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A More details about Algorithm 1 and its implementation

In the main paper we propose the minimization of the objective

rrgnaTa(X) + | AX — |2 (A1)

through a bilinear parameterization X = BC” and using second-order optimization methods
such as Levenberg-Marquardt. In Section 5 we provide an overview of the algorithm used, and
in this section of the supplementary material we provide more details that were omitted from
the main text, in particular how to formulate the problems regarding Low-rank Matrix Recovery
(Section 5.2) and Non-rigid Structure Recovery (Section 5.3) using the pOSE error introduced in
Section 5.1.

We start by showing how the pOSE term in (A.1) can be written as linear mapping of the
elements of X, resulting in the equivalent objective

rrgnaTo(X) + || Axvec (X) — bx|%. (A2)
The terms £afine and Losg of the pOSE can be written as
Uafiine = ||[T:2X — M||% = ||(I ® Ii.2)vee (X) — m|)? (A3)
and
lose = ||T:2X — [3X O M||7 = || (I ® I'.2) — diag(m)(I ® I3))vec (X)||?, (A4)

where the matrices [1.2, 13 € R2F*3F gelect the desired rows of X and M € R2F*F gathers
all the 2D observations m; ; with i = 1,..., F and j = 1,..., P. We define m = vec (M).
The rows 2¢ — 1 and 2¢ of I'1.2.X are equal to the rows 3¢ — 2 and 3¢ — 1 of X, respectively. The
rows 2¢ — 1 and 27 of 13X are both equal to the row 3¢ of X. To obtain (A.3) and (A.4) we use
vec (AXB) = (BT ® A)vec (X), where ® denotes the Kronocker product.

This allows us to write Ax and bx in (A.2) as

B ﬁ([@l—ig) . \/ﬁm
A= T=7((I © o) - diag(m)(f@&))}’ ”X‘{ 0 ] (A9

We use this as starting point to formulate the problems of Low-rank Matrix Recovery and Non-
rigid Structure Recovery, which differ on the way X in (A.2) is parameterized.
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A.I Low-rank Matrix Recovery with pOSE errors

As seen in Section 5.2, we parameterize X = BC”, which results in the objective

p 12 12
Zaiw + [ Axvee (BCT) ~bx|% (A.6)

i=1

The pOSE term in (A.6) is no longer linear in B and C, and in order to apply Levenberg-
Marquardt method we linearize it in the neighbourhood of By and Cj as

Axvec (BCT) —bx = (Axvec (BOCE;F) — bx) + Apvec (6B) + Axrvec (6CT) (A7)

where we define
rpose = Axvec (BOCOT) —bx (A.8)
with
AB:A)((C()@I), ACT :Ax(1®Bo). (A.9)
The terms corresponding to the weighted nuclear norm can also be written in a similar fashion
since we have

> %IIBHI2 = ||B diag(v/a/2) |7 = ||(diag(v/a/2) ® I)vee (B) ||, (A.10)

3

> SNCH? = | diag(v/a/2)C [} = (1 diag(va/D)vee (CT) 2. (A1)

Again, by considering the deviations from the current estimations, B = By + 6B and C' =
Co 4 0C, we end up with

Aregs = diag(v/a/2) ® I, rregn = (diag(v/a/2) @ I)vec (Bo), (A.12)
Arege = I ® diag(v/a/2), rregc = (I ® diag(y/a/2))vec (COT) . (A.13)

As so, we can compute the residuals and jacobian in Algorithm 1 for the Low-rank Matrix Re-
covery problem as

Ap Aecr TpOSE
J = AregB 0 5 Ta = Aa (B()Cg) + ba = TregB . (A14)
0 AregC TregC

A.II Non-Rigid Structure Recovery

When considering the Non-rigid Structure Recovery problem, we use the parameterization X =
Rg(BCT) + ¢t17. This also results in a non-linear pOSE term in terms of B and C, and its
linearization around By, Cy and to are obtained as

Axvec (Rg(BCT) + tILT) —bx ~

~ (Axvec (Rg(BoCOT ) + to]LT) - bx) + Apvec (6B) + Agrvee (6CT) + Adt
(A.15)

where we now define

rpose = Axvec (Rg(BoCOT) + to]].T) —bx (A.16)
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with
Ap = Ax(IQR)I[4,(Co®I), Acr = Ax(IQR)I,(I®By), A= Ax(1RI), (A.17)

where I, maps the elements from BC” to g(BCT) such that
vec (g(BCT)) = Iyvec (BCT) . (A.18)

Since the weights a are applied to the singular values of BC'T, the weighted nuclear norm terms
can be written as (A.12) and (A.13), similarly to the Low-rank Matrix Recovery problem. The
residuals and jacobian in Algorithm 1 for the Non-rigid Strucuture Recovery problem can be
computed as

Ap AcT Ay TpOSE
J=|Awgs 0 0|, 7o=Au(BoCy)+ba=|rregn |, (A.19)
0 AregC 0 TregC

and the translation is also added to the auxiliary variable z in Algorithm 1, i.e., z = [vec (B) ; vec (CT) i .

B Results on Back, Heart and Paper Datasets

In Figure C.1 we show an example of the reprojection errors obtained for the Back, Heart and
Paper datasets in Section 5.2, for the weighted nuclear norm regularization and 7 = 0.05 (near
perspective). Even though the qualitative difference between the methods is not visible (note the
y-axis scale on the plots in Figure 1), the second-order method was still able to obtain a lower
loss than all the first-order methods.

C Results on NRSfM Challange Datasets

In this section we provide all results obtained with the weighted nuclear norm for the perspective
camera model of the NRSfM Challange datasets. These include the the log-losses (Table C.1)
and 3D reconstruction errors (Table C.2) for the ADMM and our method, in each of the six
sequences (Circle, Flyby, Line, Semi-circle, Tricky, Zigzag) of the five datasets. Recall that the
values in Tables 1 and 2 in the main text correspond to the average over the six sequences, for
each dataset. In Figures C.2 and C.3 we also show the qualitative comparison between the 3D
reconstruction obtained with the two methods and the provided 3D ground-truth structure, for
each sequence.

Note that our method is always able to obtain a lower loss compared to the ADMM, and the
3D reconstruction is always as good or much better (see the cases of Ballon-Semi-circle, Balloon-
Tricky, Paper-Tricky, and Stretch-Flyby). The only exception was the sequence Tearing-Zigzag,
where a lower loss actually resulted in a worse 3D reconstruction, which might be explained by
incorrect modeling (KX = 2 might be too low for this sequence).



Accurate Optimization of Weighted Nuclear Norm for NRSfM 21

ADMM

IRNN
[ AL

Fig. C.1: Comparison between reprojections (green) and 2D measurements (blue) ob-
tained in Section 5.2 for Back (top), Heart (middle), and Paper (bottow) datasets.

Table C.1: Log-loss on each for all sequences of the perspective datasets.
Method \Sequence| Circle  Flyby Line Semi-  Tricky Zigzag

circle
Articulated  ADMM-WNN [ 1822 2889 3797 -3405 -3.009 2517
wACe Ours-WNN .1.825 -2.853 -3.845 -3.408 -3.030 -2.753

ADMM-WNN -2.232 2977  -3.130 -2.607 -2.380 -3.834

Balloon Ours-WNN 2465 <3325  -3.096 -2.949 2934  -4.037
paper  ADMMEWNN [T451 3037 38220 3171 3112 3473

Ours-WNN | -2.107 -3.037 -3.823 -3171 -3.809 -3.498

suech  ADMM-WNN [ 2267 2253 -3.620 2722 3574 4542
Ours-WNN | 2275 -3.153 -3.846 -2.724 -3578 -4.546

Tearing  ADMM-WNN [I834 L1154 3302 1888 3504 1612

Ours-WNN -2.184  -1.662 -3.302 -2.067 -3.521 -2.017

Table C.2: 3D reconstruction error, in millimeters, on each for all sequences of the
perspective datasets relatively to the provided ground-truth structure.
Method \Sequence| Circle  Flyby Line Semi-  Tricky Zigzag
circle
ADMM-WNN 15.69 9.52 13.33 16.49 27.77 26.65
Ours-WNN 13.84 9.67 12.35 1432 3249  16.52

ADMM-WNN 3.56 2.64 4.73 16.06 24.46 2.23

Articulated

Balloon

Ours-WNN 207 292 478 548 2019  2.19

b ADMM-WNN | 862 471 6.71 612 3045 422

aper Ours-WNN 198 475 7.06 6.02 980 445

suecn  ADMM-WNN [ 259 1686 478 568 1565  2.80

ele Ours-WNN 2.69 2.85 6.74 558 1493 284

. ADMM-WNN | 5.10 1094  8.93 505 1857  7.09
Tearing

Ours-WNN 4.25 7.15 9.17 4.87 16.98 8.12
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Fig. C.2: Comparison between the estimated (blue) and provided (red) 3D structure for the sequences Circle, Flyby and Line.
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