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Abstract. Person re-identification (ReID) remains a challenging task
in many real-word video analytics and surveillance applications, even
though state-of-the-art accuracy has improved considerably with the
advent of deep learning (DL) models trained on large image datasets.
Given the shift in distributions that typically occurs between video data
captured from the source and target domains, and absence of labeled
data from the target domain, it is difficult to adapt a DL model for ac-
curate recognition of target data. DL models for unsupervised domain
adaptation (UDA) are commonly designed in the feature representation
space. We argue that for pair-wise matchers that rely on metric learn-
ing, e.g., Siamese networks for person ReID, the UDA objective should
consist in aligning pair-wise dissimilarity between domains, rather than
aligning feature representations. Moreover, dissimilarity representations
are more suitable for designing open-set ReID systems, where identities
differ in the source and target domains. In this paper, we propose a
novel Dissimilarity-based Maximum Mean Discrepancy (D-MMD) loss
for aligning pair-wise distances that can be optimized via gradient de-
scent using relatively small batch sizes. From a person ReID perspective,
the evaluation of D-MMD loss is straightforward since the tracklet infor-
mation (provided by a person tracker) allows to label a distance vector
as being either within-class (within-tracklet) or between-class (between-
tracklet). This allows approximating the underlying distribution of tar-
get pair-wise distances for D-MMD loss optimization, and accordingly
align source and target distance distributions. Empirical results with
three challenging benchmark datasets show that the proposed D-MMD
loss decreases as source and domain distributions become more simi-
lar. Extensive experimental evaluation also indicates that UDA methods
that rely on the D-MMD loss can significantly outperform baseline and
state-of-the-art UDA methods for person ReID. The dissimilarity space
transformation allows to design reliable pair-wise matchers, without the
common requirement for data augmentation and/or complex networks.
Code is available on GitHub link: https://github.com/djidje/D-MMD

Keywords: Deep Learning, Domain Adaptation, Maximum Mean Dis-
crepancy, Dissimilarity Space, Person Re-identification.
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1 Introduction

Person re-identification (ReID) refers to the task of determining if a person of
interest captured using a camera has the same identity as one of the candidates
in the gallery, captured over different non-overlapping camera viewpoints. It is
a key task in object recognition, drawing significant attention due to its wide
range of applications, from video surveillance to sport analytics.

Despite the recent advances of ReID with DL models [10,17,20,24,26], and
the availability of large amounts of labeled training data, person ReID still re-
mains a challenging task due to the non-rigid structure of the human body, the
different perspectives with which a pedestrian can be observed, the variability of
capture conditions (e.g., illumination, blur), occlusions and background clutter.
In practical video surveillance scenarios, the uncontrolled capture conditions and
distributed camera viewpoints can lead to considerable intra-class variation, and
to high inter-class similarity. The distribution of image data captured with differ-
ent cameras and conditions may therefore differ considerably, a problem known
in the literature as domain shift [18,28]. Given this domain shift, state-of-the-
art DL models that undergo supervised training with a labeled image dataset
(from the source domain) often generalize poorly for images captured in a target
operational domain, leading to a decline in ReID accuracy.

Unsupervised domain adaptation (UDA) seeks resolve the domain shift prob-
lem by leveraging unlabeled data from the target domain (e.g., collected dur-
ing a calibration process), in conjunction with labeled source domain data, to
bridge the gap between the different domains. UDA techniques rely on different
approaches, ranging from the optimization of a statistical criterion to the inte-
gration of an adversarial network, in order to learn robust domain-invariant
representations from source and target domain data. Recently, several UDA
methods have been proposed for pair-wise similarity matchers, as found in per-
son ReID [5,14,27,29,30,33,34]. Common UDA approaches for metric learning
employ (1) clustering algorithms for pseudo-labeling of the target data in the
feature space, or (2) aligning feature representations of source and target data
(either by minimizing some domain discrepancy or adversarial loss) [28]. These
feature-based approaches are suitable for closed-set application scenarios, where
the source and target domains share the same label space. However, this is not
the case in open-set scenarios, where real-world person ReID systems are applied.

In this paper, we present a new concept for designing UDA methods that
are suitable for pair-wise similarity matching in open-set person ReID scenarios.
Instead of adapting the source model to unlabeled target samples in the feature
representation space, UDA is performed in the dissimilarity representation space.
As opposed to the common feature space, where a dimension represents a feature
value extracted from one sample (i.e., a vector represents this sample measured
over all features), the dissimilarity space consists of dissimilarity coordinates
where each dimension represents the difference between two samples measured
for a specific feature (i.e., a vector represents the Euclidean distance between two
samples). Accordingly, the multiple clusters that represent different classes (i.e.,
ReID identities) in the feature representation space, are transformed to only two
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clusters that represent the pair-wise within- and between-class distances. This
transformation is more suitable for open-set ReID problems, when identities
differ between the source and target domains, since the new label space has
only two labels – pair-wise similar or dissimilar. Aligning the pair-wise distance
distributions of the source and target domains in the dissimilarity space results
in a domain-invariant pair-wise matcher.

The dissimilarity representation concept was recently introduced in [6], where
a pseudo-labeling approach was proposed for UDA in still-to-video face recogni-
tion. This approach provided descent UDA results for problems with a limited
domain shift. As a specific realization of the proposed concept, this paper focuses
on a discrepancy-bases approach for dissimilarity-based UDA, that can provide
a high level of accuracy for challenging problems with significant domain shift,
as in ReID applications. To this end, we propose a variant of the common Max-
imum Mean Discrepancy (MMD) loss that is tailored for the dissimilarity repre-
sentation space. The new Dissimilarity-based MMD (D-MMD) loss exploits the
structure of intra- and inter-class distributions to align the source and target
data in the dissimilarity space. It leverages tracklet1 information to approxi-
mate the pair-wise distance distribution of the target domain, and thus estimate
a reliable D-MMD loss for alignment of source and target distance distributions.

This paper contributes a novel D-MMD loss for UDA of DL models for person
ReID. This loss allows to learn a domain-invariant pair-wise dissimilarity space
representation, and thereby bridge the gap between image data from source
and target domains (see Fig. 1). An extensive experimental analysis on three
benchmark datasets indicates that minimizing the proposed D-MMD loss allows
to align the source and target data distributions, which substantially enhances
the recognition accuracy across domains. It also allows for designing reliable
pair-wise matchers across domains, without the traditional requirement for data
augmentation and/or complex networks.

2 Unsupervised Domain Adaptation for ReID

UDA focuses on adapting a model such that it can generalize well on an unla-
beled target domain data while using a labeled source domain dataset. DL mod-
els for UDA seek to learn discriminant and domain-invariant representations
from source and target data. They are generally based on either adversarial-,
discrepancy-, or reconstruction-based approaches [28]. UDA methods have re-
ceived limited attention in ReID because of their weak performance on bench-
marks datasets compared to their supervised counterparts. Relying on a large-
amount of annotated image data, and leveraging the recent success of deep con-
volutional networks, supervised ReID approaches [1,4,17,20,23] have shown a
significant performance improvement, but UDA performance drops drastically
when tested on different datasets and large domain shifts. To deal with this issue,

1 A tracklet correspond to a sequence of bounding boxes that are captured over time
for a same person in a camera viewpoint, and obtained using a person tracker.
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Fig. 1. Deep learning model for UDA using the proposed D-MMD loss. Labeled source
images and unlabeled target images are input. First, the DL model for ReID under-
goes supervised learning with source images. Upon reaching convergence, the backbone
CNN can produce deep features from source and target images. Within-class (WC) and
between-class (BC) dissimilarity distributions are produced for source and target do-
main data. Then, the D-MMD loss is applied between WC (resp. BC) source and WC
(resp. BC) target. Supervised losses are also employed to ensure model stability.

representative methods use either clustering-based approach or domain-invariant
feature learning based approach.

In clustering-based approaches [7,14], unlabeled target data are clustered
to generate pseudo-labels, and then the network is optimized using the pseudo-
labeled target data. Accordingly, performance of these approaches highly depend
on the accuracy of clustering algorithms, and low accuracy can result in the prop-
agation of noisy labels, and a corrupted model. In contrast, the domain-invariant
feature learning based approaches [2,11,22,25,31] learn domain-invariant fea-
tures. One approach is to define a discrepancy loss function that measures the
domain shift in the feature space so that minimization of this loss decreases the
domain shift, such in CORAL [22], MMD GAN [11], and WMMD [31]. Another
approach for producing domain-invariant feature representations is through ad-
versarial training, by penalizing a classifier’s ability to differentiate between
source and target representations [2,25].

These approaches either employ pseudo-labeling using a specific set of la-
bels (classes) that exist in the source domain, or represent samples of specific
individuals similarly in both source and target domains. Therefore, these ap-
proaches are more suitable for closed-set application scenarios, where the source
and target domains share the label space. Accordingly, these approaches can be
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ineffective when applied to real-world person ReID applications that generally
correspond to an open-set scenario. Indeed, individuals that appear in the target
operational domain are typically different than those in design detests, or during
the calibration phase.

To overcome these limitations of domain-invariant feature learning ap-
proaches , a different category of methods generate synthetic labeled data
by transforming the source data to their style representative of target
data [5,29,33,34]. However, performance of these approaches completely depends
on the image generation quality. Other methods in the literature use labeled
source data to train an initial deep ReID model, and then refine the trained model
by clustering the target data [13,12,30]. These methods achieve a lower perfor-
mance as they do not leverage the labeled source data to guide the adaptation
procedure. Moreover, all aforementioned methods ignore the valuable knowledge
that can be inferred from the underlying relations among target samples.

This paper addresses the limitations of the existing UDA methods for ReID
through transferring the design space from the common feature representation
space to the dissimilarity representation space, where open-set models can be
easily adapted. This allows aligning the pair-wise distance distributions of the
source and target domains. More specifically, this approach differs from the lit-
erature in two main aspects: (1) Unlike [11,22,31], we proposed to use D-MMD
loss by exploiting the advantages of intra- and inter-class distributions along with
global distributions. This allows dealing with the open-set application scenario
exist in person ReID. (2) Our proposed approach does not rely on synthetic data
augmentation as in [5,29,33,34], nor on the sensitivity of clustering algorithms
as in [7,14].

3 Proposed Method

In this paper, a novel Dissimilarity-based Maximum Mean Discrepancy (D-
MMD) loss is proposed for UDA of ReID systems. Rather than aligning source
and target domains feature space, our D-MMD loss allows for the direct align-
ment of pair-wise distance distributions between domains. This involves j ointly
aligning the pair-wise distances from within-class distributions, as well as dis-
tances from between-class distributions. Both of these component contribute to
accurate UDA for ReID systems based on a pair-wise similarity matcher, and
have not been considered in other state-of-the-art methods. The proposed D-
MMD loss allows to optimize pair-wise distances through gradient descent using
relatively small batches.

Fig. 1 shows a DL model for UDA that relies on our D-MMD loss. For train-
ing, images xs ∈ Xs are sampled from the source domain Ds, while images
xt ∈ Xt are sampled from the target domain Dt. During UDA, the CNN back-
bone modelM is adapted to produce a discriminant feature representation φ(xs)
(resp. φ(xt)) for input images, and the distances between input feature vectors
allows estimating WC or BC distributions.
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The underlying relations between source and target domain tracklets are
employed to compute distributions of Euclidean distances based on samples of

same identity (WC), dwc, and of different identities (BC), dbc. The D-MMD
loss LD−MMD seeks to align the distance distributions of both domains through
back propagation. The overall loss function L for UDA is:

L = LSupervised + LD−MMD (1)

During inference, the ReID system performs pair-wise similarity matching. It is
therefore relevant to optimize in the similarity space, and align target similarity
distribution with well-separated intra/inter-class distribution from Ds. The rest
of this section provides additional details on the LSupervised and LD−MMD loss

functions.

3.1 Supervised Loss:

A model M is trained through supervised learning on source data Xs using a
combination of a softmax cross-entropy loss with label smoothing regularizer
(Lces) [24] and triplet loss (Ltri) [10]. Lces is defined by Szegedy et al. [24] as:

Lces = (1− ε) · Lce +
ε

N
, (2)

where N denotes total number of classes, and ε ∈ [0, 1] is a hyper-parameter
that control the degree of label smoothing. Lce is defined as:

Lce =
1

K

K∑
i

− log

(
exp(WT

yixi + byi)∑N
j=1 exp (WT

j xi + bj)

)
(3)

where K is the batch size. Class label yi ∈ {1, 2, ..., N} is associated with training
image xi, the ith training image. Weight vectors Wyi and bias byi of last fully
connected (FC) layer corresponds to class y of ith image. Wj and bj are weights
and bias of last FC corresponding of the jth class (j ∈ [1, N ]). Wj and Wyi are
respectively the jth and ythi column of W = {wij : i = 1, 2, ..., F ; j = 1, 2, ..., N},
where F is the size of the last FC layer.

Triplet loss is also employed with hard positive/negative mining as proposed
by Hermans et al. [10], where batches are formed by randomly selecting a person,
and then sampling a number of images for each person. For each sample, the
hardest positive and negative samples are used to compute the triplet loss:

Ltri =
1

Ns

Ns∑
α=1

[
m+ max(d

(
φ(xiα), φ(xip))

)
−min

i 6=j
(d
(
φ(xiα), φ(xjn))

) ]
+

(4)

where,
[
.
]
+

= max(., 0), m denotes a margin, Ns is the set of all hard triplets in

the mini-batch, and d is the Euclidean distance. xij corresponds to the jth image

of the ith person in a mini-batch. Subscript α indicates an anchor image, while p
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and n indicate a positive and negative image with respect to that same specific
anchor. φ(x) is the feature representation of an image x.

For our supervised loss, we combine both the above losses.

Lsupervised = Lces + λ · Ltri (5)

where λ is a hyper-parameter that weights the contribution of each loss term.
The softmax cross-entropy loss Lces defines the learning process as a classi-

fication task, where each input image is classified as one of the known identities
in the training set. The triplet loss Ltri allows to optimise an embedding where
feature vectors are less similar different for inter-class images, and more similar
intra-class images.

3.2 Dissimilarity-based Maximum Mean Discrepancy (D-MMD):

After training the model M, we use it to extract feature representations from
each source image xs ∈ Xs, φ(xs), and target image xt ∈ Xt, φ(xt). Then, the
within-class distances, e.g., Euclidean or L2 distances, between each different
pair of images xui and xvi of the same class i are computed:

dwc
i (xui ,x

v
i ) = ||φ(xui )− φ(xvi )||2, u 6= v (6)

where φ(.) is the backbone CNN feature extraction, and xui is the image u of the
class i. Similarly, the between-class distances are computed using each different
pair of images xui and xzj of the different class i and j:

dbc
i,j (xui ,x

z
j ) = ||φ(xui )− φ(xzj )||2, i 6= j & u 6= z (7)

Then, dwc and dbc are defined as the distributions of all distance values dwc
i

and dbc
i,j , respectively, in the dissimilarity space.

The within-class (WC) and between-class (BC) distance samples of the source
domain are computed directly using the source labels, so they capture the exact
pair-wise distance distribution of the source domain. On the other hand, given
the unlabeled target data, we leverage the tracklet information provided by
a visual object tracker. We consider the frames within same tracklet as WC
samples, and frames from different tracklets as BC samples. It is important to
note that such tracklet information provide us with an approximation of the
pair-wise distance distribution of the target domain since it lacks intra-class
pairs from different tracklets or cameras.

Maximum Mean Discrepancy (MMD) [9] metric is used to compute the dis-
tance between two distribution:

MMD(P (A), Q(B)) =
1

n2

n∑
i=1

n∑
j=1

k(ai, aj)

+
1

m2

m∑
i=1

m∑
j=1

k(bi, bj)−
2

nm

n∑
i=1

m∑
j=1

k(ai, bj) (8)
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where A (resp. B) is the source (resp. target) domain and P (A) (resp. Q(B))
is the distribution of the source (resp. target) domain. k(., .) is a kernel (e.g.
Gaussian) and ai (resp. bi) is sample i from A (resp. B). n and m are number
of training examples from P (A) and Q(B), respectively.

(a) Source distributions (b) Target without DA (c) Target with D-MMD

Fig. 2. Fig. 2(a) shows that the dissimilarity representation of the WC (blue) and BC
(orange) distributions, where BC has larger Euclidean distances than WC because the
model produces features closer for samples from same identities than that for samples
from different identities. Fig. 2(b) shows a significant overlap when target data are
represented using the initial source model, due to the intrinsic domain shift. Figure
2(c) shows that the target BC and WC distributions become aligned with the source
distributions (Fig. 2(a)) after performing UDA.

To evaluate the divergence between two domains, MMD metric is applied to
measure the difference from features produced by the source and target models
are different using:

LMMD = MMD(S, T ) (9)

S (T ) is defined as the distribution of the sources (target) images Xs (Xt)
represented in the feature space.

Our method relies on the application of the MMD in the dissimilarity repre-
sentation space instead of the common feature representation space. We define
the Lwc

MMD and Lbc
MMD loss terms as follows:

Lwc
MMD = MMD(dwc

s ,dwc
t ) (10)

Lbc
MMD = MMD(dbc

s ,dbc
t ) (11)

Minimizing the above terms aligns the pair-wise distance distributions of the
source and target domains, so that pair-wise distances from different domains
are not deferential, and hence the source model works well in the target domain.
Finally, our unsupervised loss function can be expressed as:

LD−MMD = Lwc
MMD + Lbc

MMD + LMMD (12)

Algorithm 1 presents a UDA training strategy based on the D-MMD loss. Firstly, a
supervised training phase runs for Ns epochs and produces a reference modelM using
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Algorithm 1 UDA training strategy based on the D-MMD loss.

Require: labeled source data Xs, and unlabeled target data Xt

Load source data Xs, and Initialize backbone model M
for l ∈ [1, Ns] epochs do

for each mini-batch Bs ⊂ Xs do
1) Compute Lces with Eq. 2, and Ltri with Eq. 4
2) OptimizeM

end for
end for
Load target data Xt, and Load backbone model M
for l ∈ [1, Nu] epochs do

for each mini-batch Bs ⊂ Xs each mini-batch Bt ⊂ Xt do

1) Generate dwc
s with Eq. 6, dbc

s with Eq. 7 and Bs

2) Generate dwc
t with Eq. 6, dbc

t with Eq. 7 and Bt

3) Compute LD−MMD(Bs, Bt) with Eq. 12
4) Compute LSupervised with Eq. 5 using Bs

5) OptimizeM based on overall L (Eq. 1)
end for

end for

the source domain data. Then, an unsupervised training phase runs for Nu epochs
and aligns the target and source pair-wise distance distributions by minimizing the
D-MMD loss terms defined by Eq. 9, Eq. 10, and Eq. 11. Note that the supervised loss
LSupervised is evaluated during domain adaptation to ensure the model M remains
aligned to a reliable source distribution S over training iterations remaining.

Evaluating the D-MMD loss during the UDA training strategy involves computing
the distances among each pairs of images. The computational complexity can be esti-
mated as the number of within-class and between-class distance calculations. Assuming
a common batch size of |B| for training with source and target images and a number
of occurrence of the same identity No, the total number of distance calculations is:

Ndistances = Nwc

distances +Nbc

distances = (No − 1)!
|B|
No

+No(
|B|
No
− 1)2 (13)

4 Results and Discussion

4.1 Experimental methodology:

For the experimental validation, we employ three challenging person ReID
datasets, Market-1501 [32], DukeMTMC [21] and MSMT17 [29], and compare
our proposed approach with state-of-the-art generative (GAN), tracklet-based,
and domain adaptation methods for unsupervised person ReID.

Table. 1 describes three datasets for our experimental evaluation – Market1501,
DukeMTMC and MSMT17. the Market-1501 [32] dataset comprises labels generated
using Discriminatively Trained Part-Based Models (DPM) [8]. It provides a realis-
tic benchmark, using 6 different cameras, and around ten times more images than
previously published datasets. The DukeMTMC [21] dataset is comprised of videos
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Table 1. Properties of the three challenging datasets used in our experiments. They are
listed according to their complexity (number of images, persons, cameras, and capture
conditions, e.g., occlusions and illumination changes).

Datasets
#

IDs
#

cameras
#

images
# train
(IDs)

# gallery
(IDs)

# query
(IDs)

Annotation
method

Crop
size

Market-
1501

1501 6 32217
12936
(751)

15913
(751)

3368
(751)

semi-automated
(DPM)

128x64

Duke-
MTMC

1812 8 36441
16522
(702)

17661
(1110)

2228
(702)

manual variable

MSMT17 4101 15 126441
32621
(1041)

82161
(3060)

11659
(3060)

semi-automated
(Faster R-CNN)

variable

captured outdoor at the Duke University campus from 8 cameras. MSMT17 [29] is
the largest and most challenging ReID dataset. It is comprised of indoor and outdoor
scenarios, in the morning, noon and afternoon, and each video is captured over a long
period of time.

For the supervised training, a Resnet50 architecture model is pretrained on Ima-
geNet until convergence for both Hard-Batch Triplet and Softmax Cross-Entropy loss
functions. Source domain videos are utilized for supervised training and evaluation.
Then, the source and target training videos are used to perform UDA of the source
model. Features are extracted from images of both domains using the Resnet50 CNN
backbone (with a 2048 features vector size). To compute the BC and WC distributions,
we randomly selected 4 occurrences of each class within batches of size 128. Given the
nature of data, the tracklets are subject to greater diversity, with images from different
viewpoints. The D−MMD is then computed as described in Section 3, and backprop-
agation is performed using an Adam optimizer with a single step scheduler, decreasing
the learning rate by 10 (initially 0.003) after every 20 epochs. In all steps, every image
is resized to 256× 128 before being processed.

Table 2 reports the upper bound accuracy for our datasets. To obtain this ref-
erence, we leveraged labeled source and target image data for supervised training.
The ResNet50 model is initially trained using data from a first person ReID dataset
(source domain), and then it is fine-tuned with training data from a second ReID
datasets (target domain). Accuracy is computed with the target test sets of respective
ReID datasets. We employed cross entropy loss with label smoothing regularizer 2 with
ε = 0.1, and triplet loss with a margin m = 0.3. To train DukeMTMC and Market1501,
30 epochs are required, while MSMT17 requires 59 epochs due to its larger-scale and
complexity. Results in Table 2 confirms that MSMT17 is the most challenging dataset
and shows lowest performance (63.2 % rank-1 accuracy).

Instead of optimizing the number of occurrences (frames) in a tracklet as a hyper-
parameter, we had to use a fixed number (4 occurences) since the experimental datasets
can sometime include only this number of frames per tracklet, and also for fair compar-
ison with the SOA results. The metrics used for performance evaluation are the mean
average precision (mAP), and rank-1, rank-5, rank-10 accuracy from the Cumulative
Match Curve (CMC).
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Table 2. Upper bound accuracy obtained after training on source data, and then
fine-tuning on target data. Accuracy is measured with target training data.

Dataset Accuracy
source −→ target rank-1 rank-5 rank-10 mAP

DukeMTMC −→ Market1501 89.5 95.6 97.1 75.1

Market1501 −→ DukeMTMC 79.3 89.3 92.0 62.7

DukeMTMC −→ MSMT17 63.2 77.5 82.0 33.9

4.2 Ablation study:

Table. 3 shows the impact on accuracy of the different loss terms. It is clear that

Lbc
MMD and Lwc

MMD provide important information, with a slight improvement for the
between-class (BC) component. Moreover, results show that a combination of both
losses produces better results than when each term is employed separately. Moreover,
while the classic feature-based LMMD had insignificant impact when employed sepa-
rately (as observed in [14]), it helps when combined with the other terms. This can
be explained by the fact that LMMD suffers from ambiguous association while dealing
with domain shift that exists in open-set scenarios. Nevertheless, when the domain gap
decreases to a reasonable limit (with the help of the proposed dissimilarity-based loss

terms Lbc
MMD and Lwc

MMD), the feature-based loss starts to contributing ReID accuracy.
From source DukeMTMC to target Market1501, the margin of improvement while

considering only the WC component over the baseline are 9.7% for Rank-1 accuracy
and 8.2% for mAP and for only BC component 15.7 % for Rank-1 accuracy and 12.1
% for mAP. From source Market1501 to target DukeMTMC, we reach for the WC
component 6.6 % for Rank-1 accuracy and 4.3% for mAP improvement compared to
the baseline when for BC component we obtain 21.9% for Rank-1 accuracy and 16.9
% for mAP more than the baseline.

Table. 3 shows that a model adapted using only BC information is capable to
produce better representation and leads to better results (51.8% Rank-1 accuracy)
than when using only WC (45.8% Rank-1 accuracy) for the DukeMTMC to Market1501
transfer problem. In general, combining the different terms provides better results than
when individual losses are employed.

Table 3. Ablation Study. Impact on accuracy of individual loss terms when transferring
between the DukeMTMC and Market1501 domains. (The lower bound accuracy refers
is obtained with the ResNet50 model trained on source data, and tested on target data,
without domain adaptation.)

Setting Loss Functions
Source: Duke
Target: Market

Source: Market
Target: Duke

Lsup Lwc
MMD Lbc

MMD LMMD rank-1 mAP rank-1 mAP

Lower Bound X 7 7 7 36.1 16.1 23.7 12.3

A X X 7 7 45.8 24.3 30.3 16.6

B X 7 X 7 51.8 28.4 45.6 29.2

C X X X 7 66.6 45.4 60.5 42.9

D X X X X 70.6 48.8 63.5 46.0
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In Section 3.2 (Fig.2), it is shown clearly that there is large overlap between the
intra- and inter-class pair-wise distance distributions when using the initial source
representation in the target domain. When applying the proposed method, the overlap
significantly decreases and aligned with the source distributions. Fig 3 shows the reflec-
tion of such improvement of the pair-wise distance representation on the actual Re-ID
problem. Before applying DA, there is much confusion between person representations
which can be improved significantly with applying the proposed method.

(a) (b) (c)

Fig. 3. T-SNE visualisations that show the impact of the original domain shift (3(a)
versus 3(b)). Then 3(b) and 3(c) show the impact of employing our method to decrease
domain shift, and accordingly improving the representation.

4.3 Comparison with state-of-art methods:

We compare our approach with state-of-the-art (SOTA) unsupervised methods on
Market-1501, DukeMTMC-reID and MSMT17. Lower Bound refers to the domain shift
without any adaptation. Table. 4 reports the comparison when tested on DukeMTMC
and MSMT17 with Market1501 as the source, and Table. 4 reports results when
DukeMTMC is the source.

PUL [7] and BUC [16] are clustering methods for pseudo-labeling of target data.
Such approaches lead to poor performance. We outperform them by a large margin,
16.4% Rank-1 accuracy and 18.5% mAP more from Market1501 to DukeMTMC than
BUC approach [16]. TAUDL [12] and UTAL [13] are two tracklet-based approaches
for unsupervised person ReID. Due to their fully unsupervised behavior, they obtain
worse results than our approach.

We also compare with other UDA approaches: PTGAN [29], SPGAN [5], ARN [15],
TJ-AIDL [27] (attribute-based), [3] HHL [33], ECN [34], PDA-Net [14], Wu et al. [30],
UDCA-CCE [19] (Camera-aware). Most of them are using data augmentation methods
[34,33,29,5]. We are not using such techniques which are computationally expensive and
require more memory. This also helps with problems that involve transferring from a
small dataset to a larger and more complex dataset, which reflects a natural real-world
application scenario. For the DukeMTMC to Market1501 transfer problem, we notice
that DukeMTMC is a better initialization for simpler domains such Market1501, and
it is easier to perform well in that sense (similar phenomenon for all other methods).

ECN and PDA-Net obtain better results on CMC metrics Rank-1 for this transfer
problem DukeMTMC-Market1501 than ours (ECN [34] has 5.0% more and PDA-net
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Table 4. ReID accuracy of the proposed and SOTA methods for UDA using Mar-
ket1501 as source, and DukeMTMC and MSMT17 as targets. Accuracy is obtained on
target datasets.

Methods Source: Market1501 Conference
DukeMTMC MSMT17 or Journal

r-1 r-5 r-10 mAP r-1 r-5 r-10 mAP

Lower Bound 23.7 38.8 44.7 12.3 6.1 12.0 15.6 2.0 –
PUL[7] 30.0 43.4 48.5 16.4 - - - - TOMM’18
CFSM [3] 49.8 - - 27.3 - - - - AAAI’19
BUC [16] 47.4 62.6 68.4 27.5 - - - - AAAI’19
ARN [15] 60.2 73.9 79.5 33.5 - - - - CVPR’18-WS
UCDA-CCE [19] 47.7 - - 31.0 - - - - ICCV’19
PTGAN [29] 27.4 - 50.7 - 10.2 - 24.4 2.9 CVPR’18
SPGAN+LMP[5] 46.4 62.3 68.0 26.2 - - - - CVPR’18
HHL[33] 46.9 61.0 66.7 27.2 - - - - ECCV’18
TAUDL[12] 61.7 - - 43.5 28.4 - - 12.5 ECCV’18
UTAL[13] 62.3 - - 44.6 31.4 - - 13.1 TPAMI’19
TJ-AIDL[27] 44.3 59.6 65.0 23.0 - - - - CVPR’18
Wu et al.[30] 51.5 66.7 71.7 30.5 - - - - ICCV’19
ECN[34] 63.3 75.8 80.4 40.4 25.3 36.3 42.1 8.5 CVPR’19
PDA-Net[14] 63.2 77.0 82.5 45.1 - - - - IEEE’19
D-MMD (Ours) 63.5 78.8 83.9 46.0 29.1 46.3 54.1 13.5 –

Table 5. ReID accuracy of the proposed and SOTA methods for UDA using
DukeMTMC as source, and Market1501 and MSMT17 as targets. Accuracy is obtained
on target datasets.

Methods Source: DukeMTMC Conference
Market1501 MSMT17 or Journal

r-1 r-5 r-10 mAP r-1 r-5 r-10 mAP

Lower Bound 36.6 54.5 62.9 16.1 11.3 20.6 25.7 3.7 –
PUL[7] 45.5 60.7 66.7 20.5 - - - - TOMM’18
CFSM [3] 61.2 - - 28.3 - - - - AAAI’19
BUC [16] 66.2 79.6 84.5 38.3 - - - - AAAI’19
ARN [15] 70.3 80.4 86.3 39.4 - - - - CVPR’18-WS
UCDA-CCE [19] 60.4 - - 30.9 - - - - ICCV’19
PTGAN [29] 38.6 - 66.1 - 10.2 - 24.4 2.9 CVPR’18
SPGAN+LMP [5] 57.7 75.8 82.4 26.7 - - - - CVPR’18
HHL[33] 62.2 31.4 - - - - ECCV’18
TAUDL[12] 63.7 - - 41.2 28.4 - - 12.5 ECCV’18
UTAL[13] 69.2 - - 46.2 31.4 - - 13.1 TPAMI’19
TJ-AIDL[27] 58.2 74.8 81.1 26.5 - - - - CVPR’18
Wu et al.[30] 64.7 80.2 85.6 35.6 - - - - ICCV’19
ECN[34] 75.6 87.5 91.6 43.0 30.2 41.5 46.8 10.2 CVPR’19
PDA-Net[14] 75.2 86.3 90.2 47.6 - - - - IEEE’19
D-MMD (Ours) 70.6 87.0 91.5 48.8 34.4 51.1 58.5 15.3 –
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[14] has 4.6% higher Rank-1 accuracy for only 0.5% and 0.1% on Rank-5 and rank-10
accuracy regarding ECN). We outperform all other methods in mAP metrics (5.4%
more than ECN). Since the D-MMD objective is to learn domain-invariant pair-wise
dissimilarity representations, so success can be better measured using more global
metrics, e.g., mAP, and this is validated by our results, where the proposed method
produces best results using this metric. In contrast, CMC top-1 accuracy could be
improved by training a pattern classifier (eg. MLP) to process the resulting distance
vector. Nevertheless, when considering the opposite transfer problem, i.e., Market1501
to DukeMTMC, which is much more complex, our method provides best results for all
metrics (0.3% on Rank-1, 3% on Rank-5, 3.5% on Rank-10 accuracy and 5.6% on mAP).
We also outperform state-of-the-art methods on the most challenging dataset MSMT17
by 4.2% Rank-1, 9.6% Rank-5, 11.7% Rank-10 and 5.1% mAP when considering source
DukeMTMC dataset. Similar results are observed using Market1501 as source.

Table 6. UDA accuracy of the proposed versus lower and upper bound approaches
when transferring from MSMT17 (source) to Market1501 and DukeMTMC (targets).

Methods Source: MSMT17
Market1501 DukeMTMC

rank-1 rank-5 rank-10 mAP rank-1 rank-5 rank-10 mAP

Lower Bound 43.2 61.4 68.6 20.7 47.4 63.7 69.2 27.5
D-MMD (Ours) 72.8 88.1 92.3 50.8 68.8 82.6 87.1 51.6
Upper Bound 89.5 95.6 97.1 75.1 79.3 89.3 92.0 62.7

The proposed method can provide best performance for problems where the source
domain consists in challenging data with high intra-class variability and high inter-class
similarity (e.g., MSMT17) as compared to easier target domains (e.g. Market1501 and
DukeMTMC). Such transfer problem is less explored in the literature, so in Table. 6 we
compare our results with only the lower and upper bounds. With this setup (i.e. source
is the most challenging dataset MSMT17) we obtained best results (better than these
reported on Tables 4 and 5): 77.8% Rank-1 accuracy and 50.8% mAP for Market1501
and 68.8% Rank-1 accuracy and 51.6% mAP for DukeMTMC.

5 Conclusion

In this paper, we proposed a novel dissimilarity-based UDA approach for person
ReID using MMD loss to reduce the gap between domains in the dissimilarity
space. The core idea is to exploit the advantages of using within and between-
class distances that effectively capture the underlying relations between domains
which has never been explored in the state-of-the-art. To that end, we align
the within- and between-class distance distributions for the source and target
domains to produce effective Re-ID models for the target domain. Experiments
on three challenging ReID datasets prove the effectiveness of this new approach
as it outperforms state-of-the-art methods. Moreover, our proposed loss is general
and can be applied to different feature extractors and applications.
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