starting
reconstruction loss values are too noisy.

Algorithm 1: Training
Input: Labeled data {(xl, yl)} ∈ Dl, unlabeled data {xu} ∈ Du, hyperparameters K, M
Output: Neural batch sampler θs, predictor θp, best loss history profile h∗

begin
Initialize neural batch sampler θs, autoencoder θe, predictor θp, buffer B
Perform data augmentation on Dl, Du, giving D

′
l , D

′
u

j ← 0, hu ← 0, hl ← 0, lowest loss←∞
while not converged do

Sample patches {pl,i} ∼ D
′
l with θs, compute Rclone, Rcover

Sample patches {pi} ∼ (D
′
l ∪ D

′
u) with θs

Group {pi} into mini-batches and train θe
Evaluate reconstruction loss lu and ll on Du and Dl with θe
hl ← hl[1 : ] _ ll, hu ← hu[1 : ] _ lu
Perform data augmentation on (hl, yl) and append to B
Sample (hl, yl) ∼ B, normalize hl, calculate lpred and update θp
if j%K > M then Calculate Rpred and update θs using Eq. 1, 3, 4
if lpred < lowest loss then h∗ ← hu
if j%K = 0 then Reinitialize θe, hu, hl
j ← j + 1
Update β according to Eq. 3

Neural Batch Sampler The neural batch sampler aims to sample a sequence
of patches {p1, p2, ..., pN} from the dataset D to train the autoencoder such
that it produces the most discriminative loss profiles between the anomalies and
non-anomalies for the predictor. To achieve this, we invoke the Reinforcement
Learning framework [25], which assigns credit to the actions (in this case, how
the patches are sampled) taken based on the obtained reward at the end of the
sequence of actions. Since we wish to enhance the contrast of the loss profiles and
aid the predictor by selecting the right training batches, we define the reward
function Rpred

1 to be the negative of the prediction loss:

Rpred =

{
−lpred, t = N

0, otherwise
(1)

where the prediction loss lpred is defined as the weighted binary cross entropy
loss to account of the inherent imbalance in the data.

lpred = − 1

K

∑
K

1

WH

∑
W,H

y log ŷ + α(1− y) log (1− ŷ). (2)

1 To be more precise, this should be written as Rpred, t, but we omit the subscript t
in the paper for simplicity.
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Here K represents the batch size, α is the empirically calculated re-weighting
factor between the anomalous and non-anomalous pixels, y represents the ground
truth annotations in the small labeled subset Dl, and ŷ is the predicted labels
obtained from the predictor at the end of the framework. To prevent images with
larger anomalies from dominating the loss signal, we first take the average over
individual images with dimensionality W ×H in Eq. 2.

While we can directly use standard RL algorithms like Policy Gradient meth-
ods to optimize for a batch sampling strategy from scratch by maximizing the
obtained reward, empirical experiments show that such a naive method is ex-
tremely inefficient and makes it hard for the network to train. This is due to
the sparse nature of the rewards, which only occurs at the end of each episode
as defined in Eq. 1. To alleviate this issue, we make the observation that we do
know of a good but perhaps sub-optimal heuristics-based strategy that allows us
to bootstrap the exploration phase by assigning dense rewards for every patch
sampled via behavior cloning [18]. This allows the neural batch sampler to start
from a meaningful strategy instead of trying to learn everything from scratch.
The heuristics-based strategy is simple: only sample from locations that are
non-anomalous. Intuitively, if the autoencoder has never seen anomalies before,
then it should not have any knowledge on how to encode and decode anomalies,
leading to high loss on anomalies. Thus, we can perform behavior cloning by
running the neural batch sampler on our small labeled subset, Dl, and assign
a reward Rclone for every sampled patch by checking if the corresponding label
ypatch contains any anomalies.

In Rclone, the neural batch sampler is not concerned about the ultimate
goal of improving the contrast between the loss profiles of anomalous and non-
anomalous regions. This results in a peculiar strategy: the batch sampler will
repeatedly sample on regions near the first non-anomalous patch to minimize
the risk of sampling an anomaly. To prevent this, we encourage the neural batch
sampler to cover different portion of the data by including a small coverage bonus
Rcover. This also preserves incentive for exploration and prevents the policy from
collapsing to a single mode of action prematurely.

Naively, the training can be done in a stage-wise manner by first optimizing
for Rclone and Rcover for a good initial policy then switch over to optimizing for
Rpred for the goal of obtaining discriminative loss profiles between anomalies and
non-anomalies. However, this rough transition between the two objectives can
cause instability, so we take inspiration from scheduled sampling [2] approaches
for a smoother transition:

R = β (Rclone +Rcover) + (1− β)Rpred, β = max

(
0, 1− j

L

)
(3)

where L is a hyperparameter and β controls the weighting between the be-
havior cloning reward and the true optimization goal by putting more emphasis
on Rpred as the number of training steps j increases. In contrast, R is dominated
by the behavior cloning term when the network has just started training. This
achieves the effect of using the dense rewards from behavior cloning to bootstrap
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the neural batch sampler while ensuring a smooth transition to the desired goal
of finding a sampling strategy that improves the prediction results.

Having defined the reward function, we now apply a standard Policy Gradient
algorithm named REINFORCE [26] to update our neural batch sampler. The
update rule for REINFORCE can be written as

∇θJ(θ) = Eτ∼πθ(τ) [∇θ log πθ(τ)r(τ)] , (4)

where the sampling strategy πθ(τ) is parameterized by the neural batch sam-
pler and r(τ) is the discounted sum of rewards. The expectation is approximated
using Monte Carlo sampling, and we found empirically that using 1 rollout se-
quence of actions to approximate the gradient works out well and allows us to
use standard backpropagation to update the neural batch sampler.

We would like to note that a common trick aimed to increase the stability
of the algorithm by normalizing the rewards actually harms the training in our
scenario, where the reward is only observed during the final timestep (as defined
in Equation 1). While this trick can normalize the size of the gradient steps
between different rollouts and stabilize training, the normalization step actually
removes the reward signal during training in our scenario. A short proof of this
behavior is given in the supplementary materials.

Autoencoder Since the AE’s sole purpose is to provide a large variety of loss
profiles, its training is fairly standard. After the neural batch sampler produces
a sequence of patches, the patches are grouped into multiples of minibatches of
size N and fed into the AE. We evaluate the reconstruction loss lae between the
reconstructed patches p̂i and the input patches pi and backpropagate the loss
into the AE. To generate a diverse amount of loss profiles for training the pre-
dictor, the AE is re-initialized with random weights and re-trained periodically.
Empirically this is done after a fixed number (K) of update steps, where the
weights updates become small as the AE converges.

After each update step, we evaluate the new reconstruction loss of the dataset
D and update the loss profiles. The new reconstruction loss values are used as
input to the neural batch sampler, while the updated loss profiles of the labeled
subset Dl in a FIFO buffer for training the predictor. The best performing loss
profiles of the unlabeled subset Du is saved to disc for inference.

Predictor Fundamentally, the predictor is just a classifier that makes prediction
based on loss profiles, and thus is trained similarly to normal classifiers. While
we can directly train on the loss profiles produced by the autoencoder, this
causes problems in the mini-batch gradient estimation as loss profiles produced
within a similar time period are highly correlated and dependent on each other,
which induces significant bias in the gradient estimation and leads to training
instability. Thus, we save the loss profiles in a FIFO buffer then sample randomly
from it, which remedies the issue as the samples in a mini-batch are no longer
grouped together temporally and are more likely to be independent. After the
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predictor outputs the predicted labels, the weighted binary cross entropy loss
is calculated as described in Eq. 2 to update the predictor. Note that the same
calculated loss is used for computing the reward term in Eq. 1 for updating the
neural batch sampler.

3.3 Inference

Recall that after training, we have the saved weights of the most promising
neural batch sampler and the predictor in addition to the loss profiles of the
unlabeled set Du. The inference step is very simple: we take the loss profiles and
run it through the predictor again, producing the raw prediction results of Du.
A fully connected CRF [12] is applied to the raw predictions to smooth out the
prediction results, producing the final prediction labels. The kernel of the CRF
assumes that nearby regions with similar RGB values are likely to belong to the
same class while removing small isolated regions in the raw predictions.

3.4 Interpretations

Here we would like to draw some interesting connections and analyze our algo-
rithm in the viewpoints of traditional CV models and RL models.

The CV viewpoint One way to interpret the algorithm is to adopt the tra-
ditional image/object classification or segmentation view and treat everything
before the predictor as a special operator (i.e., the augmentations, the neural
batch sampler, and the AE) that transforms the input of the predictor from RGB
space to “loss profile space”. In this case, there exists two sources of stochas-
ticity in the transformation: the periodic re-initialization of the autoencoder,
which randomly sets the starting point in the loss space; and the randomness
that arises from the sampling strategy of the neural batch sampler, which moves
the starting point towards local minimas in the loss space. Combined together
with data augmentations on the RGB space and the loss space, this results in a
diverse one-to-many relationship between RGB images and loss profiles. This is
what enables the successful training of a parametric model under the scarcity of
labeled data.

The RL viewpoint Another way to interpret the algorithm is to adopt the
Reinforcement Learning view and consider everything other than the neural
batch sampler to be part of the environment in which a task is defined. In this
case, the environment is dynamically changing, as the reward evaluation requires
evaluating the actions of the neural batch sampler (i.e., the sampled patches) on
an ever-changing AE and a slowly converging predictor. Thus, the neural batch
sampler must find a sampling strategy that not only leads to discriminative loss
profiles between the anomalous and non-anomalous regions, but it also must
work on different training phases of AE. This is also one of the reasons that
the neural batch sampler receives the current reconstruction loss as input as
described previously.
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4 Results

We conduct a thorough evaluation on multiple datasets and compare with other
methods to demonstrate the effectiveness of our algorithm. For the baselines,
we consider two state-of-the-art algorithms that can been applied to anomaly
detection works. The first baseline is the best performing unsupervised anomaly
detection algorithm in the MVTec AD dataset paper [3], which makes predictions
based on the final pixel-wise reconstruction loss after training an autoencoder
only on non-anomalous data. Since their code is not made available publicly,
we carefully re-implemented the algorithm as described in their paper and tried
our best to reproduce the results given in the paper. The second baseline is the
U-Net [17], a state-of-the-art supervised learning method originally for binary
object segmentation, and has since been generalized to many other semantic
segmentation tasks. We also apply standard data augmentation techniques with
the baselines to help them generalize better under the scarcity of data.

Since many of these datasets were originally collected for unsupervised anomaly
detection tasks, we create our own data splits for training and testing (i.e., la-
beled and unlabeled set) as detailed in the next section.

4.1 Datasets

MVTec AD MVTec AD [3] is a dataset originally created for unsupervised
anomaly detection, where the training set consists of only non-anomalous images
and the testing set being a mix of anomalous and non-anomalous images. The
dataset includes image samples from 5 texture classes and 10 object classes, with
around 200 to 300 non-anomalous images in the original training set and around
100 images in the testing set for the majority of classes. The anomalies in the
testing set are also grouped by difference modes for analysis.

For our semi-supervised method and the supervised baseline U-Net, we first
resize all images to 256 × 256 and randomly sample 5 images from the original
testing set in each class so that we get some anomalous samples in the labeled
set (i.e. |Dl| = 5). The remainder of the original testing set is reserved for perfor-
mance evaluation. Since the training set is randomly sampled, it is possible that
the training set lacks certain anomaly modes. The unsupervised baseline is pre-
processed, trained, and evaluated exactly as in the original MVTec AD dataset
paper, which uses the original training sets with 200 to 300 non-anomalous im-
ages for training and the entirety of the testing set for performance evaluation.
The experiments were run separately for each class as in the original paper.

NanoTWICE The NanoTWICE dataset [6] is also originally a dataset col-
lected for unsupervised anomaly detection. The image samples in NanoTWICE
are close-up views of nanofibres, while the anomalies are manufacturing defects
such as unnatural arrangements or clumps in the fibre. As such, the anomalies
in NanoTWICE are often small, consisting only of a handful of pixels (refer to
Fig. 3 for examples). The dataset consists of 45 images, in which 5 images are
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anomaly-free and is originally used for training the unsupervised methods, with
the remaining 40 all containing some form of anomalies. Note that unlike the
MVTec AD dataset where some testing data are anomaly-free, all testing data
in the NanoTWICE dataset contain some form of anomaly.

For the semi-supervised approach, we create a data split similar to what we
did for the MVTec AD dataset. All images are first resized to 256 × 256, then
we randomly sample 5 images for use as our labeled set Dl. All the remaining
images are placed in the unlabeled set Du. For training the U-Net, we use Dl
and reserve Du for performance evaluation. For the unsupervised method, we
follow the recommended data split, using the 5 anomaly-free images for training
and evaluate on the remainder of the image samples.

CrackForest CrackForest [23] is originally created for a supervised learning
task with 118 images total. It contains many road images with cracks and is re-
flective of urban road surfaces. Being a dataset intended for supervised learning,
all 118 images in the dataset contain some kind of anomaly.

Like with the other datasets, we resize images to 256 × 256 and randomly
sample 5 images from the whole dataset as the labeled set Dl for our semi-
supervised method and U-Net, and reserve the remainder of the dataset as the
unlabeled set Du or for evaluation. Unlike the MVTec AD dataset, the anomalies
are not grouped by type, so we do not know if the sampled data covers all
anomaly modes, but it is highly likely that some modes are not represented
in the training set due to the low number of samples. Since the dataset does
not contain any image samples that are anomaly-free, we do not evaluate the
unsupervised method on this dataset.

4.2 Experimental Results

We report the precision, recall, and F1 measure in Table 1 for the different classes
in MVTec AD and in Table 2 for NanoTWICE and CrackForest.

While the unsupervised method has achieves good recall, the precision score
is extremely low, which impacts its overall F1 score. This happens due to a large
number of false positives being predicted from thresholding over a single point
of reconstruction loss. Such results suggests that while anomalies tend to have
higher reconstruction loss, it is not necessary that only the anomalous regions
incur higher reconstruction loss, which is why simple thresholding leads to subpar
precision. Interestingly, even with just 5 labeled samples, U-Net serves as a strong
baseline, achieving higher F1 scores when compared to the unsupervised method,
due to a higher precision in many of the categories, even if it scores a lower recall
score than the unsupervised method. On the other hand, our proposed method
consistently scores the highest on MVTec and CrackForest, boasting the highest
score in almost all performance metrics. On NanoTWICE, the proposed method
scores an extremely high recall score, but the precision falls behind of U-Net,
bringing down its F1 score.

Qualitative inspection of the segmentation results produced by our proposed
method shows why this is the case on NanoTWICE: our algorithm struggles
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Table 1. Performance of the evaluated methods on MVTec AD. The top 10 classes are
object classes and the lower 5 are texture classes. For each class, the precision, recall,
and F1 measure are given. The best performing method for each class is bolded.

Unsupervised [3] U-Net[17] Proposed
Precision Recall F1 Precision Recall F1 Precision Recall F1

Bottle 0.24 0.54 0.34 0.25 0.41 0.31 0.79 0.81 0.80
Cable 0.08 0.17 0.10 0.16 0.53 0.25 0.20 0.66 0.31

Capsule 0.05 0.25 0.08 0.04 0.08 0.05 0.10 0.14 0.12
Hazelnut 0.14 0.48 0.22 0.18 0.71 0.29 0.35 0.88 0.50

Metal Nut 0.19 0.30 0.23 0.29 0.28 0.29 0.81 0.84 0.82
Pill 0.06 0.24 0.09 0.19 0.11 0.14 0.29 0.74 0.42

Screw 0.03 0.42 0.06 0.01 0.07 0.01 0.05 0.29 0.08
Toothbrush 0.05 0.44 0.09 0.22 0.39 0.28 0.46 0.59 0.52
Transistor 0.08 0.11 0.09 0.14 0.08 0.10 0.13 0.31 0.18

Zipper 0.07 0.51 0.13 0.18 0.45 0.26 0.66 0.70 0.68
Carpet 0.04 0.42 0.08 0.33 0.62 0.43 0.56 0.69 0.62
Grid 0.01 0.82 0.02 0.07 0.51 0.12 0.10 0.62 0.17

Leather 0.01 0.61 0.02 0.11 0.78 0.20 0.23 0.88 0.36
Tile 0.18 0.24 0.21 0.31 0.46 0.37 0.88 0.50 0.64

Wood 0.11 0.28 0.16 0.28 0.49 0.36 0.41 0.63 0.50

Table 2. Performance of the evaluated methods on CrackForest and NanoTWICE.
The best performing method in each dataset is bolded per metric.

Unsupervised [3] U-Net [17] Proposed
Precision Recall F1 Precision Recall F1 Precision Recall F1

NanoTWICE 0.02 0.65 0.04 0.37 0.59 0.45 0.21 0.80 0.33
CrackForest N/A N/A N/A 0.15 0.34 0.21 0.26 0.62 0.36

with determining the exact size and shape of the anomalies. This doesn’t come
as a surprise, as the architecture of autoencoders compress spatial information
during the encoding phase, which often leads to a loss in spatial resolution dur-
ing decoding or reconstruction. Due to this, the reconstruction loss profiles of
neighboring pixels are closely related and dependent, which makes the predicting
of the exact anomalies’ boundaries difficult. This behavior greatly impacts the
precision of our method, as it produces many false positives that are not in the
ground truth. An example of this is given for CrackForest and NanoTWICE, as
depicted in Fig. 3. Looking at the visualizations in CrackForest, we can see that
the predicted masks are almost always thicker or wider (often nearly twice as
thick) than the ground truth, even though that the shapes are similar. Visualiza-
tions on the NanoTWICE dataset also shows that the predicted anomalies are
almost always larger in size and shape. Since many anomalies in NanoTWICE
are of extremely small with the size of just a handful of pixels, it makes the ef-
fect more pronounced, which is why the precision score of our proposed method
falls behind U-Net on NanoTWICE. Despite this, we argue that this behavior is
acceptable as we’re usually more concerned about the location of the anomalies
compared to the exact shape and size in practical applications.

Interestingly, our proposed method seems to be able to detect anomaly modes
that are not present during training. An example of this behavior is given in
Fig. 2. In this example, the presented modes of anomalies from different classes
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Fig. 2. Predicted labels on unseen
modes of anomalies during training
for MVTec AD. The three rows corre-
sponds to the original images, the pre-
dictions, and the ground truth.

Fig. 3. Predicted labels on CrackFor-
est (left) and NanoTWICE (right). The
three rows corresponds to the original
images, the predictions, and the ground
truth.

in MVTec were not sampled in the labeled set. While the segmentation masks
are not as good when compared to other anomaly modes that are observed
during training, we see that our proposed algorithm still has the capability to
pick them out. This suggests that due to the statistically rare occurrence of
anomalies, the loss profiles of different modes of anomalies have some common
trait in them, which can be picked up and learned by our predictor, leading to
some form of generalizability to unseen anomaly modes. We believe that this is
highly beneficial as it can help combat the difficulty of identifying and collecting
all modes of anomalous data during data collection in real-life scenarios.

5 Conclusions

We propose a novel semi-supervised learning algorithm for anomaly detection
and segmentation tasks, which can be seen as a specific type of binary segmenta-
tion task with extreme data imbalance. The algorithm consists of a neural batch
sampler and an anomaly classifier which operates on loss profiles, along with
a periodically re-initialized and re-trained autoencoder that is used as a proxy
to produce reconstruction loss profiles to transform the input space from RGB
space to loss profile space for the classifier. From re-initializing and re-training
the autoencoder with differently sampled batches, we’re able to produce diver-
sified inputs from limited supervision to successfully train a classifier.

Our algorithm is thoroughly evaluated and compared against other baselines
on three datasets, which spans a large variety of different objects and textures.
The experimental results show that by using the proposed semi-supervised al-
gorithm, we can achieve better performance even with just a handful of col-
lected anomalous samples, even with some generalization capabilities to unseen
anomaly modes. Interestingly, this also suggests that there exists some mean-
ingful information in loss profiles produced by neural networks during training
which can possibly be utilized in different ways for other tasks.
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4. Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C.: Improving unsu-
pervised defect segmentation by applying structural similarity to autoencoders. In:
Proceedings of the 14th International Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications, VISIGRAPP 2019, Volume
5: VISAPP (2019)
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