Supplementary Material for “DBQ: A
Differentiable Branch Quantizer for Lightweight
Deep Neural Networks ”

Table of Contents

[Supplementary Material for “DBQ: A Differentiable Branch Quantizer

[for Lightweight Deep Neural Networks ”|

|1 Experimental Setup|.........
11 CIFAR-TON . - - oe e e e
[Data Augmentation|
[Iraining Hyperparameters|............. L.

. mageNet|

[Data Augmentation|
[Training Hyperparameters|...............

|Post-quantization Scale|
[Lernary Branch Scales|
(Quantizer Thresholds|.........

[Pre-quantization Scale]vuieiii.
|Full Precision Weights| i

3 MobileNetV2 on ImageNet Comparisons|..................
4 DBQ Branch Sparsity|o

N OO0 OO0 U R R W WW W W W W

A Differentiable Branch Quantizer for Lightweight Deep Neural Networks 3

1 Experimental Setup

In this section, we describe the experimental setup used for generating all our
results.

1.1 CIFAR-10

Data Augmentation The CIFAR-10 dataset consits of 32 x 32 RGB images.
For generating the training samples, we adopt the standard data augmentation
used in [3] where each image is: 1) zero-padded with 4 pixels on each side; 2)
horizontally flipped with probability 0.5; and 3) randomly cropped using a 32x 32
window. During testing, we use the 32 x 32 images as is from the testing set.
We also normalize the images, for both training and testing, using a per-channel
mean and standard deviation calculated across the training set.

Training Hyperparameters For training the full precision (FP) ResNet-20
baseline on CIFAR-10, we use SGD with momentum 5 = 0.9, batch size of 100,
and weight decay of A = 10~%. The FP model is trained for a total of Ex = 200
epochs, with an initial learning rate o = 0.1 and a cosine update rule [4]:

Ne = % (1 + cos (ELTW)) (1)

During the fine-tuning process, i.e. training the model with weights initialized
from the FP baseline, we train using the same setup as before, but for a fewer
number of epochs Er = 50 and a smaller initial learning rate ny = 0.01. The
DBQ models trained use a linear temperature increment schedule:

Te = CZ—‘init +e- ﬂnc (2)

with an initial temperature Ti,;; = 5 and increments Ti,. = 2.5.

1.2 ImageNet

Data Augmentation For our ImageNet experiments, we follow the standard
data augmentation used in [2], where during training, images are: 1) resized; 2)
horizontally flipped; and 3) randomly cropped to 224 x 224. During testing, all
images are resized to 256 x 256 and then cropped to 224 x 224. We also normalize
the input images on a per-channel basis.

Training Hyperparameters For training the full precision MobileNetV1 base-
line on ImageNet, we use a similar setup as our CIFAR-10 experiments, with a
slightly different learning rate schedule. Similar to [I], the first Ew epochs are
used for learning rate ”warm-up”:

_ (e41)n
Ne = TO (3)

4 H. Dbouk et al.

after which the remaining epochs utilize a cosine learning rate as described in
. The hyperparameters used for both FP and quantization fine-tuning are
specified in Table

The full precision MobileNetV2 and ShuffleNetV2 baselines on ImageNet are
pre-trained models obtained from PyTorch [5]. Their 2T quantized counterparts,
MobileNetV2-2T and ShuffleNetV2-2T, are fine-tuned using the training hyper-
parameters described in Table

l HBatch Size‘ 3 ‘ A \ Mo \EW‘ETHﬂnit‘ﬂncl
FP 512 0.9]4 x 107°] 0.1 | 5 [150[[NA [NA
Quant. 512 0.9]4 x 107°]0.001] 0 [50] 50 | 20

Table 1. Training hyperparameters used for MobileNetV1 experiments on the Ima-
geNet dataset.

| HBatch Size[B [A Mo [EWIETHTinit[Tincl
MobileNetV2-2T 256 (09[4 x 107°[5 x 10~*] 0 [50][25 | 10
ShuffleNetV2-2T 512 (09[4 x 107°] 0.001 | 0 [30] 25 | 10

Table 2. Training hyperparameters used for quantized MobileNetV2 and ShuffleNetV2
experiments on the ImageNet dataset.

1.3 Visual Wake Words

Data Augmentation For data augmentation during training, we follow the
exact setup as our ImageNet experiments with input normalization and random
horizontal flips and crops. During testing, images are normalized, resized to
256 x 256, and then cropped to 224 x 224.

Training Hyperparameters The training setup used is identical to our Ima-
geNet experiments as well, and Table [3| specifies the values of the hyperparam-
eters used for both full precision and quantization training.

2 Gradient Derivations

In this section, we provide derivations for the gradient expressions of the loss
function £ with respect to the full precision weights w € R” and the quantizer

A Differentiable Branch Quantizer for Lightweight Deep Neural Networks 5

| [Batch Size[B3] X[m0 [Ew|E1 [[Tinit| Lind]
FP 512 [0.9]4 x 107°[0.1[5 [200]| NA NA
Quant. 512 [0.9]4 x 107°[0.01] 0 |50 20 | 5

Table 3. Training hyperparameters used for experiments on the Visual Wake Words
dataset.

parameters Pg = {a1,...,ap,71,Y2,t1,...,tn—1}. Recall that during training,
the quantizer expression is:

N-1 B B
z=Qr(W) =" l Z {fT(’YlW —t;) Zbi,jaa} - Z%‘] (4)

where fT is the smooth approximation using the Sigmoid function:

A 1
fr(u) = T+ oxp(—Tw) (5)
whose derivative can be easily written as:
oFf . .
fgl(tu) = Tfr@)][1 = fr(w)] (6)

2.1 Notation

The derivations of these gradients involves computing derivatives with vectors.
Thus, in this section we establish the appropriate notation. The derivative of a
scalar y with respect to a D-dimensional vector x is:

W _[oy oy oy (7)
ox Oxry Oxe """ Oxzp
whereas the derivative of a vector y with respect to a scalar x is:
Oy1
&5
Iy _ | o (8)
Ox :
9up
ox

The derivative of a scalar y with respect to another scalar z, assuming y = g(z)
and z = f(z), can therefore be computed using the chain rule:

dz1

9z, D
@Z@'%Z[%g—y...;y} 8.76 :Z@% (9)
Or Oz Ox oo = : — Oz, Oz

0zp

ox

6 H. Dbouk et al.

2.2 Derivations
Post-quantization Scale We notice that:

&zk - Zk

= 10
9 (10)
which can be plugged in to get the gradient using the chain rule:
oL oL Oz oL 8zk oL
- = — — 11
97— 9z 0 Z 2k (11)

0z 372 82

Ternary Branch Scales We first compute Vj € [B]:

M:wle[f (y1wy, — ti)bs,]—1] =72

o
9 J i=1

N-1

> okibis] - 1] (12)

i=1

where g ; = fT(’ylwk —t;) for brevity. Therefore, using the chain rule we obtain:
N—1

oL oL Oz 0L Oz, _
= = |] 10

i=1

Quantizer Thresholds We first utilize (6) in order to compute Vi € [N — 1]:

R

(14)

B
= —’y2T|:ng — Ok,i szﬁjaj} = —WQT{hk,iZbi,jaj}
j=1 7j=1

where hg; = ggi(1 — g;m) for brevity. Therefore using the chain rule we obtain:

OL _ 0L 0z _\~OL Oz _ Y <
aiti — E . at aZk aitl = —’YQT; 672’;{; [hk,z;bz,jaj] (15)

Pre-quantization Scale Similarly, we utilize @ in order to compute:

g% :72[2 {afT V1w — Z’%J“JH — 1y Twy Z [hmzbﬂ]ﬂ

i=1 i=1
(16)

and therefore applying the chain rule yields:

oL 9L Oz L Oz D or
B B L L | X] 00

A Differentiable Branch Quantizer for Lightweight Deep Neural Networks 7

Full Precision Weights Finally, in order to compute the gradient of £ with
respect to the full precision weights w = [wy, ..., wp]T, we first compute V& € [D]:

8 m = aA rn_
8; szlz [fr('7110 Zb,j%w

i=1

(18)
7172T

i {hk i i bw%ﬂ , ifm=k
0, otherwise

and using the chain rule, we obtain:

D

oL (9£ 15} oL Oz, oL
% oz 8111 Z 8zm 27 - 7172T7 Z {hk le”aJ} (19)

3 MobileNetV2 on ImageNet Comparisons

We compare DBQ and [6] on MobileNetV2 in Table[d] [6] has two versions trained
models M1 and M2, where M1 is trained with a memory constraint and M2 is
not. We find that DBQ-2T is smaller than M2 [6] at iso-accuracy on ImageNet
and more accurate than M1 [6] but at a larger storage cost. We are unable to
compare the computational complexities since [6] lacks sufficient information,
hence we adopt the metrics reported in [6], which are weight storage (analogous
to Cpr) and activation storage (analogous to Cg — Cpr).

Model Top-1 Acc. [%] Weight Storage [MB] Activation Storage [MB]
M1 [6] (w/ constr.) 69.74 1.55 0.57
M2 [6] (w/o constr.) 70.59 3.14 1.58
DBQ-2T 70.54 2.43 1.15

Table 4. The Top-1 accuracy on ImageNet and Storage costs for MobileNetV2 using
our method (DBQ-2T) compared to [6].

4 DBQ Branch Sparsity

One of the advantages of implementing ternary-based dot products is leveraging
weight sparsity, which is reflected in our sparsity-aware computational cost Cg. In
this work, we show that for MobileNetV1 on ImageNet with two ternary branch
quantization (DBQ-2T-4), the computational cost can be reduced from 2.18 x
100 FAs to 1.42 x 100 (~ 35% reduction) by simply skipping the operations
involving zero weights. Table [5| reports the average branch level sparsity for

8 H. Dbouk et al.

[Average Branch Sparsity [%]
[PW Layer[[Cin [Cour| FX8[DBQ-1T[DBQ-2T
0 64 | 32 |35.55| 58.69 64.82
1 64 | 128 (10.74| 41.42 51.75
2 128 | 128 | 6.86 | 34.09 46.45
3 128 | 256 | 6.73 | 31.83 44.96
4 256 | 256 | 4.53 | 29.10 43.05
5 256 | 512 | 7.31| 30.62 44.36
6 512 | 512 | 6.41 | 28.50 43.40
7 512 | 512 | 6.00 | 26.48 42.94
8 512|512 |4.00 | 24.03 41.70
9 512 | 512 | 5.57 | 24.89 42.56
10 512|512 | 5.50 | 23.65 42.30
11 512 |1024| 7.00 | 23.17 42.41
12 1024]1024|10.69| 28.25 45.77
l Network Average [7.59 [26.50 [43.78 ‘

Table 5. Branch level sparsity for all the pointwise (PW) layers of MobileNetV1 on
ImageNet. Cin and Coyt denote the number of input and output channels respectively.

every point wise layer. For the DBQ-2T model, which quantizes PW layers to
two ternary branches, we find that on average 43.78% of all PW weights are zero,
which explains the massive 35% reduction in Cg. In contrast, the DBQ-1T model,
which quantizes all PW layers to one ternary branch, achieves a 26.5% average
branch sparsity. While DBQ-2T has twice the number of branches compared to
DBQ-1T, the per-branch sparsity is actually much higher for the DBQ-2T. In
other words, while the number of pointwise parameters increases by 2x when
going from 1T to 2T, due to the high branch sparsity, the number of non-zero
parameters increases by 1.53x only. On the other hand, using 8b fixed-point for
the PW layers yields very little weight sparsity (7.59%).

References

1. Goyal, P., Dollér, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tul-
loch, A., Jia, Y., He, K.: Accurate, large minibatch SGD: Training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017)

2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770778 (2016)

3. Huang, G., Liu, S., Van der Maaten, L., Weinberger, K.Q.: Condensenet: An efficient
densenet using learned group convolutions. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 2752-2761 (2018)

4. Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

A Differentiable Branch Quantizer for Lightweight Deep Neural Networks 9

5. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In:
NIPS Autodiff Workshop (2017)

6. Uhlich, S., Mauch, L., Cardinaux, F., Yoshiyama, K., Garcia, J.A., Tiedemann,
S., Kemp, T., Nakamura, A.: Mixed precision DNNs: All you need is a good
parametrization. In: International Conference on Learning Representations (2020),
https://openreview.net/forum?id=Hyx0s1rFvH [7]

https://openreview.net/forum?id=Hyx0slrFvH

