
Spatial Geometric Reasoning for Room Layout
Estimation via Deep Reinforcement Learning

Liangliang Ren1,2,3,∗, Yangyang Song1,2,3,∗, Jiwen Lu1,2,3,†, Jie Zhou1,2,3,4

1Department of Automation, Tsinghua University, China
2State Key Lab of Intelligent Technologies and Systems, Tsinghua University, China
3Beijing National Research Center for Information Science and Technology, China
4Tsinghua Shenzhen International Graduate School, Tsinghua University, China

{renll16, syy18}@mails.tsinghua.edu.cn; {lujiwen, jzhou}@tsinghua.edu.cn

Abstract. Unlike most existing works that define room layout on a 2D
image, we model the layout in 3D as a configuration of the camera and
the room. Our spatial geometric representation with only seven variables
is more concise but effective, and more importantly enables direct 3D
reasoning, e.g. how the camera is positioned relative to the room. This
is particularly valuable in applications such as indoor robot navigation.
We formulate the problem as a Markov decision process, in which the
layout is incrementally adjusted based on the difference between the
current layout and the target image, and the policy is learned via deep
reinforcement learning. Our framework is end-to-end trainable, requiring
no extra optimization, and achieves competitive performance on two
challenging room layout datasets.
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1 Introduction

Room layout estimation is to locate the wall-wall, wall-ceiling and wall-floor
boundaries on an image of an indoor room [11], which is usually regarded as a 3D
cuboid. Applications such as indoor robot navigation and augmented reality can
benefit from the knowledge of where each face of the room is located on the image.
What makes the task interesting and challenging is the fact that there are often
some parts of face boundaries occluded by foreground objects, which have to be
inferred based on prior knowledge about the relationship between objects and the
room. It sets room layout estimation apart from semantic segmentation [3,18,38],
in which predictions are for visible objects.

Most conventional methods adopt the framework proposed by Hedau et
al. [11], where a room layout is determined by three vanishing points and four
rays, and the layout that maximizes a score function is the solution. However, this
approach is heavily affected by the accuracy of vanishing point estimation [11].
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Fig. 1: We define room layout in 3D and formulate room layout estimation as a
Markov decision process. The camera is moved inside the room step by step to
recover the position and pose under which the input image was captured, based
on how the captured layout (drawn in green) differs from the image (groundtruth
layout drawn in black).

As for deep methods, at first convolutional neural networks are adopted to
produce some intermediate results, e.g. pixelwise face segmentation [4] or edge
probability map [36], and then an extra post-optimization is performed to obtain
parameterized layout prediction. However, in the case of face segmentation
(ceiling, floor, left/front/right wall), the three walls do not have any difference
in appearance, but in their relative position in the image, making them difficult
for the network to predict. And if less than three walls are captured, labels for
the walls cannot be uniquely determined. For instance, in the two-wall case, one
can label them as “left and front”, or alternatively “front and right”. In recent
work, end-to-end prediction without optimization is achieved by estimating each
keypoint of the layout separately [14]. However, no constraint exists about the
keypoints, so the predicted layout is not guaranteed to be valid and impossible
layouts might occur according to our observation (see Fig. 5).

To avoid the above problems introduced by defining layout on the 2D image,
we model the layout before the imaging process, as a configuration of the camera
and the room in 3D space, including the shape of the room, extrinsic and
intrinsic parameters of the camera. Note that our layout representation is very
concise with only seven variables, and naturally incorporates the cuboid room
constraint. The position and pose of the camera with respect to the room is more
useful in applications that require 3D reasoning such as indoor robot navigation,
than simply locating faces on the 2D image, which is another advantage of our
representation.

Unfortunately, there is no groundtruth annotation for our 3D layout repre-
sentation in currently existing datasets [11, 35], so we cannot regress the layout
from image input directly through supervised learning. Imagine we are standing
inside the room with a camera in our hand, and trying to recover the camera
pose under which the input image was captured. One intuitive solution is taking
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a photo under the current pose, moving the camera based on the difference
between the captured layout and the image, and repeating the process for certain
steps, as illustrated in Fig. 1. For example, looking at o1 in Fig. 1, we humans
naturally know the camera should be turned towards right and also depressed a
little bit.Motivated by this insight, we formulate layout estimation as a Markov
decision process and adopt reinforcement learning to learn the policy of layout ad-
justment. The proposed framework “LIM” (Layout via Incremental Movements),
is end-to-end trainable and needs no post-optimization during inference.

2 Related Work

Room Layout Estimation: For simplicity, most work consider the room as a 3D
cuboid as in [11], instead of general Manhattan world models [7,15,39]. Hedau et
al. [11] first estimate vanishing points corresponding to the three orthogonal
directions of the room, and then a room layout can be determined by four rays
traveling through two of the vanishing points. A number of layout hypotheses are
sampled from layout space, and the one which maximizes a previously learned
score function is selected as the solution. This framework is further extended by
many subsequent works. At first, line membership [11] and geometric context [13]
are utilized as cues for room layout in the score function, and later more feature
designs are proposed, such as orientation map [15], junction feature [24] and
informative edge feature [19]. To address the error caused by discretization in the
optimization of the score function, Schwing and Urtasun [28] develop an efficient
branch-and-bound algorithm to search for the exact optimal solution based on
integral geometry [27]. Chao et al. [2] improve the estimation of vanishing points
by reasoning the geometric relationship between humans and the scene in 3D.
Also incorporating 3D reasoning, Gupta et al. [8] sample object cuboid hypotheses
along with layout hypotheses, and the combinations which violate the physical
rules in 3D space, such as “objects should be contained in the room” and “object
should never intersect with each other”, are filtered out from the search space.
Wang et al. [32] propose to explicitly model the clutter labels as a latent variable,
which allows joint optimization of the layout and the clutter labels. Apart from
the above framework, some works model the problem from the perspective of
probability [5–7].

The convolutional neural network is first used in the work by Mallya and
Lazebnik [19], to predict pixelwise edge probability map directly from image
input. Although the obtained edge map reveals the location of face boundaries,
it is still used as a piece of image feature to score sampled layouts, which limits
performance of the method. However, Zhao et al. [36] treat their obtained edge
map as an intermediate result, and the parameterized layout is produced by their
proposed physics-inspired optimization. Similarly, Dasgupta et al. [4] perform
optimization on pixelwise face probability map predicted by an FCNN. Lee et
al. achieve end-to-end prediction by training the network to predict heatmap of
each keypoint separately, and thus the keypoints can be directly predicted as the
max activation locations in the heatmaps. There are also some works utilizing



4 Liangliang Ren, Yangyang Song, Jiwen Lu, Jie Zhou

𝑥

𝑧

𝑦

1

𝑟𝑤𝜃

𝜑

focal length: 𝑓

Fig. 2: We define a room layout in 3D space as a configuration of the room and
the camera with seven variables.

extra information than a single RGB image, such as depth map [34] and floor
plan [17], or focusing on recovering the 3D room model from a panorama [39].

Deep Reinforcement Learning: Different from supervised learning which
requires labeled input-output pairs, reinforcement learning (RL) deals with
learning from some kind of indirect supervision, reward given by the environment.
RL aims to learn a policy of making decisions that maximize the cumulative
reward, and thus RL is usually employed in the context of Markov decision
process [30]. Deep reinforcement learning (DRL) [12,16,20,21,26,31] utilizes deep
neural networks as an approximation of value function in value based algorithms
such as DQN [21], or approximation of policy function in policy based algorithms
such as DDPG [16]. In recent years, DRL has achieved great success in Atari
games and some continuous control problems and also been successfully applied
to computer vision tasks, e.g. object detection [1], visual tracking [33] and
face recognition [25], which are all formulated as Markov decision processes.
Caicedo et al. [1] localize an object by sequentially moving or resizing its bounding
box, which covers a very large area of the image at the beginning. Rao et al. [25]
propose to find attention in the videos to facilitate video face recognition, which
is done by starting from videos of full length and removing valueless frames step
by step. To the best of our knowledge, the proposed approach is the first to
address room layout estimation using reinforcement learning.

3 Approach

In this section, we first represent room layout in 3D space, and then elaborate
the design of state, observation, action, reward and policy in the context of rein-
forcement learning, and finally describe the procedures of training and inference.
Our network architecture consists of a feature network, an actor network and
also a critic network, whose detailed description is given in Fig. 3.
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3.1 3D Layout Representation

A room layout is usually defined on the 2D image, as either pixelwise face
segmentation [4], or a combination of layout type and a list of keypoints [14].
However, it is essentially the projection of a room onto an image plane. In other
words, a room layout can naturally be defined in 3D space, as a configuration of
the room and the camera, as illustrated in Fig. 2.

We regard the room as a cuboid, whose shape is parameterized by its width,
height, and depth. However, the height can be set to unit length 1, since layout
representation under a relative scale is all we need. And the depth is set to infinity
because a camera that has an ordinary field of view and is located in normal
positions cannot capture all six faces of a room at the same time. As a result,
the shape of the room is completely determined by its width of rw.

Following common practice, the camera is treated as a pinhole model. Its
extrinsic parameters include position and orientation relative to the world coordi-
nate system, which is established along the edges of the room. Camera position is
characterized by the coordinate of its center [x, y, z]T (C) with all three degrees
of freedom (DOF). For the sake of clarity, we define axis X,Y in the camera
coordinate system as the axis parallel to the horizontal and vertical direction of
the image respectively, and axis Z is perpendicular to the image plane. Although
camera orientation also has three DOF, we approximate the rotation about axis
Z by zero for simplicity, since it is insignificant in most cases. Then any camera
orientation can be reached by first rotating about axis Y for angle θ, then about
axis X for angle ϕ, from certain reference orientation. Therefore the rotation
matrix R of the camera is derived below. Here R0 stands for rotation matrix
corresponding to the reference orientation - the most typical camera poses with
image plane parallel to the front wall and axis X located on the horizontal plane.

R = RX(ϕ)RY (θ)R0 (1)

Generally speaking, there are four intrinsic parameters for a pinhole camera:
focal length f , principle point coordinate, and a skew parameter [9]. Here, the
skew is set to zero, which is true for normal cameras, and the principle point is
fixed to the image center by assuming the image has not been cropped. Thus the
intrinsic parameter matrix K has the following form, where h and w represent
height and width of the image respectively.

K =

f 0 w/2
0 f h/2
0 0 1

 (2)

In conclusion, the seven variables {rw, x, y, z, θ, ϕ, f} form a complete 3D
representation of a room layout under some assumptions and approximations, from
which any 2D representation can be computed through perspective projection
with the camera matrix P :

P = K
[
R −RC

]
(3)
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Fig. 3: An overview of our network architecture. Feature network adopts part
of RoomNet basic structure [14], where feature observation of comes after the
third last convolutional layer. Together with heatmap observation oh given by
the environment, a full observation o can be obtained by concatenating of and
oh along axis of channel. The actor and critic network share the same structure
except the different number of output nodes, where actor outputs a 7-d vector
representing the mean of the action, and critic outputs value for this observation.
They both consist of three convolutional layers and two fully connected layers,
where ReLU activation [22] is applied after every layer except the last ones.
All convolutions are performed with kernel size 3× 3 and stride 1, on properly
zero-padded inputs, and maxpooling with stride 2 is done after the second and
third convolutional layers.

3.2 Incremental Layout Estimation

As stated before, we formulate layout estimation as a Markov decision process,
in which layout is adjusted step by step to arrive at the final prediction. In the
framework of reinforcement learning, an agent is responsible for making such
decisions, and an environment is something that the agent interacts with to learn
the policy. In our formulation, the agent changes the layout (internal state s of
the environment) by taking an action a based some observation o about how
current layout differs from the target layout encoded in the image. And then the
environment gives observation of the changed layout as well as a reward r, which
evaluates how much the predicted layout is improved by that action. Since the
action space is continuous, a policy based RL algorithm - Asynchronous Advantage
Actor-Critic (A3C) [20] is employed, which involves an actor network modeling the
policy πα(o,a) and also a critic network approximating the state value function
Vβ(o), where α, β denote parameters in the two networks respectively.

State: We define the internal state s of the environment as [rw, x, y, z, θ, ϕ, f ]T ,
which is a m-dimension vector (here m = 7). Every variable in s is expected to be
within a predefined range and states with variables out of range are “terminate
states” in the decision process. For example, the camera center should never move
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outside the room, and the elevation angle of the camera should never exceed
90 degrees. And terminate states also include the situation where the camera
captures no edges but a blank face.

Observation: The observation o consists of two parts: oh telling the agent
what current layout is like, and of , image feature which gives cues about the
target layout encoded in the input image. We adopt RoomNet-basic [14] which has
been demonstrated successful in layout prediction as our image feature network,
and of is the output of its third last convolutional layer with shape 40× 40× 256.
This feature network is not fixed but trainable in our approach with parameters
denoted by φ. To be consistent with the RoomNet feature, we first project the
room onto the image plane to obtain a list of keypoints (defined in [14]), and then
construct oh by summing Gaussian heatmaps centered at each keypoint with a
standard deviation of two pixels on a 40× 40 grid. oh is repeated for 256 times
along the channel axis and then concatenated with of to obtain the complete
observation o as illustrated in Fig. 3. The purpose of the repetition is to prevent
oh being overwhelmed by of due to the huge imbalance on channel number.

Action: The action a is a vector of the same dimension as s, and each
variable v in s is changed with the corresponding increment ∆v in a. Variables
like x, y, z, θ, ϕ which describe quantities about position are changed with additive
increments, while rw and f which describe quantities about length are changed
with multiplicative increments. And for the latter case, the logarithm of the
increment instead of the increment itself is used to ensure the symmetry about
zero. The equation below shows how the state is updated by the action:

v =

{
v +∆v, for v in {x, y, z, θ, ϕ}
v × e∆v, for v in {rw, f}

(4)

Reward: Here, the choice of reward is quite straightforward: the improvement
of layout error made by action a. There are two commonly used error metrics,
corner error ec and pixelwise error ep [35], leading to “corner reward” rc and
“pixel reward” rp:

rc = 100∆ec (5)

rp = 100∆[ep/2 + |n1 − n2|/3max(n1, n2)] (6)

In the above equations, ∆ represents the decrease of a certain quantity, and
n1, n2 denote the number of keypoints in the current layout and groundtruth
layout respectively. The second addend in rp serves as a penalty to the unmatched
number of keypoints. The final reward r is designed to be a weighted sum of
rc and rp followed by a normalization as shown below, and the weight λ is
dynamically changed during training as described in Section 4.2.

r = [(1− λ)rc + λrp]/8 + 1 (7)

Policy: The policy πα(o,a) is modeled as a multivariate normal distribution
with independent components, whose mean µα(o) is given by the output of the
actor network, whose variances σ2

1 , · · · , σ2
m are manually set to control agent’s
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exploration while training, since in this problem random policy is not needed.
Every element in action a is restricted within a predefined range to avoid huge
change in single step, which ensures the stability of the layout adjustment process.
To achieve this, the action sampled from the policy above is clipped by that
action bound. And the action mean µα(o) is also fitted within the bound by
applying tanh activation and a subsequent rescaling.

πα : a ∼ N (µα(o), diag(σ2
1 , · · · , σ2

m)) (8)

To train our network, consider an episode in which the agent interacts with
the environment for T steps following policy πα and in the end collects a series
of data (o1,a1, r1), · · · , (oT ,aT , rT ), oT+1 .

The value targets are computed using the equation below, where γ denotes
the discount factor. If oT+1 corresponds to a terminate state, then Vβ(oT+1) is
substituted by zero.

Ri =

T∑
j=i

γj−irj + γT−i+1Vβ(oT+1) (9)

Then value error can be obtained by subtracting the value target with value
predicted by the critic network,

δi = Ri − Vβ(oi) (10)

The critic loss is the mean squared value error,

Lc =
1

T

T∑
i=1

δ2i (11)

The value error δi defined above is used as an estimate of the advantage
function, and the policy gradient can be converted back to an optimization of
the following actor loss,

La = − 1

mT

T∑
i=1

lnπα(oi,ai)δi (12)

The total loss is the sum of actor loss and critic loss, from which gradients
propagate to parameter φ of the feature network through of . However, note that
Vβ(oT+1) in (9) and δi in (12) are treated as constants, which gradients cannot
propagate through.

min
α,β,φ

L = La + Lc (13)

As mentioned before, we adopt A3C [20] to train our network, where multiple
agents interact with multiple instances of the environment separately at the
same time. It requires a main process which maintains a global network, and
also multiple worker processes, each with a local network. Each worker collects
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Table 1: Performance on LSUN validation-set.

Method ec (%) ep (%)

Hedau et al. (2009) [11] 15.48 24.23
Mallya and Lazebnik (2015) [19] 11.02 16.71
Delay (2016) [4] 8.20 10.63
RoomNet basic (2017) [14] 6.95 10.46
RoomNet recurrent 3-iter (2017) [14] 6.30 9.86

LIM 6.23 10.00

data and computes gradient of the loss parameters of the local network, which is
instead applied to the global network, and then local parameters are synchronized
with the global ones. As a result, agents in different worker processes can benefit
from each other’s experience. Multiple worker processes running in parallel also
greatly increase the training speed.

As for inference, the layout prediction is also obtained by adjusting the layout
step by step from some initial state. However, we remove the randomness in
policy, a = µα(o). Since agent might take bad actions which pull the layout away
from the true layout, the last non-terminate state may not be the best one. Note
that the value of a state is the expected return starting from it under the certain
policy, and here the expected return means the expected error improvement, so
a state of a lower value has lower error. Thus we select the state of the lowest
estimated value (by critic network) in one episode as our prediction.

4 Experiments

4.1 Datasets

We conduct experiments on two standard datasets for room layout estimation
LSUN [35] and Hedau dataset [11]. LSUN (Large-scale Scene Understanding
Challenge dataset) consists of 4000 training, 394 validation and 1000 testing
images, which are annotated with layout type and an ordered list of keypoints,
but the annotations for testing images are not made public. A smaller one, Hedau
dataset contains 209 training and 105 testing images, annotated with pixelwise
face segmentation. In all experiments, only LSUN train-set is used for training,
and evaluations are performed on LSUN validation-set as well as Hedau test-
set. We use the two evaluation metrics mentioned before: corner error ec which
measures the Euclidean distance between predicted and groundtruth keypoints,
and pixelwise error ep which measures the percentage of pixels that are assigned
to the wrong face [35]. We use the room layout challenge toolkit [35] provided by
LSUN to compute these errors. The only data augmentation employed in our
approach is horizontal image flipping while training.
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Fig. 4: Visualization of the layout adjustment process for images in LSUN
validation-set. The first and the last column shows the initial state and the
final prediction respectively.

4.2 Implementation Details

Our approach is implemented in PyTorch [23] - a popular deep learning platform,
and all experiments are performed on NVIDIA TITAN Xp. The image prepro-
cessing is performed by first resizing it to 320 × 320 resolution using bicubic
interpolation and then rescaling the pixel intensities from [0, 255] to [0, 1]. The
feature network is pretrained under the framework of RoomNet [14] except Adam
optimizer used in place of SGD. Both actor and critic network are initialized using
the technique presented in [10]. In the training of our network, Adam optimizer
is adopted as well, with parameters set to default except learning rate. Initial
learning rates for φ, α and β are 10−5, 5× 10−6 and 5× 10−5 respectively, and
they will drop by a factor of 5 at global episode 500,000 and 700,000. Training
stops at global episode 800,000 (equivalent to 100 epochs) and the maximum
length of an episode is 10 steps. The discount factor γ is set to 0.9.

In our experiments, the main process along with 7 worker processes are created,
and all networks are allocated on 2 GPUs in total. Parameters in global networks
are shared across processes so that all workers can access and modify them. In our
implementation, locks are applied to code blocks involving writing and reading
global parameters to prevent concurrent operations from different processes,
which will make training unstable according to our observation. Statistics in the
Adam optimizer are also shared in GPU memory among processes.
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Table 3: Comparison of different training and inference settings (evaluated on
LSUN validation-set).

Setting ec (%) ep (%)

training
fixed feature network 6.53 11.04

inference
last state (10 steps) 6.73 10.65
last state (20 steps) 7.65 11.98
state of min value (10 steps) 6.42 10.29
state of min value (20 steps) - default 6.23 10.00

Table 2: Performance on Hedau test-set.

Method ep (%)

Hedau et al. (2009) [11] 21.20
Del Pero et al. (2012) [5] 16.30
Gupta et al. (2010) [8] 16.20
Zhao et al. (2013) [37] 14.50
Ramalingam et al. (2013) [24] 13.34
Mallya and Lazebnik (2015) [19] 12.83
Schwing et al. (2012) [27] 12.8
Del Pero et al. (2013) [6] 12.7
Delay (2016) [4] 9.73
LayoutNet (2018) [39] 9.69
RoomNet recurrent 3-iter (2017) [14] 8.36

LIM 9.12

Variance in our policy is
manually set to control the ex-
ploration of the agent. At the
beginning of training, explo-
ration should be encouraged
because the agent knows very
little about how to get high re-
wards. However, as the train-
ing progresses, the agent gain-
s more and more experience,
and thus exploitation of cur-
rent knowledge should be em-
phasized more. So the variance
should be high enough at first
but decrease as training pro-
ceeds. If the action bound of
one element in the action is denoted by range [−ah, ah] (always symmetric about
zero), then its standard deviation is initially set to ah/2 and decreased linearly
to 0 at the end of training. As mentioned before, the reward r is computed by a
weighted sum of corner reward and pixel reward. Before global episode 500,000,
the weight λ is set to 0, which means in this period the reward is completely
based on corner error, but after that, λ increases from 0 to 0.5. The purpose
of this design is to encourage the agent to further focus on pixel error when it
already performs well in corner error.

The initial state of the environment is designed to be “typical”, so that all
possible layouts are not too far to reach. The room width is equal to its height,
and the focal length of the camera is properly set to produce an ordinary field of
view. The camera is in the reference orientation described in Section 3.1 and is
positioned so that all five faces of the room are captured, among which the front
wall is located at the center of the image, as shown in the first column in Fig. 4.
We have also tried initialization from layout predicted by RoomNet, which is
already a good estimate, but observed no further improvements to the accuracy.
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This in turn shows the robustness of our approach to the choice of initial state.
One possible explanation is that our agent is not likely to get stuck into some
local optima, and thus it tends to reach the same layout regardless of where it
starts from.

4.3 Results and Analysis

Accuracy: The proposed approach LIM achieves competitive performance on
both LSUN [35] and Hedau dataset [11], as reported in Table 1 and Table 2.
On LSUN dataset LIM shows noticeable improvement on both corner error and
pixel error compared to RoomNet basic. And it achieves performance comparable
to a strong baseline - RoomNet recurrent 3-iter, which extends RoomNet basic
with the recurrent structure for iterative refinement of keypoint heatmaps [14].
Although LIM and RoomNet recurrent 3-iter both complete the task through
multiple steps, it is actually not fair to compare them because the multi-step
procedures are done in different senses. Each step in LIM corresponds to a
camera movement in the physical world, and only when all steps are performed
is the final estimate obtained. However, in RoomNet recurrent, the output after
the first step is already a valid estimate, the two additional steps only help to
refine the estimate. Although a recent work [36] demonstrates amazingly high
performance on the two datasets, another indoor scene dataset similar to LSUN,
SUN RGB-D [29], is used to pretrain the network on semantic segmentation task,
which provides very rich information about the scene configuration.

Efficiency: Although in our approach, the layout prediction is obtained by
multiple steps of layout adjustment, LIM is still very efficient when it comes to
running time. As reported in Table 4, in spite of running for at most 20 steps,
LIM achieves 6.71 fps on average on LSUN validation-set, which is orders of
magnitude faster than methods requiring post-optimization [4, 36].

Comparison of different training and inference settings: To better
understand our approach, we change some training and inference settings to see
their influence, which is summarized in Table 3. Compared to the fixed feature
network while training (pretrained under the framework of RoomNet), trainable
feature network leads to a performance boost of 0.3 % on corner error, and 1.04 %
on pixel error. It suggests that our method can be further improved with a more
effective feature. As for inference, it is not necessarily the best choice to terminate
an episode after 10 steps as in the training stage, since given more steps, the agent
can go further and may arrive at a better layout. Nevertheless, risks increase as
well, because the agent sometimes takes bad actions. As shown in Table 3, if the
last non-terminate state in an episode is selected as the final estimate, accuracy
on both metrics drops significantly when an episode is extended from 10 steps
to 20 steps. But if the state of the lowest estimated value (by critic network) is
selected instead, the estimate will benefit from the extension of an episode. And
for either episode length, the state of the lowest estimated value is more accurate
than the last one on average.

Qualitative analysis: To visually demonstrate the effectiveness of our ap-
proach, we present a series of snapshots of the layout adjustment process in Fig. 4.



Spatial Geometric Reasoning for Room Layout Estimation via DRL 13

Fig. 5: RoomNet sometimes produces “impossible” layout prediction due to the
lack of constraints on keypoints (first row), while our approach always gives valid
estimate (second row).

Table 4: Comparison of deep methods on time complexity.

Method FPS

Delay (2016) [4] 0.03
ST-PIO (2017) [36] 0.56
RoomNet recurrent 3-iter (2017) [14] 5.96

LIM (state of min value, 20 steps) 6.71

All layouts reach a satisfying final estimate from the same initial state, whether
the starting layout is similar to the target layout, e.g. Fig. 4 (c), or far from it
e.g. Fig. 4 (a)(b)(d). Since we build the feature network upon RoomNet basic,
we further compare our approach with RoomNet. RoomNet defines the layout as
a layout type along with a list of keypoints, which are predicted independently
with no constraints imposed [14]. Therefore RoomNet might give invalid layout
predictions, as shown in the first row of Fig. 5. However, our layout representation
naturally incorporates the cuboid room constraint, and thus LIM is guaranteed
to produce valid estimates even if it is not very good.

Fig. 6 provides some cases where LIM fails to give predictions consistent with
the groundtruth. In (a) and (b), most area of the image is occupied with clutter
and the wall-floor the boundary is almost completely occluded, making it very
challenging to figure out the room layout. In addition, the wall-wall boundary in
(b) is nearly invisible, causing the agent to believe there is only one wall. In fact,
humans recognize two walls from the observation that the picture on the right
wall has a noticeably different orientation than the left one. This indirect inference
originates from our knowledge and experience about the world we live in, and thus
is very difficult for a machine. (c) does not satisfy the cuboid room assumption
upon which our approach is built, so LIM cannot find a well-fitting layout. (d) (e)
(f) illustrate the problem about layout annotation. The groundtruth layout in (d)
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Fig. 6: Some cases where our approach produces predictions inconsistent with
the groundtruth.

includes a very tiny ceiling that LIM fails to recognize due to its small size and
uniform color distribution. However, another tiny ceiling in (e) is not annotated,
which on the contrary is successfully estimated by our approach. This shows the
inconsistency in the annotation in LSUN dataset. (f) is an ambiguous case where
LIM treats the curved wall as a ceiling while the groundtruth does not.

5 Conclusion

In this paper, we have proposed a framework LIM for room layout estimation.
We derive a concise but effective 3D layout representation, which enables direct
3D reasoning. Then we formulate the problem as a Markov decision process and
employ reinforcement learning to learn the policy of layout adjustment. Our
unified and efficient framework demonstrates very competitive performance on
LSUN and Hedau datasets. And we believe our approach can be further improved
with feature that is more robust to clutter and has a more holistic understanding
about the scene.
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