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Abstract. Event cameras are paradigm-shifting novel sensors that re-
port asynchronous, per-pixel brightness changes called ‘events’ with un-
paralleled low latency. This makes them ideal for high speed, high dy-
namic range scenes where conventional cameras would fail. Recent work
has demonstrated impressive results using Convolutional Neural Net-
works (CNNs) for video reconstruction and optic flow with events. We
present strategies for improving training data for event based CNNs
that result in 20-40 % boost in performance of existing state-of-the-art
(SOTA) video reconstruction networks retrained with our method, and
up to 15 % for optic flow networks. A challenge in evaluating event
based video reconstruction is lack of quality ground truth images in
existing datasets. To address this, we present a new High Quality
Frames (HQF) dataset, containing events and ground truth frames
from a DAVIS240C that are well-exposed and minimally motion-blurred.
We evaluate our method on HQF + several existing major event camera
datasets.

Video, code and datasets: https://timostoff.github.io/20ecnn

1 Introduction

Event-based cameras such as the Dynamic Vision Sensor (DVS) [18] are novel,
bio-inspired visual sensors. Presenting a paradigm-shift in visual data acquisi-
tion, pixels in an event camera operate by asynchronously and independently
reporting intensity changes in the form of events, represented as a tuple of x, y
location, timestamp t and polarity of the intensity change s. By moving away
from fixed frame-rate sampling of conventional cameras, event cameras deliver
several key advantages in terms of low power usage (in the region of 5 mW),
high dynamic range (140 dB), low latency and timestamps with resolution on
the order of µs.

? Equal contribution.

https://timostoff.github.io/20ecnn
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Fig. 1: Top: ground truth reference image. Middle/bottom: state-of-the-art
E2VID [28] vs. our reconstructed images from events only. Challenging scenes
from event camera datasets: CED [33], IJRR [23], MVSEC [42] and our HQF
dataset.

With the recent preponderance of deep learning techniques in computer vi-
sion, the question of how to apply this technology to event data has been the
subject of several recent works. Zhu et al. [43] propose an unsupervised network
able to learn optic flow from real event data, while Rebecq et al. [27,28] showed
that supervised networks trained on synthetic events transferred well to real
event data. Simulation shows promise since data acquisition and ground truth
are easily obtainable, in contrast to using real data. However, mismatch between
synthetic and real data degrades performance, so a key challenge is simulating
realistic data.

We generate training data that better matches real event camera data by
analyzing the statistics of existing datasets to inform our choice of simulation
parameters. A major finding is that the contrast threshold (CT) - the minimum
change in brightness required to trigger an event - is a key simulation parameter
that impacts performance of supervised CNNs. Further, we observe that the ap-
parent contrast threshold of real event cameras varies greatly, even within one
dataset. Previous works such as event based video reconstruction [28] choose
contrast thresholds that work well for some datasets, but fail on others. Unsu-
pervised networks trained on real data such as event based optic flow [43] may
be retrained to match any real event camera - at the cost of new data collection
and training. We show that using CT values for synthetic training data that
are correctly matched to CTs of real datasets is a key driver in improving per-
formance of retrained event based video reconstruction and optic flow networks
across multiple datasets. We also propose a simple noise model which yields up
to 10 % improvement when added during training.
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A challenge in evaluating image and video reconstruction from events is lack
of quality ground truth images registered and time-synchronized to events, be-
cause most existing datasets focus on scenarios where event cameras excel (high
speed, HDR) and conventional cameras fail. To address this limitation, we intro-
duce a new High Quality Frames (HQF) dataset that provides several sequences
in well lit environments with minimal motion blur. These sequences are recorded
with a DAVIS240C event camera that provides perfectly aligned frames from an
integrated Active Pixel Sensor (APS). HQF also contains a diverse range of mo-
tions and scene types, including slow motion and pauses that are challenging
for event based video reconstruction. We quantitatively evaluate our method on
two major event camera datasets: IJRR [23] and MVSEC [42], in addition to our
HQF, demonstrating gains of 20-40 % for video reconstruction and up to 15 %
for optic flow when we retrain existing SOTA networks.

Contribution We present a method to generate synthetic training data that
improves generalizability to real event data, guided by statistical analysis of ex-
isting datasets. We additionally propose a simple method for dynamic train-time
noise augmentation that yields up to 10 % improvement for video reconstruction.
Using our method, we retrain several network architectures from previously pub-
lished works on video reconstruction [28,32] and optic flow [43,44] from events.
We are able to show significant improvements that persist over architectures and
tasks. Thus, we believe our findings will provide invaluable insight for others
who wish to train models on synthetic events for a variety of tasks. We provide a
new comprehensive High Quality Frames dataset targeting ground truth image
frames for video reconstruction evaluation. Finally, we provide our data genera-
tion code, training set, training code and our pretrained models, together with
dozens of useful helper scripts for the analysis of event-based datasets to make
this task easier for fellow researchers.

In summary, our major contributions are:

– A method for simulating training data that yields 20 %-40 and up to 15 %
improvement for event based video reconstruction and optic flow CNNs.

– Dynamic train-time event noise augmentation.

– A novel High Quality Frames dataset.

– Extensive analysis and evaluation of our method.

– An optic flow evaluation metric Flow Warp Loss (FWL), tailored to event
data, that does not require ground truth flow.

– Open-source code, training data and pretrained models.

The remainder of the paper is as follows. Section 2 reviews related works.
Section 3 outlines our method for generating training data, training and evalu-
ation, and introduces our HQF dataset. Section 4 presents experimental results
on video reconstruction and optic flow. Section 5 discusses our major findings
and concludes the paper.
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2 Related Works

2.1 Video Reconstruction

Video and image reconstruction from events has been a popular topic in the event
based vision literature. Several approaches have been proposed in recent years;
Kim et al. [14] used an EKF to reconstruct images from a rotating event cam-
era, later extending this approach to full 6-DOF camera motions [15]. Bardow
et al. [2] used a sliding spatiotemporal window of events to simultaneously opti-
mize both optic flow and intensity estimates using the primal-dual algorithm, al-
though this method remains sensitive to hyperparameters. Reinbacher et al. [29]
proposed direct integration with periodic manifold regularization on the Surface
of Active Events (SAE [22]) to reconstruct video from events. Scheerlinck et
al. [30,31] achieved computationally efficient, continuous-time video reconstruc-
tion via complementary and high-pass filtering. This approach can be combined
with conventional frames, if available, to provide low frequency components of
the image. However, if taken alone, this approach suffers from artifacts such as
ghosting effects and bleeding edges.

Recently, convolutional neural networks (CNNs) have been brought to bear
on the task of video reconstruction. Rebecq et al. [27, 28] presented E2VID, a
recurrent network that converts events (discretized into a voxel grid) to video.
A temporal consistency loss based on [16] was introduced to reduce flickering
artifacts in the video, due to small differences in the reconstruction of subsequent
frames. E2VID is current state-of-the-art. Scheerlinck et al. were able to reduce
model complexity by 99 % with the FireNet architecture [32], with only minor
trade-offs in reconstruction quality, enabling high frequency inference.

2.2 Optic Flow

Since event based cameras are considered a good fit for applications involving
motion [8], much work has been done on estimating optic flow with event cameras
[1–4, 6, 10, 20, 35, 36]. Recently, Zhu et al. proposed a CNN (EV-FlowNet) for
estimating optic flow from events [43], together with the Multi-Vehicle Stereo
Event Camera (MVSEC) dataset [42] that contains ground truth optic flow
estimated from depth and ego-motion sensors. The input to EV-FlowNet is a 4-
channel image formed by recording event counts and the most recent timestamps
for negative and positive events. The loss imposed on EV-FlowNet was an image-
warping loss [13] that took photometric error between subsequent APS frames
registered using the predicted flow. A similar approach was taken by Ye et al. [39],
in a network that estimated depth and camera pose to calculate optic flow. In
[44], Zhu et al. improved on prior work by replacing the image-warping loss with
an event-warping loss that directly transports events to a reference time using
the predicted flow. We use a similar method to evaluate optic flow performance
of several networks (see Section 4.1). Zhu et al. [44] also introduced a novel
input representation based on event discretization that places events into bins
with temporal bilinear interpolation to produce a voxel grid. EV-FlowNet was
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trained on data from MVSEC [42] and Ye et al. [39] even trained, then validated
on the same sequences; our results (Section 4.1) indicate that these networks
suffer from overfitting.

2.3 Input Representations

To use conventional CNNs, events must first be transformed into an amenable
grid-based representation. While asynchronous spiking neural networks can pro-
cess raw events and have been used for object recognition [17, 24, 25] and op-
tic flow [3, 4], lack of appropriate hardware or effective error backpropagation
techniques renders them yet uncompetitive with state-of-the-art CNNs. Several
grid-based input representations for CNNs have been proposed: simple event
images [21, 43] (events are accumulated to form an image), Surface of Active
Events (SAE) [43] (latest timestamp recorded at each pixel), Histogram of Av-
eraged Time Surfaces (HATS) [34] and even learned input representations, where
events are sampled into a grid using convolutional kernels [12]. Zhu et al. [44]
and Rebecq et al. [28] found best results using a voxel grid representation of
events, where the temporal dimension is essentially discretized and subsequently
binned into an n dimensional grid (eq. 1).

3 Method

3.1 Event Camera Contrast Threshold

In an ideal event camera, a pixel at (x, y) triggers an event ei at time ti when the
brightness since the last event ei−1 at that pixel changes by a threshold C, given
t− ti−1 > r, the refractory period of that pixel. C is referred to as the contrast
threshold (CT) and can be typically adjusted in modern event cameras. In reality,
the values for C are not constant in time nor homogeneous over the image plane
nor is the positive threshold Cp necessarily equal to the negative threshold Cn.
In simulation (e.g. using ESIM [26]), CTs are typically sampled from N (µ=0.18,
σ=0.03) to model this variation [12, 27, 28]. The CT is an important simulator
parameter since it determines the number and distribution of events generated
from a given scene.

While the real CTs of previously published datasets are unknown, one method
to estimate CTs is via the proxy measurement of average events per pixel per
second ( events

pix·s ). Intuitively, higher CTs tend to reduce the events
pix·s for a given scene.

While other methods of CT estimation exist (see supp. material), we found that
tuning the simulator CTs to match events

pix·s of real data worked well. Since this

measure is affected by scene dynamics (i.e. faster motions increase events
pix·s inde-

pendently of CT), we generated a diverse variety of realistic scene dynamics. The
result of this experiment (Figure 2a) indicates that a contrast threshold setting
of between 0.2 and 0.5 would be more appropriate for sequences from the IJRR
dataset [23]. The larger diversity of motions is also apparent in the large spread
of the events

pix·s compared to MVSEC [42] whose sequences are tightly clustered.
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(a) IJRR/MVSEC vs. ESIM (b) IJRR vs ESIM (c) MVSEC vs ESIM

Fig. 2: Each dot represents a sequence from the given dataset (y-axis). (a) events
pix·s

of IJRR and MVSEC vs. ESIM training datasets (CT 0.2-1.5) described in Sec-
tion 3.2. (b) events

pix·s of IJRR vs. ESIM events simulated from IJRR APS frames.

(c) events
pix·s of MVSEC vs. ESIM events simulated from MVSEC APS frames.

(a) IJRR (b) IJRR (c) MVSEC (d) MVSEC (e) HQF

Fig. 3: Note that in many sequences from the commonly used IJRR and MVSEC
datasets, the accompanying APS frames are of low quality. The top row shows the
APS frames, the bottom row overlays the events. As can be seen, many features
are not visible in the APS frames, making quantitative evaluation difficult. This
motivates our own High Quality Frames dataset (HQF).

As an alternative experiment to determine CTs of existing datasets, we mea-
sured the events

pix·s of events simulated using the actual APS (ground truth) frames
of IJRR and MVSEC sequences. Given high quality images with minimal motion
blur and little displacement, events can be simulated through image interpolation
and subtraction. Given an ideal image sequence, the simulator settings should
be tunable to get the exact same events

pix·s from simulation as from the real sensor.

Unfortunately APS frames are not usually of a very high quality (Figure 3), so
we were limited to using this approach on carefully curated snippets (Figure 4).
The results of this experiment in Figure 2b and 2c indicate similar results of
lower contrast thresholds for IJRR and higher for MVSEC, although accuracy
is limited by the poor quality APS frames.
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(a) Poorly exposed from IJRR and MVSEC (b) Well exposed from IJRR and MVSEC

Fig. 4: Examples of frames from IJRR and MVSEC after local histogram equal-
ization, with poorly exposed sequences in 4a, and better exposed images in 4b.

3.2 Training Data

We used an event camera simulator, ESIM [26] to generate training sequences
for our network. There are several modes of simulation available, of which we
used “Multi-Object-2D” that facilitates moving images in simple 2D motions,
restricted to translations, rotations and dilations over a planar background. This
generates sequences reminiscent of Flying Chairs [7], where objects move across
the screen at varying velocities. In our generation scheme, we randomly selected
images from COCO [19] and gave them random trajectories over the image plane.
Our dataset contains 280 sequences, 10 s in length. Sequences alternate between
four archetypal scenes; slow motion with 0-5 foreground objects, medium speed
motion with 5-10 foreground objects, fast speed with 5-20 foreground objects
and finally, full variety of motions with 10-30 foreground objects. This variety
encourages networks to generalize to arbitrary real world camera motions, since
a wide range of scene dynamics are presented during training. Sequences were
generated with contrast thresholds (CTs) between 0.1 and 1.5 in ascending order.
Since real event cameras do not usually have perfectly balanced positive and
negative thresholds, the positive threshold Cp = Cn · x, x ∈ N (µ=1.0, σ=0.1).

The events thus generated were discretized into a voxel grid representation.
In order to ensure synchronicity with the ground truth frames of our training
set and later with the ground truth frames of our validation set, we always
take all events between two frames to generate a voxel grid. Given N events
ei = {xi, yi, ti, si}i=0,...,N spanning ∆T = tN − t0 seconds, a voxel grid V with
B bins can be formed through temporal bilinear interpolation via

Vk∈[0,B−1] =

N∑
i=0

si max(0, 1− |t∗i − k|) (1)

where t∗i is the timestamp normalized to the range [0, B−1] via t∗i = ti−t0
∆T

(B−1)
and the bins are evenly spaced over the range [t0, tN ]. This method of forming
voxels has some limitations; it is easy to see that the density of the voxels can
vary greatly, depending on the camera motion and frame rate of the camera.
Thus, it is important to train the network on a large range of event rates events

pix·s
and voxel densities. During inference, other strategies of voxel generation can be
employed, as further discussed in the supplementary materials. We used B = 5
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throughout the experiments in this paper. In earlier experiments we found values
of B = 2, 5, 15 produced no significant differences.

3.3 Sequence Length

To train recurrent networks, we sequentially passed L inputs to the network
and computed the loss for each output. Finally, the losses were summed and
a backpropagation update was performed based on the gradient of the final
loss with respect to the network weights. Since recurrent units in the network
are initialized to zero, lower values of L restrict the temporal support that the
recurrent units see at train time. To investigate the impact of sequence length
L, we retrain our networks using L = 40 (as in E2VID [28]) and L = 120. In
the case of non-recurrent networks such as EV-FlowNet [43, 44], we ignore the
sequence length parameter.

3.4 Loss

For our primary video reconstruction loss function we used “learned perceptual
image patch similarity” (LPIPS) [41]. LPIPS is a fully differentiable similarity
metric between two images that compares hidden layer activations of a pre-
trained network (e.g. Alex-Net or VGG), and was shown to better match human
judgment of image similarity than photometric error or SSIM [38]. Since our
event tensors were synchronized to the ground truth image frames by design
(the final event in the tensor matches the frame timestamp), we computed the
LPIPS distance between our reconstruction and the corresponding ground truth
frame. As recommended by the authors [41], we used the Alex-Net variant of
LPIPS. We additionally imposed a temporal consistency loss [16] that measures
photometric error between consecutive images after registration based on op-
tic flow, subject to an occlusion mask. For optic flow, we used the L1 distance
between our prediction and ground truth as the training loss.

3.5 Data Augmentation

During training, Rebecq et al. [28] occasionally set the input events to zero
and performed a forward-pass step within a sequence, using the previous ground
truth image frame to compute the loss. The probability of initiating a pause when
the sequence is running P (p|r) = 0.05, while the probability of maintaining the
paused state when the sequence is already paused P (p|p) = 0.9 to encourage
occasional long pauses. This encourages the recurrent units of the network to
learn to ‘preserve’ the output image in absence of new events. We used pause
augmentation to train all recurrent networks.

Event cameras provide a noisy measurement of brightness change, subject to
background noise, refractory period after an event and hot pixels that fire many
spurious events. To simulate real event data, we applied a refractory period of
1ms. At train time, for each sequence of L input event tensors we optionally
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added zero-mean Gaussian noise (N (µ=0, σ=0.1)) to the event tensor to sim-
ulate uncorrelated background noise, and randomly elected a few ‘hot’ pixels.
The number of hot pixels was drawn from a uniform distribution from 0 to
0.0001, multiplied by the total number of pixels. Hot pixels have a random value
(N (µ=0, σ=0.1)) added to every temporal bin in each event tensor within a se-
quence. To determine whether augmenting the training data with noise benefits
performance on real data, we retrained several models with and without noise
(Table 5).

3.6 Architecture

To isolate the impact of our method from choice of network architecture, we
retrained state-of-the-art (SOTA) video reconstruction network E2VID [28] and
SOTA optic flow network EV-FlowNet described in [43,44]. Thus, differences in
performance for each task are not due to architecture. Additionally, we aim to
show that our method generalizes to multiple architectures. While we believe
architecture search may further improve results, it is outside the scope of this
paper.

3.7 High Quality Frames Dataset

To evaluate event camera image reconstruction methods, we compared recon-
structed images to temporally synchronized, registered ground truth reference
images. Event cameras such as the DAVIS [5] can capture image frames (in ad-
dition to events) that are timestamped and registered to the events, that may
serve as ground truth. Previous event camera datasets such as IJRR [23] and
MVSEC [42] contain limited high quality DAVIS frames, while many frames
are motion-blurred and or under/overexposed (Figure 3). As a result, Rebecq et
al. [28] manually rejected poor quality frames, evaluating on a smaller subset of
IJRR.

We present a new High Quality Frames dataset (HQF) aimed at providing
ground truth DAVIS frames that are minimally motion-blurred and well exposed.
In addition, our HQF covers a wider range of motions and scene types than the
evaluation dataset used for E2VID, including: static/dynamic camera motion vs.
dynamic camera only, very slow to fast vs. medium to fast and indoor/outdoor vs.
indoor only. To record HQF, we used two different DAVIS240C sensors to capture
data with different noise/CT characteristics. We used default bias settings loaded
by the RPG DVS ROS driver5, and set exposure to either auto or fixed to
maximize frame quality. Our HQF provides temporally synchronized, registered
events and DAVIS frames (further details in supplementaries, Table 6).

5 https://github.com/uzh-rpg/rpg dvs ros

https://github.com/uzh-rpg/rpg_dvs_ros
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4 Experiments

4.1 Evaluation

We evaluated our method by retraining two state-of-the-art event camera neural
networks: E2VID [27, 28], and EV-FlowNet [43, 44]. Our method outperforms
previous state-of-the-art in image reconstruction and optic flow on several pub-
licly available event camera datasets including IJRR [23] and MVSEC [42], and
our new High Quality Frames dataset (HQF, Section 3.7).

For video reconstruction on the datasets HQF, IJRR and MVSEC (Table 1)
we obtained a 40 %, 20 % and 28 % improvement over E2VID [28] respectively,
using LPIPS. For optic flow we obtained a 12.5 %, 10 % and 16 % improvement
over EV-FlowNet [43] on flow warp loss (FWL, eq. 3). Notably, EV-FlowNet
was trained on MVSEC data (outdoor day2 sequence), while ours was trained
entirely on synthetic data, demonstrating the ability of our method to generalize
to real event data.

Image As in [28] we compared our reconstructed images to ground truth (DAVIS
frames) on three metrics; mean squared error (MSE), structural similarity [38]
(SSIM) and perceptual loss [40] (LPIPS) that uses distance in the latent space
of a pretrained deep network to quantify image similarity.

Since many of these datasets show scenes that are challenging for conventional
cameras, we carefully selected sections of those sequences where frames appeared
to be of higher quality (less blurred, better exposure etc.). The exact cut times of
the IJRR and MVSEC sequences can be found in the supplementary materials.
However, we were also ultimately motivated to record our own dataset of high
quality frames (HQF, Section 3.7) of which we evaluated the entire sequence.

Flow A warping loss (similar to [11]) was used as a proxy measure of accuracy as
it doesn’t require ground truth flow. Events E = (xi, yi, ti, si)i=1,...,N are warped
by per-pixel optical flow φ = (u(x, y), v(x, y))T to a reference time t′ via

I(E, φ) =

(
x′i
y′i

)
=

(
xi
yi

)
+ (t′ − ti)

(
u(xi, yi)
v(xi, yi)

)
. (2)

The resulting image I becomes sharper if the flow is correct, as events are motion
compensated. Sharpness can be evaluated using the variance of the image σ2(I)
[9,37], where a higher value indicates a better flow estimate. Since image variance
σ2(I) depends on scene structure and camera parameters, we normalize by the
variance of the unwarped event image I(E, 0) to obtain the Flow Warp Loss
(FWL):

FWL :=
σ2(I(E, φ))

σ2(I(E, 0))
. (3)

FWL < 1 implies the flow is worse than a baseline of zero flow. FWL enables
evaluation on datasets without ground truth optic flow. While we used ground
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Table 1: Comparison of state-of-the-art methods of video reconstruction and
optic flow to networks trained using our dataset on HQF, IJRR and MVSEC.
Best in bold.

Sequence
MSE SSIM LPIPS FWL

E2VID Ours E2VID Ours E2VID Ours EVFlow Ours

HQF

bike bay hdr 0.16 0.03 0.41 0.52 0.51 0.30 1.22 1.23

boxes 0.11 0.03 0.50 0.59 0.38 0.26 1.75 1.80

desk 6k 0.15 0.03 0.51 0.60 0.39 0.22 1.23 1.35

desk fast 0.12 0.04 0.54 0.61 0.40 0.25 1.43 1.50

desk hand only 0.12 0.05 0.53 0.57 0.63 0.39 0.95 0.85

desk slow 0.16 0.04 0.53 0.62 0.47 0.25 1.01 1.08

engineering posters 0.13 0.03 0.42 0.57 0.47 0.26 1.50 1.65

high texture plants 0.16 0.03 0.37 0.65 0.38 0.14 0.13 1.68

poster pillar 1 0.14 0.03 0.38 0.50 0.54 0.27 1.20 1.24

poster pillar 2 0.15 0.04 0.40 0.47 0.56 0.26 1.16 0.96

reflective materials 0.13 0.03 0.44 0.55 0.44 0.28 1.45 1.57

slow and fast desk 0.16 0.03 0.48 0.62 0.45 0.25 0.93 0.99

slow hand 0.18 0.04 0.41 0.57 0.57 0.30 1.64 1.56

still life 0.09 0.03 0.51 0.63 0.35 0.22 1.93 1.98

Mean 0.14 0.03 0.46 0.58 0.46 0.26 1.20 1.35

IJRR

boxes 6dof cut 0.04 0.04 0.63 0.64 0.29 0.25 1.42 1.46

calibration cut 0.07 0.03 0.61 0.62 0.22 0.18 1.20 1.31

dynamic 6dof cut 0.17 0.05 0.45 0.53 0.38 0.27 1.37 1.39

office zigzag cut 0.07 0.04 0.49 0.51 0.31 0.26 1.13 1.11

poster 6dof cut 0.07 0.03 0.60 0.66 0.26 0.19 1.50 1.56

shapes 6dof cut 0.03 0.02 0.80 0.77 0.26 0.22 1.15 1.57

slider depth cut 0.08 0.03 0.54 0.62 0.35 0.24 1.73 2.17

Mean 0.07 0.03 0.61 0.64 0.28 0.22 1.32 1.45

MVSEC

indoor flying1 data cut 0.25 0.08 0.19 0.36 0.72 0.45 1.02 1.14

indoor flying2 data cut 0.23 0.09 0.18 0.36 0.71 0.45 1.13 1.36

indoor flying3 data cut 0.25 0.09 0.18 0.37 0.73 0.44 1.06 1.23

indoor flying4 data cut 0.21 0.08 0.23 0.36 0.72 0.45 1.24 1.50

outdoor day1 data cut 0.32 0.13 0.31 0.34 0.66 0.52 1.15 1.27

outdoor day2 data cut∗ 0.30 0.10 0.29 0.34 0.57 0.43 1.21 1.20

Mean 0.29 0.11 0.27 0.35 0.65 0.47 1.12 1.30

*Removed from mean tally for EV-FlowNet, as this sequence is part of the training set.
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Table 2: Comparison of various methods to optic flow estimated from Lidar depth
and ego-motion sensors [42]. The average-endpoint-error to the Lidar estimate
(AEE) and the percentage of pixels with AEE above 3 and greater than 5 % of the
magnitude of the flow vector (%Outlier) are presented for each method (lower is
better, best in bold). Zeros shows the baseline error of zero flow. Additional works
are compared in Table 9 which can be found in the supplementary materials.

Dataset
outdoor day1 outdoor day2 indoor flying1 indoor flying2 indoor flying3

AEE %Outlier AEE %Outlier AEE %Outlier AEE %Outlier AEE %Outlier

Zeros 4.31 0.39 1.07 0.91 1.10 1.00 1.74 0.89 1.50 0.94

EVFlow [43] 0.49 0.20 - - 1.03 2.20 1.72 15.10 1.53 11.90

Ours 0.68 0.99 0.82 0.96 0.56 1.00 0.66 1.00 0.59 1.00

truth from the simulator during training, we evaluated on real data using FWL
(Table 1). We believe training on ground truth (L1 loss) rather than FWL en-
courages dense flow predictions.

Table 2 shows average endpoint error (AEE) of optic flow on MVSEC [42].
MVSEC provides optic flow estimates computed from lidar depth and ego motion
sensors as ‘ground truth’, allowing us to evaluate average endpoint error (AEE)
using code provided in [43]. However, lidar + ego motion derived ground truth
is subject to sensor noise, thus, AEE may be an unreliable metric on MVSEC.
For example, predicting zero flow achieves near state-of-the-art in some cases on
MVSEC using AEE, though not with our proposed metric FWL (by construc-
tion, predicting zero flow yields FWL = 1.0).

4.2 Contrast Thresholds

We investigated the impact of simulator contrast threshold (CT, see Section 3.1)
by retraining several networks on simulated datasets with CTs ranging from
0.2 to 1.5. Each dataset contained the same sequences, differing only in CT.
Table 3 shows that for reconstruction (evaluated on LPIPS), IJRR is best on
a lower CT ≈ 0.2, while MVSEC is best on high CT ≈ 1.0. Best or runner up
performance was achieved when a wide range of CTs was used, indicating that
exposing a network to additional event statistics outside the inference domain
is not harmful, and may be beneficial. We believe training with low CTs (thus
higher events

pix·s ) reduces dynamic range in the output images (Table 4), perhaps
because the network becomes accustomed to a high density of events during
training but is presented with lower events

pix·s data at inference. When retraining

the original E2VID network, dynamic range increases with CTs (Table 4).

4.3 Training Noise and Sequence Length

To determine the impact of sequence length and noise augmentation during
training, we retrained E2VID architecture using sequence length 40 (L40) and
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Table 3: Evaluation of image reconstruction and optic flow networks trained
on simulated datasets with a variety of contrast thresholds (CTs) from 0.2 to
1.5. ‘All’ is a dataset containing the full range of CTs from 0.2 to 1.5. All net-
works are trained for 200 epochs and evaluated on datasets HQF (excluding
desk hand only on FWL), IJRR [23], MVSEC [42]. We report mean squared
error (MSE), structural similarity (SSIM) [38] and perceptual loss (LPIPS) [41]
for reconstruction and FWL for optic flow. Key: best | second best.

Contrast
threshold

HQF IJRR MVSEC

MSE SSIM LPIPS FWL MSE SSIM LPIPS FWL MSE SSIM LPIPS FWL

0.20 0.05 0.50 0.38 1.93 0.04 0.60 0.25 1.45 0.10 0.35 0.55 1.15

0.50 0.04 0.51 0.36 1.90 0.04 0.57 0.27 1.42 0.10 0.31 0.52 1.19

0.75 0.05 0.51 0.36 1.90 0.05 0.56 0.28 1.44 0.11 0.29 0.53 1.22

1.00 0.05 0.48 0.36 1.91 0.05 0.53 0.29 1.42 0.12 0.27 0.51 1.18

1.50 0.05 0.47 0.38 1.93 0.06 0.52 0.30 1.44 0.09 0.30 0.52 1.14

All 0.05 0.50 0.36 1.96 0.04 0.59 0.27 1.46 0.08 0.34 0.51 1.24

Table 4: Dynamic range of reconstructed images from IJRR [23]: original E2VID
[28] versus E2VID retrained on simulated datasets covering a range of contrast
thresholds CTs. We report the mean dynamic range of the 10th-90th percentile
of pixel values.

Original [28] Retrained

Contrast threshold ∼0.18 0.2 0.5 0.75 1.0 1.5 All

Dynamic range 77.3 89.2 103.7 105.9 104.8 100.0 103.3

120 (L120), with and without noise augmentation (N) (see Table 5). Increasing
sequence length from 40 to 120 didn’t impact results significantly. Noise aug-
mentation during training improved performance of L40 models by ∼ 5-10 %,
while giving mixed results on different datasets for L120 models. Qualitatively,
adding more noise encourages networks to smooth outputs, while less noise may
encourage the network to ‘reconstruct’ noise events, resulting in artifacts (Fig-
ure 1) observed in E2VID [28] (trained without noise).

5 Discussion

The significant improvements gained by training models on our synthetic dataset
exemplify the importance of reducing the sim-to-real gap for event cameras in
both the event rate induced by varying the contrast thresholds and the dynam-
ics of the simulation scenes. Our results are quite clear on this, with consistent
improvements across tasks (reconstruction and optic flow) and architectures (re-
current networks like E2VID, and U-Net based flow estimators) of up to 40 %.

We believe this highlights the importance for researchers to pay attention to
the properties of the events they are training on; are the settings of the camera
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Table 5: Mean LPIPS [41] on our HQF dataset, IJRR [23] and MVSEC [42],
for various training hyperparameter configurations. E2VID architecture re-
trained from scratch in all experiments. Key: L40/L120=sequence length 40/120,
N=noise augmentation during training.

Model
HQF IJRR MVSEC

MSE SSIM LPIPS MSE SSIM LPIPS MSE SSIM LPIPS

L40 0.044 0.583 0.296 0.042 0.650 0.229 0.151 0.330 0.526

L40N 0.033 0.579 0.256 0.034 0.636 0.224 0.105 0.346 0.467

L120 0.040 0.544 0.279 0.038 0.619 0.237 0.132 0.311 0.478

L120N 0.036 0.547 0.290 0.040 0.608 0.241 0.099 0.344 0.498

or simulator such that they are generating more or less events? Are the scenes
they are recording representative of the wide range of scenes that are likely to
be encountered during inference?

In particular, it seems that previous works have inadvertently overfit their
models to the events found in the chosen target dataset. EV-FlowNet performs
better on sequences whose dynamics are similar to the slow, steady scenes in
MVSEC used for training, examples being poster pillar 2 or desk slow from
HQF that feature long pauses and slow motions, where EV-FlowNet is on par
or better than ours. For researchers looking to use an off-the-shelf pretrained
network, our model may be a better fit, since it targets a greater variety of
sensors and scenes. A further advantage of our model that is not reflected in the
FWL metric, is that training in simulation allows our model to predict dense
flow (see supp. material), a challenge for prior self-supervised methods.

Similarly, our results speak for themselves on image reconstruction. While we
outperform E2VID [28] on all datasets, the smallest gap is on IJRR, the dataset
we found to have lower CTs. E2VID performs worst on MVSEC that contains
higher CTs, consistent with our finding that performance is driven by similarity
between training and evaluation event data.

In conclusion, future networks trained with synthetic data from ESIM or
other simulators should take care to ensure the statistics of their synthetic data
match the final use-case, using large ranges of CT values and appropriate noise
and pause augmentation in order to ensure generalized models.
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Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox.
FlowNet: Learning optical flow with convolutional networks. In Int. Conf. Comput.
Vis. (ICCV), pages 2758–2766, 2015.

8. Guillermo Gallego, Tobi Delbruck, Garrick Orchard, Chiara Bartolozzi, Brian
Taba, Andrea Censi, Stefan Leutenegger, Andrew Davison, Jörg Conradt, Kostas
Daniilidis, and Davide Scaramuzza. Event-based vision: A survey. arXiv e-prints,
abs/1904.08405, 2019.

9. Guillermo Gallego, Mathias Gehrig, and Davide Scaramuzza. Focus is all you need:
Loss functions for event-based vision. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2019.

10. Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza. A unifying contrast
maximization framework for event cameras, with applications to motion, depth,
and optical flow estimation. In IEEE Conf. Comput. Vis. Pattern Recog. (CVPR),
pages 3867–3876, 2018.

11. Guillermo Gallego and Davide Scaramuzza. Accurate angular velocity estimation
with an event camera. IEEE Robot. Autom. Lett., 2(2):632–639, 2017.

12. Daniel Gehrig, Antonio Loquercio, Konstantinos G. Derpanis, and Davide Scara-
muzza. End-to-end learning of representations for asynchronous event-based data.
In Int. Conf. Comput. Vis. (ICCV), 2019.

13. Yu Jason, Harley Adam, and Derpanis Konstantinos. Back to basics: Unsupervised
learning of optical flow via brightness constancy and motion smoothness. 2016.

14. Hanme Kim, Ankur Handa, Ryad Benosman, Sio-Hoi Ieng, and Andrew J. Davison.
Simultaneous mosaicing and tracking with an event camera. In British Mach. Vis.
Conf. (BMVC), 2014.

15. Hanme Kim, Stefan Leutenegger, and Andrew J. Davison. Real-time 3D recon-
struction and 6-DoF tracking with an event camera. In Eur. Conf. Comput. Vis.
(ECCV), pages 349–364, 2016.

16. Wei-Sheng Lai, Jia-Bin Huang, Oliver Wang, Eli Shechtman, Ersin Yumer, and
Ming-Hsuan Yang. Learning blind video temporal consistency. In Eur. Conf.
Comput. Vis. (ECCV), 2018.

17. Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural
networks using backpropagation. Front. Neurosci., 10:508, 2016.



16 T. Stoffregen, C. Scheerlinck et al.

18. Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128×128 120 dB
15 µs latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State
Circuits, 43(2):566–576, 2008.

19. Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Gir-
shick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: Common objects in context. In Eur. Conf. Comput.
Vis. (ECCV), 2014.

20. Min Liu and Tobi Delbruck. Adaptive time-slice block-matching optical flow algo-
rithm for dynamic vision sensors. In British Mach. Vis. Conf. (BMVC), 2018.

21. Ana I. Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso Garćıa, and Da-
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