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Abstract. We propose a novel adaptive transfer learning framework,
learning to transfer learn (L2TL), to improve performance on a target
dataset by careful extraction of the related information from a source
dataset. Our framework considers cooperative optimization of shared
weights between models for source and target tasks, and adjusts the con-
stituent loss weights adaptively. The adaptation of the weights is based
on a reinforcement learning (RL) selection policy, guided with a perfor-
mance metric on the target validation set. We demonstrate that L2TL
outperforms fine-tuning baselines and other adaptive transfer learning
methods on eight datasets. In the regimes of small-scale target datasets
and significant label mismatch between source and target datasets, L2TL
shows particularly large benefits.
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1 Introduction

Deep neural networks excel at understanding images [15,47], text [8] and au-
dio [36, 1]. The performance of deep neural networks improves significantly with
more training data [16]. As the applications diversify and span use cases with
small training datasets, conventional training approaches are often insufficient
to yield high performance. It becomes highly beneficial to utilize extra source
datasets and “transfer” the relevant information to the target dataset. Transfer
learning, commonly in the form of obtaining a pre-trained model on a large-
scale source dataset and then further training it on the target dataset (known
as fine-tuning), has become the standard recipe for most real-world artificial
intelligence applications. Compared to training from random initialization, fine-
tuning yields considerable performance improvements and convergence speedup,
as demonstrated for object recognition [41], semantic segmentation [30], lan-
guage understanding [8], speech synthesis [2], audio-visual recognition [33] and
language translation [53].

Towards the motivation of pushing the performance of transfer learning, re-
cent studies [35,31,26,29] have explored the direction of matching the source
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Fig. 1. L2TL and other adaptation settings. (a) Unsupervised domain adaptation in-
corporates source data and source labels for target domain adaptation, where the target
labels are not provided. (b) Knowledge distillation aims to distill source knowledge from
a teacher model to a student model, and the student model is usually more lightweight.
(c) Conventional transfer learning transfers knowledge via weights of the model pre-
trained on a source dataset, to obtain better performance on the target dataset. (d)
Our L2TL adaptively infers the importance weights of the source examples based on
the feedback from the target objective on the target validation set. With adaptive as-
signment, more relevant examples get higher weights to extract the information from
the source dataset.

and target dataset distributions. Even simple methods to encourage domain sim-
ilarity, such as prior class distribution matching in Domain Adaptive Transfer
Learning (DATL) [35], are shown to be effective — indeed, in some cases, more
important than the scale of the source dataset. Such adaptive transfer learning
approaches, as in L2TL, typically assume the availability of the labeled source
dataset for training on the labeled target dataset (that also differentiates the
setting from unsupervised domain adaptation [13] or knowledge distillation [17],
see Fig. 1), along with the pre-trained model. Given the increasing availability
of very-large scale public datasets for various data types and the demand for
cutting-edge deep learning on highly-specialized target tasks with small training
datasets, this setting is indeed getting very common in practice [7, 10, 35].

In this paper, our goal is to push this direction further by introducing a
novel reinforcement learning (RL)-based framework. Our framework, learning to
transfer learn (L2TL), adaptively infers the beneficial source samples directly
from the performance on the target task. There are cases that source samples
could have features that are implicitly relevant to the target samples and would
benefit the learning process, but they may belong to different classes. For ex-
ample, consider the classification problem for bird images. The source dataset
may not contain bird images, but may have airplane images with similar visual
patterns that would aid the training of the bird classifier as they share similar
visual patterns to learn valuable representations of the raw data. L2TL frame-
work is designed to automatically handle such cases with its policy learning, and
can push the performance further in ways that manual source dataset selection or
fized domain similarity methods may not be able to. L2TL considers cooperative
optimization of models for source and target tasks, while using adaptive weights
for scaling of constituent loss terms. L2TL leverages the performance metric on
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the target validation set as the reward to train the policy model, which outputs
the weights for each source class adaptively. Overall, L2TL does not utilize an
explicit similarity metric as in [7, 35], but learns source class weights to directly
optimize the target dataset performance.

We demonstrate promising transfer learning results given fixed models in a
wide range of scenarios:

— Source and target datasets from similar domains: L2TL consistently outper-
forms the fine-tuning baseline with a 0.6%-1.3% relative accuracy gain on five
fine-grained datasets, and DATL [35] with a 0.3%-1.5% relative accuracy gain.
When the similarities become very apparent between some source and target
classes, e.g. as in MNIST to SVHN digit recognition transfer case, the relative
accuracy gain is 3.5% compared to fine-tuning baseline.

— Large-scale source datasets: When very large-scale source datasets are used,
the selection of the relevant source classes become more important, the gain
of L2TL is up to 7.5%.

— Low-shot target dataset regime: L2TL significantly outperforms fine-tuning on
fine-grained target datasets, up to 6.5% accuracy gain with five samples per
class.

— Source and target datasets from dissimilar domains: While other advanced
transfer learning (based on explicit similarity measures) cannot be readily
applied for this scenario, L2TL outperforms the fine-tuning baseline, up to
1.7% accuracy gain on a texture dataset and 0.7 AUC gain on Chest X-Ray
dataset.

In addition, L2TL yields ranking of the source data samples according to their
contributions to the target task, that can open horizons for new forms of inter-
pretable insights.

2 Related Work

Adaptive transfer learning: There is a long history of transfer learning for
neural networks, particularly in the form of fine-tuning [12]. Various directions
were recently considered to improve standard fine-tuning. One direction is care-
fully choosing which portion of the network to adapt while optimizing the infor-
mation extraction from the source dataset. In [14], a policy network is used to
make routing decisions on whether to pass the input through the fine-tuned or
the pre-trained layers. In [27], a regularization scheme is proposed to promote
the similarity of the fine-tuned model with the pre-trained model as a favorable
inductive bias. Another direction is carefully choosing which input samples are
relevant to the target task, as in our paper. [10] uses filter bank responses to
select nearest neighbor source samples and demonstrates improved performance.
In [7], domain similarity between source and target datasets is quantified using
Earth Mover’s Distance (EMD). Transfer learning is shown to benefit from pre-
training on a source domain that is similar in EMD. With a simple greedy subset
creation selection criteria, promising results are shown for improving the target
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test set performance. Domain adaptive transfer learning (DATL) [35] employs
probabilistic shaping, where the value is proportional to the ratios of estimated
label prior probabilities. L2TL does not use a similarity metric like proximity of
filter bank responses, EMD or prior class probabilities. Instead, it aims to assign
weights to optimize the target set metric directly.

Reweighing training examples: Reweighing of constituent training terms
has been considered for various performance goals. [42] applies gradient descent-
based meta-learning to update the weights of the input data, with the goal of
providing more noise-robust and class-balanced learning. [20] formulates reweigh-
ing as a bilevel optimization problem, such that higher weights are encouraged
for the training samples with more agreement of the gradients on the validation
set. Focal loss [28] is another soft weighting scheme that emphasizes on harder
examples. In [21], a student-teacher training framework is proposed such that
the teacher model provides a curriculum via a sample weighting scheme for the
student model to focus on samples whose labels are likely to be correct. [11]
studies the value of examples via Shapley values, and it shows that downweight-
ing examples with low values might even improve performance. Reweighing of
examples is also used in self-paced learning [24, 46] where the weights are opti-
mized to learn easier examples first. In [50], an RL agent is used to adaptively
sample relevant frames from videos. In this paper, unlike the above, we focus on
transfer learning — L2TL formulates the transfer learning problem with a new
loss function, including class-relevant weights and a dataset-relevant weights.
L2TL learns the weight assignments with RL, in a setting where actions (source
data selection) are guided with the rewards (target validation performance). Un-
like gradient-descent based reweighing, RL-based rewarding is also applicable to
scenarios where the target evaluation objective is non-differentiable, e.g., area
under the curve (AUC).

Meta learning: Meta-learning broadly refers to learning to learn frameworks
[45] whose goal is to improve the adaptation to a new task with the information
extracted from other tasks. Meta learners are typically based on inspirations
from known learning algorithms like gradient descent [9] or derived from black
box neural networks [44]. As the notable meta learning application, in few-shot
learning [9, 51], the use of validation loss as a meta-objective has been explored
[40]. However, for optimization problems with non-differentiable objectives like
neural architecture search, RL-based meta-learning is shown to be a promising
approach [52, 39]. RL-based optimization has successfully been applied to other
applications with enormously-large search spaces, e.g. learning a data augmenta-
tion policy [6]. The specific form of RL application in L2TL is novel — it employs
guidance on the source dataset information extraction with the reward from the
target validation dataset performance. Different from many meta learning meth-
ods, e.g. those for few-shot learning, we consider a common real-world scenario
where a very large-scale source dataset is integrated to extract information from.
We do not employ any episodic training, hence L2TL is practically feasible to
employ on very large-scale source datasets.



Learning to Transfer Learn 5

3 Learning From Source and Target Datasets

We consider a general-form training objective function £(£2,(s, (T, A, as, ay)?
jointly defined on a source dataset Dg and a target dataset Drp:

Bs
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where (z,y) are the input and output pairs (z;,y; ~ Dg, 2,y ~ Dr), Bs
and Br are the source and target batch sizes?, a,[i] and oy[i] are the scaling
coefficients at i*" iteration, A is the importance weighing function, fs(-;$2,(s)
and fr(-;€,({r) are encoding functions for the source and the target datasets
with trainable parameters €2, (s and (1°.

To maximally benefit from the source dataset, a vast majority of the trainable
parameters should be shared. If we consider the decompositions, fs(;€,(s) =
hs(¢s)og(82) and fr(:; 2, (1) = hr(-;¢r)0g(; ), g shall be a high capacity
encoder with large number of trainable parameters that can be represented with
a deep neural network, and hp and hg are low capacity mapping functions with
small number of parameters that can be represented with very shallow neural
networks.® The learning goal of Eq. 1 is generalizing to unseen target validation
dataset, via maximization of the performance metric R:

S R(fr(@ 9,60, y)). (2)

oy ~Dfy

R does not have be differentiable with respect to x and y and may include metrics
like the top-1 accuracy or area under the curve (AUC) for classification. € and
C:r are the pre-trained weights optimized in Eq. 1.

Without transfer learning, i.e., training with only target dataset, as[i] = 0
and oy[i] = 1 for all ¢. In fine-tuning, the optimization is first considered for the
source dataset for Ng steps with uniform weighing of the samples A(z,y) = 1,
and then for the target dataset using the pre-trained weights Q, C:_p, ie.:

- (15

Next, we describe our framework towards optimal learning from source and
target datasets.

3 Function arguments are not often shown in the paper for notational convenience.

4 Batch approximations may be optimal for different batch sizes for source and target
dataset and thus may employ different batch normalization parametrization.

°In f (-; W) representation, W denote the trainable parameters.

5 Source datasets are typically much larger and contain more classes, hence hs may
have higher number of parameters than hr.



6 Zhu et al.

: >®< P e } Policy model |
2 H H H : I S
c . - H .
%: . Importance | ®4 Target/|§ource -
5 weights ' scaling
° H :
jo - .. . .
§, Training objective Training objective
o
Iy
o) 1 e LT
< ‘F Source } 1 I Target | 1
I decision layer | | I decision layer |1 .
1 ! 1 ! 5
Pt 1 F——L== 1 ;s R
H | Encoder } 1 | Encoder } 1 ig
''''' } network | 1 } network | 1 i3
777777 J I —————— I H
4 4
x1 yl x| yl
= I R FEATE Y
el - ¥ B Y R — .= 20| |ag
r— e [ o3
SummARen  [EENEEE -
—ee 3 : 9 -
B el ek @ % mg.m ~%] |2
) e | | T

T T
moecasEn $2SIRBE R

i |l lgB ! 5 s~ s T
Eﬂ%uag d=EN
Source dataset Target dataset

Fig. 2. Overall diagram of the L2TL framework. Dashed boxes correspond to trainable
functions. L2TL employs a policy model to determine weigths of the source dataset
samples, to extract the information in a careful way to maximize the target dataset
test objective. The models on source and target datasets are shared, via the encoder
network.

4 Learning to Transfer Learn Framework

We propose learning to transfer learn (L2TL) framework (shown in Fig. 2) to
learn the weight assignment adaptively, rather than using a fixed weight assign-
ment function \(z,y; ®) to measure the relatedness between the source domain
and the target domain. Learning of the adaptive weights in L2TL is guided by
the performance metric R on a held-out target validation dataset. Thus, beyond
targeting general relatedness, the framework directly targets relatedness for the
specific goal of improvement in target evaluation performance.

While optimizing for A(x,y; ®), one straightforward option for scaling coef-
ficients would be alternating them between (1,0) and (0,1) — i.e. training the
source dataset until convergence with optimized & and then training the target
dataset until convergence with the pre-trained weights from the source dataset.
Yet, the approach may potentially require many alternating update steps and
the computational cost may become prohibitively high. Instead, we design the
policy model in L2TL to output (a|i], ¢[i]) along with A.” The policy optimiza-
tion step is decoupled from the gradient-descent based optimization for €2, (s

" Without loss of generality, we can optimize a single weight «[i] (setting ay[i] = 1)
as the optimization is scale invariant.
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Algorithm 1: L2TL — Learning to Transfer Learn

N < number of training iterations

for i< 1 to N do

ls < 0,l: <0

for j «+ 1 to Bs do
Sample z;,y; from Dg
Calculate classification loss Ls(z;,y;; €2, (s)
Calculate example weight A(z;,y;; ®)

L ls = ls + A LS

ls = Qy - ls

for k + 1 to Br do

Sample x,, v}, from Dr

Calculate classification loss Lr(x},y5; Q, (1)

L e =1+ Lt
Update €, (s, (T using stochastic gradient descent with loss Is + I+
r<0

for k + 1 to Bp do
Sample 7, y;, from Dy
L Calculate reward R(fr(x};Q,¢T), y%)
r=r+R
Update ® with reward r using policy gradient

and (. Updates are reflected to the policy model via the information embodied
in © and (. Algorithm. 1 overviews the training updates steps.

In the first phase of a learning iteration, we apply gradient decent-based
optimization to learn the encoder weights €2, and the classifier layer weights
(s, (T to minimize the loss function L:

QaCAS7<'AI‘ = argminﬂ,(s,(rrﬁ(:b;QaCS7CT)' (4)

In this phase, the policy model is fixed, and its actions are sampled to determine
weights. Although most batches would contain relevant source dataset samples,
the loss might be skewed if most of source dataset samples in a batch are ir-
relevant (and would ideally get lower weights). To ease this problem, we use a
larger batch size and dynamically select the most relevant examples. At each
iteration, we sample a training batch of size Mg - Bg, and use the top Bg of
them with the highest weights for training updates. This approach also yields
computational benefits as the gradients would not be computed for most source
dataset samples until convergence.

In the second phase of a learning iteration, given encoder weights from the
first phase, our goal is to optimize policy weights ® and maximize the evaluation
metric Rp; on the target validation set:

max Rpy (€. (s, (13 D). (5)

DY, is the held-out dataset to compute the reward. We treat this phase as an RL
problem, such that the policy model outputs the action of value assignment for
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Az, y; @) and « towards optimization of the reward (with the environment being
training and evaluation setup, and the state being the encoder weights as the
consequence of the first phase). In its general form A(z,y; ®) may yield a very
high dimensionality for optimization of ®. For simplicity and computational-
efficiency, we consider sample-independent modeling of A(x, y; ®), similar to [35],
ie., ANz, y; ®) = \(y; ®).8

For more efficient optimization via efficient systematic exploration of the very
large action space, we discretize the possible values of A(y; @) into pre-defined
number of actions, in the range A\(y) € [0, 1]. We define n actions, such that each
action k € [0, n—1] corresponds to the weight value k/(n — 1). For example, when
n = 11, the weight values are [0,0.1,0.2,...,1.0]. We also discretize the possible
values for «, using n’ actions. Each action k' corresponds to Sk'/(n’ — 1), where
[ is a hyperparameter to constrain the value range of «. The search space has
n' x (cg)™ possibilities, where cg is the number of classes in the source dataset.
When training the policy model, we use policy gradient to maximize the reward
on the target dataset Dy, using a batch of Bp samples. At iteration ¢, we denote
the advantage A; = R; — by, where b, is the baseline. Following [39], we use the
moving average baseline to reduce variance, i.e., by = (1 — )b, + yR;, where ~
is the decay rate. The policy gradient is computed using REINFORCE [49] and
optimized using Adam [22].

5 Experiments

5.1 Datasets and Implementation Details

We demonstrate the performance of L2TL in various scenarios. As the source
dataset, we use the ImageNet dataset [43] containing 1.28M images from 1K
classes, and also a much larger dataset, i.e., JE'T-300M, containing ~300M im-
ages from 18,291 classes to demonstrate the scalability of our approach. As the
target datasets, we evaluate on five fine-grained image datasets (summarized in
Table 1): Birdsnap [3], Oxford-IIIT Pets [37], Stanford Cars [23], FGVC
Aircraft [32], and Food-101 [4]. In addition, we also consider transfer learn-
ing scenario from MNIST to SVHN [34] to assess the effectiveness of L2TL for
small-scale source datasets.

We also consider two target datasets with classes that do not exist in the
source datasets: Describable Textures Dataset (DTD) [5] and Chest X-Ray Dataset
CheXpert [19]. Describable Textures Dataset: DTD contains textural im-
ages in the wild from 47 classes such as striped and matted. The dataset has 20
splits and we evaluate the testing results on the first split. Each training, valida-
tion, and testing split has 1,880 images. Chest X-Ray Dataset: The CheXpert
medical dataset is used for chest radiograph interpretation task. It consists of

8 A search space with a higher optimization granularity is expected to improve the
results, albeit accompanied by significantly increased computational complexity for
meta learning of z-dependent A(z, y; ®).



Learning to Transfer Learn 9

Table 1. Details of the five fine-grained datasets: Birdsnap (Birds) [3], Oxford-IIIT
Pets (Pets) [37], Stanford Cars (Cars) [23], FGVC Aircraft (Air) [32], and Food-101
(Food) [4].

Birdsnap|Oxford-IIIT Pets|Stanford Cars|Aircraft|Food-101
# of classes 500 37 196 100 101
# of train examples| 42,405 2,940 6,494 3,334 | 68,175
# of valid examples| 4,981 740 1,650 3,333 7,575
# of test examples | 2,443 3,669 8,041 3,333 | 25,250

Table 2. Transfer learning performance with ImageNet source dataset. * indicates our
implementation.

Method Target dataset test accuracy (%)
Birdsnap | Oxford-IIIT Pets | Stanford Cars | Aircraft | Food-101
Fine-tuning [35] 7.2 93.3 91.5 88.8 88.7
Fine-tuning* 77.1 93.1 92.0 88.2 88.4
MixDCNN [48] | 74.8 - - 825 -
EMD (7] - - 91.3 85.5 88.7
OPAM [38] - 93.8 92.2 - -
DATL [35] 76.6 94.1 92.1 87.8 88.9
Our L2TL 78.1 94.4 92.6 89.1 89.2

224,316 chest radiographs of 65,240 patients labeled for 14 observations as pos-
itive, negative, or uncertain. Following [19], we report AUC on five classes and
we regard “uncertain” examples as positive.? For L2TL, we use the mean AUC
as the reward.

Implementation Details. When the source dataset is ImageNet, we use a
batch size Bg = 256, By = 256, Bp = 1024 and a batch multiplier Mg = 5 for
all the experiments. For the JFT-300M dataset, to reduce the number of training
iterations, we use Bg = 1,024. The number of actions n’ for « is 100.

We use Inception-V3 for all the experiments except CheXpert. For target
dataset, we search the initial learning rate from {0.001, 0.005, 0.01, 0.05, 0.1,
0.15, 0.2, 0.4}, and weight decay from {0,4x1075}. All the datasets are optimized
using SGD with a momentum of 0.9, trained for 20,000 iterations. We use the
single central crop during evaluation. The learning rate is cosine decayed after
first 2,000 iterations warmup. When optimizing our policy model, we use the
Adam optimizer with a fixed learning rate 0.0001. As policy model parameters,
we set § = 0.5 and v = 0.05. We follow the standard image preprocessing
procedure for Inception-V3 on both the source images and the target images.

For CheXpert, we use the DenseNet-121 architecture [18] and follow the
evaluation protocol specified in [19], where ten crops are used for evaluation
and 30 checkpoints are ensembled to obtain the final results. We cross validate

® Our reproduced results are matched with [19] on mean AUC. However, there are
variances as we can see that for some classes, we achieve slightly worse than [19].
This may because of the small number of validation examples (200) used.
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Table 3. Results on Birdsnap using JET-300M as the source dataset. The performance
is reported on the test set.

Method Birdsnap accuracy (%)
Fine-tuning 74.9
DATL [35] 817
Our L2TL 82.4

Table 4. Transfer learning from MNIST to SVHN. As shown in [29], fine-tuning shows
gains over other training cases due to the inherent similarity between datasets. L2TL
efficiently exploits this further by emphasizing on some MNIST classes more than
others, and improves the transfer learning gains significantly.

Method SVHN accuracy (%)
Random initialization 64.8
Fine-tuning 71.7
Our L2TL 75.2

weight decay and initial learning rate, where the weight decay is searched in
[0, 0.0001] and the learning rate searched in range [0.5,0.8,1.0,1.3,1.5,2.0]. All
other hyperparameters are same as above. We use the same input preprocessing
as described in https://github.com/zoogzog/chexnet.

Hyperparameters of the encoder models are chosen from the published base-
lines and the policy model parameters are cross-validated on a validation set.
For datasets that the testing accuracy is reported using the model trained on
training and validation samples, L2TL is first trained on the training set using
the reward from the validation set. Then, the learned control variables are used
to train the joint model on the combined set of training and validation samples
— we completely exclude the test set during training. For the fine-tuning exper-
iments, we use the best set of hyperparameters evaluated on the validation set.
We present the results averaged over three runs. We observe that the standard
deviation for the L2TL accuracy to be around 0.1%, much smaller than the gap
between different methods.

5.2 Similar domain transfer learning

We initially consider the scenario of target datasets with classes that mostly
exist in the source dataset.

Performance and comparison to other transfer learning methods. We
first evaluate L2TL on five fine-grained datasets focusing on different subsets,
with the reward of validation set top-1 accuracy. Table 2 shows the results of
L2TL along with fine-tuning and state-of-the-art transfer learning benchmarks.
With a well-optimized network architecture and learning rate scheduling, fine-
tuning is already a solid baseline for the datasets in Table 1 [7,35]. Yet, L2TL
outperforms fine-tuning across all the datasets with 0.6%-1.3% accuracy dif-
ference, which demonstrates the strength of L2TL in selecting related source
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examples across various domains. DATL performs worse than fine-tuning on
Birdsnap and Aircraft, unlike L2TL. This underlines the importance of leverag-
ing the visual similarity in the ways beyond label matching as in DATL. When
the much larger JFT-300M source dataset is considered, Table 3 shows that
L2TL shows even greater benefits in learning related samples to extract knowl-
edge from despite the large-scale of options, demonstrating 7.5% improvement
over the fine-tuning baseline.

We additionally conduct the experiments on transfer learning from MNIST
to SVHN [34], in a setting similar to [29]. Although both datasets correspond to
the same content of digits, the font style of digits are quite distinct, with varying
degree of differences among individual digits. Following [29], we construct the
SVHN dataset by randomly sampling 60 images per class, resulting in 600 images
in the training split. We use the pretrained LeNet [25] for transferring source
dataset of MNIST to the target dataset of SVHN. Table 4 shows that comparing
to fine-tuning, L2TL obtains more than 3.5% improvement in performance, via
upweighing of the relevant digit images from MNIST. This also validates the
effectiveness of L2TL even with small-scale source datasets.

Learning importance weights. We study the effectiveness of learning impor-
tance weights in L2TL by comparing to two baselines: (i) random search: the
policy model is not optimized and random actions are chosen as the policy out-
put, and (ii) uniform weights: a constant importance weight is assigned to all
training samples. Note that for these baselines, « is still optimized via policy
gradient. We show the best results of the baselines, after optimizing the hyperpa-
rameters on the validation set. As shown in Fig. 3, L2TL outperforms both after
sufficient number of iterations, demonstrating the importance of reweighting via
policy gradient. L2TL converges to the final result in the last few thousand it-
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Table 5. Target dataset test accuracy (%) on Stanford Car with different number of
target samples per class.

Number of samples per class
5 10 15 20
Fine-tuning 40.0 70.3 80.5 84.9
Our L2TL 46.5 73.7 83.0 86.1
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Fig. 5. Representative examples from the source datasets with high weight from L2TL
for different target datasets. In most cases, we observe the selected examples to be
highly-related to the target dataset.

erations, although a larger variance is observed at the beginning of training. We
do not observe large variations in the final performance with different runs (e.g.
the standard deviation of performance is around 0.1 % over 3 runs). As the clas-
sifiers of both the source and the target dataset converge, the small variations
in the weights for each class would not heavily affect the final performance.
Small target dataset regime. In the extreme regime of very small number
of training examples, generalizing to unseen examples is particularly challenging
as the model can be prone to overfitting. Fig. 4 shows that in most cases, we
observe significant increase in performance when the number of examples per
class is smaller. For five examples per class, the gap is as high as 6.5% (for
Stanford Car) (see Table 5). We observe that the gap between the L2TL and
the fine-tune baseline often becomes smaller when more examples are used, but
still remains as high as 1.5% with 60 examples per class (for Birdsnap). These
underline the potential of L2TL for significant performance improvements in
real-world tasks where the number of training examples are limited.
High-weight source samples. To build insights on the learned weights, we
sample 10k actions from the policy and rank the source labels according to
their weights. For Birds, the top source class is “bee eater” which is one of the
bird species in ImageNet. The second top “aepyceros melampus” is an antelope
that has narrow mouth, which is similar to some birds with sharp spout. The
“valley” also matches the background in some images. For Cars, we interestingly
observe the high-weight class “barrel, cask”, which indeed include wheels and
car-looking body types in many images. “Terrapin” is a reptile that crawls on the
ground with four legs, whose shape looks like vehicles in some way. For Food, the
high-weight classes seem relevant in a more subtle way — e.g., “caldron” might
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Fig. 6. Top source classes with the highest weight from ImageNet while transferring
to DTD target. Representative images from each ImageNet class are shown along with
related examples from DTD.

Table 6. Results on the test set on DTD, split 1.

Number of Training examples | Method Accuracy (%)
Random initialization 57.4

Full training set Fine-tuning 70.3
L2TL 72.0
Fine-tuning 55.0

10 examples per category Our L2TL 60.1

have images with food inside. Fig. 5 visualizes a few representative examples
from each dataset. More classes can be found in our supplementary material.
These demonstrate that L2TL can carefully extract the related classes from the
source based on the pattern/shape of the objects, or background scenes. L2TL
yields ranking of the source data samples, which can be utilized as new forms of
interpretable insights for model developers.

5.3 Dissimilar domain transfer learning

We evaluate L2TL on datasets that are dissimilar to the source dataset, where
alternative methods like DATL cannot be readily applied. Table 6 shows the
results on DTD. We observe that ImageNet fine-tuning greatly improves the
classification results compared to training from random initialization. L2TL fur-
ther improves the fine-tuning baseline by 1.5%, demonstrating the strength of
L2TL selectively using related source classes instead of all classes. For the low-
shot target dataset regime, with 10 examples per class, the improvement is more
than 5%, suggesting the premise of L2TL even more strongly. Fig. 6 shows that
L2TL is able to utilize visually-similar patterns between the source and the tar-
get classes. The similarities occur in the form of texture pattern for most DTD
classes. For example, “praire chicken” images from ImageNet typically contain
patterns very relevant to “lined” from DTD. Training with such visually-similar
patterns especially helps the low layers of the networks as they can reuse most
of the relevant representations when transferring knowledge [29].

Similarly, Table 7 shows the results on CheXpert, using target validation
AUC as a L2TL reward. L2TL performs better than the fine-tuning baseline
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Table 7. AUC comparisons on the CheXpert dataset. We followed the the same eval-
uation protocol in [19] .

Method Atelectasis|Cardiomegaly|Consolidation| Edema|Pleural Effusion|Mean
Fine-tuning [19] 85.8 83.2 89.9 94.1 93.4 89.3
Fine-tuning 85.2 83.8 90.0 94.5 92.8 89.3
Our L2TL 86.1 84.4 91.5 94.8 93.2 90.0

Table 8. Computational cost of training on Cloud TPU v2. We use Inception-V3 as the
backbone. The last column (“With PT model”) assumes availability of a pre-trained
source model. “TL” denotes transfer learning from source to target.

Method Number of iterations|Time per iterations Total time
Pre-training| TL |Pre-training| TL |From scratch|With PT model
Fine-tuning| 213,000 | 20,000 0.14s 0.21s 9.5h 1.2h
DATL [35] | 713,000 | 20,000 0.14s 0.21s 28.9h 20.6h
Our L2TL | 213,000 | 20,000 0.14s 0.75s 12.5h 4.2h

with an AUC improvement of 0.7. There are not many straightforward visual
similarities to humans between ImageNet and CheXpert, but L2TL is still ca-
pable of discovering them to improve performance.

5.4 Computational cost of training

L2TL uses both the source and target data for training, and the source data
can be potentially very large, but the excess computational overhead of L2TL is
indeed not large. Table 8 presents the computational cost for fine-tuning, DATL
and L2TL with Imagenet as the source dataset. In DATL, given a new target
dataset, a new model has to be trained on the resampled data until convergence.
This step is time-consuming for large-scale source datasets. In L2TL, the transfer
learning step is more expensive than fine-tuning, as it requires the computation
on both source and target datasets. Yet, it only requires a single training pass on
the source dataset, and thus the training time is much lower compared to DATL,
and only ~ 30% higher than fine-tuning when the whole training is considered.

6 Conclusions

We propose a novel RL-based framework, L2TL, to improve transfer learning
on a target dataset by careful extraction of information from a source dataset.
We demonstrate the effectiveness of L2TL for various cases. L2TL consistently
improves fine-tuning across all datasets. The performance benefit of L2TL is
more significant for small-scale target datasets or large-scale source datasets.
Even for the cases where source and target datasets come from substantially-
different domains, L2TL still yields clear improvements.
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