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Abstract. Much research on object detection focuses on building bet-
ter model architectures and detection algorithms. Changing the model
architecture, however, comes at the cost of adding more complexity to
inference, making models slower. Data augmentation, on the other hand,
doesn’t add any inference complexity, but is insufficiently studied in ob-
ject detection for two reasons. First it is more difficult to design plausible
augmentation strategies for object detection than for classification, be-
cause one must handle the complexity of bounding boxes if geometric
transformations are applied. Secondly, data augmentation attracts less
research attention perhaps because it is believed to add less value and
to transfer poorly compared to advances in network architectures.
This paper serves two main purposes. First, we propose to use AutoAug-
ment [3] to design better data augmentation strategies for object detec-
tion because it can address the difficulty of designing them. Second, we
use the method to assess the value of data augmentation in object detec-
tion and compare it against the value of architectures. Our investigation
into data augmentation for object detection identifies two surprising re-
sults. First, by changing the data augmentation strategy to our method,
AutoAugment for detection, we can improve RetinaNet with a ResNet-50
backbone from 36.7 to 39.0 mAP on COCO, a difference of +2.3mAP.
This gain exceeds the gain achieved by switching the backbone from
ResNet-50 to ResNet-101 (+2.1mAP), which incurs additional training
and inference costs. The second surprising finding is that our strategies
found on the COCO dataset transfer well to the PASCAL dataset to
improve accuracy by +2.7mAP. These results together with our system-
atic studies of data augmentation call into question previous assumptions
about the role and transferability of architectures versus data augmenta-
tion. In particular, changing the augmentation may lead to performance
gains that are equally transferable as changing the underlying architec-
ture.

1 Introduction

Much work in object detection was devoted to building better model archi-
tectures or detection algorithms [11, 35, 22, 13, 10, 39, 34, 33, 32]. Although these

∗ Equal contribution.
† Code and models are available at https://github.com/tensorflow/tpu/tree/
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changes often lead to more accurate models, they also add complexity that po-
tentially slows down the detection system at both training and inference.

Data augmentation, on the other hand, is relatively understudied in object
detection. So far the most common distortions are horizontal flips and scale
jittering [23]. We suspect that the lack of research in this area is due to two
reasons. First, object detection often comes with bounding boxes, so transferring
strategies from image classification to object detection will be sub-optimal. These
added degrees of freedom from the bounding boxes suggest some automation is
needed to find a very good augmentation policy. Secondly, it is also a common
belief that custom data augmentation adds smaller performance improvements
than architectures and transfers poorly from one detection dataset to another.

Here we investigate the value of data augmentation in object detection. As
aforementioned, since it can be difficult to design good data augmentation strate-
gies for object detection, and inspired by the recent success of AutoAugment for
classification [3], we use AutoAugment [3] to find good combinations of trans-
formations for detection. To tailor AutoAugment for detection, we add novel
operations that handle bounding boxes differently from the image which im-
proves results.

Our experiments with AutoAugment for detection identify two key surprising
findings. First, data augmentation is more valuable than commonly believed.
In particular, by changing the data augmentation, we can improve RetinaNet
with a ResNet-50 backbone from 36.7 to 39.0 mAP on COCO, a difference of
2.3mAP. This gain is even slightly better than changing the backbone from
ResNet-50 to ResNet-101 which only gives +2.1mAP improvement but with a
higher cost of training and inference. Secondly, it is also common wisdom that
intricate data augmentation can “overfit” to the dataset of interest and does not
transfer well to other datasets. Our experiments show that data augmentation is
transferable between detection datasets just like architectures. For example, the
best data augmentation found on COCO transfers well to PASCAL to improve
the accuracy by +2.7mAP. This means that the augmentation strategies we
found on COCO can be used directly on future object detection datasets without
changing any parameters.

In summary, our main contributions are as follows:

– We propose a novel set of data augmentation operations that uniquely act
upon the content of bounding boxes and even sometimes change their loca-
tion.

– We implement a search method based on AutoAugment [3] to combine and
optimize data augmentation policies for object detection problems by utiliz-
ing novel operations specific to bounding box annotations.

– We show surprising results that improving data augmentation can be as
effective as improving architectures while adding no cost to the inference
and minimal cost to training.

– We show surprising results that data augmentation strategies are transfer-
able across different detection datasets, architectures and algorithms.
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2 AutoAugment for Object Detection

2.1 Search Space Definition

As mentioned above, commonly used data augmentation methods for object
detection are quite simple: horizontal flipping and scale jittering. Here we would
like to add more augmentation operations to object detection to further boost
the value of data augmentation. Hence we turn our attention to a search method
to compose basic image transformations into sophisticated distortions to improve
generalization performance. The search method expands on our previous work,
AutoAugment [3], where a reinforcement learning method is used to learn to
compose image processing operations mainly from the Python Image Library
(PIL).

Here we adapt the method to perform well on object detection. Our key ob-
servation is that object detection introduces many additional complications such
as maintaining consistency between a bounding box location and a distorted im-
age. To handle this complication we explore how to change the bounding box
locations when geometric transformations are applied to the image. To further
adapt our method to object detection, we notice that bounding box annotations
open up the possibility of introducing augmentation operations that uniquely
act upon the contents within each bounding box. Using this observation, we add
many new augmentation operations that work on each bounding box indepen-
dently in addition to existing image augmentation operations.

For our data augmentation policy1 we use the following parameterization.
We define an augmentation policy as a unordered set of K sub-policies. During
training one of the K sub-policies will be selected at random and then applied
to the current image. Each sub-policy has N image transformations which are
applied sequentially. We turn this problem of searching for a data augmentation
policy into a discrete optimization problem by creating a search space. This
space gives us the flexibility to have a diversity of operations in a single policy,
while having a constraint on how large the space can be. We also want our
augmentation policy to benefit from augmentation diversity, which has been
found to be useful in the classification domain [3].

In our implementation, our search space consists K = 5 sub-policies with
each sub-policy consisting of N = 2 operations applied in sequence to a single
image. Additionally, each operation is also associated with two hyperparameters
specifying the probability of applying the operation, and the magnitude of the
operation. Figure 1 (bottom text) demonstrates 5 of the learned sub-policies. The
probability parameter introduces a notion of stochasticity into the augmentation
policy where the selected augmentation operation is applied to the image with
the specified probability.

Our goal was to include as many augmentation transformations as possible
to get the best understanding of what operations would be useful for object de-
tection. To limit the complexity of including every operation, we identified 26

1 In this paper, we use “policy” and “strategy” interchangeably.
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Sub-policy 1. (Color, 0.2, 8), (Rotate, 0.8, 10)

Sub-policy 2. (BBox Only ShearY, 0.8, 5)

Sub-policy 3. (SolarizeAdd, 0.6, 8), (Brightness, 0.8, 10)

Sub-policy 4. (ShearY, 0.6, 10), (BBox Only Equalize,0.6, 8)

Sub-policy 5. (Equalize, 0.6, 10), (TranslateX, 0.2, 2)

Fig. 1. Examples of data augmentation sub-policies. 5 examples of learned sub-
policies applied to one example image. Each column corresponds to a different random
sample of the corresponding sub-policy. Each step of an augmentation sub-policy con-
sists of a triplet corresponding to the operation, the probability of application and a
magnitude measure. The bounding box is adjusted to maintain consistency with the
applied augmentation. Note the probability and magnitude are discretized values (see
text for details).

unique operations for the search space, 13 of which are novel to object detec-
tion, that appear to cover the widest range of available transformations. These
operations were implemented in TensorFlow [1]. We briefly summarize these
operations, but reserve the details for the Appendix A.1:

– Color operations. Distort color channels, without impacting the locations
of the bounding boxes (e.g., Equalize, Contrast, Brightness).2

– Geometric operations. Geometrically distort the image, which correspond-
ingly alters the location and size of the bounding box annotations (e.g.,
Rotate, ShearX, TranslationY, etc.). Note that for any operations that ef-
fect the geometry of an image, we likewise modify the bounding box size and
location to maintain consistency.

2 The color transformations largely derive from transformation in the Python Image
Library (PIL). https://pillow.readthedocs.io/en/5.1.x/
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– Bounding box operations. Only distort the pixel content contained within
the bounding box annotations (e.g., BBox Only Equalize, BBox Only Rotate,
BBox Only FlipLR).

Since many augmentation operations have a “strength” parameter, such as
how many degrees to rotate an image, we associate with each operation a cus-
tom range of parameter values. We map this range onto a standardized range
from 0 to 10 for all operations. We discretize the range of magnitude into L
uniformly-spaced values so that these parameters are amenable to discrete opti-
mization. Similarly, we discretize the probability of applying an operation into
M uniformly-spaced values. In preliminary experiments we found that setting
L = 6 and M = 6 provides a good balance between computational tractability
and learning performance with an RL algorithm. Thus, finding a good sub-
policy becomes a search in a discrete space containing a cardinality of (26LM)2.
In particular, to search over 5 sub-policies, the search space contains roughly
(26×6×6)2×5 ≈ 5.2×1029 possibilities and requires an efficient search technique
to navigate this space. This number comes from the fact that each operation in
a subpolicy has 26 transformation options and there are also 6 options for the
probability and 6 options for the magnitude. This number gets raised to the
(2× 5) as there are 2 operations per subpolicy and 5 different subpolicies.

2.2 Controller Settings

Now that we have our search space setup, we want to optimize it to find the
augmentation policy that allows the model to achieve the best validation set
performance. As done in other work we will have a controller that will predict an
augmentation policy, which will be used to train a neural network (child model)
on a detection dataset. After training the network we evaluate its validation
accuracy to judge how well the augmentation policy performed. Using this signal
we update the controller to generate better and better augmentation policies over
time according to the validation set.

Many methods exist for addressing the discrete optimization problem of
training the controller including reinforcement learning [47], evolutionary meth-
ods [31] and sequential model-based optimization [25]. In this work, we choose
to build on previous work by structuring the discrete optimization problem as
the output space of an RNN and employ reinforcement learning to update the
weights of the model [47]. The training setup for the RNN is similar to [47,
48, 4, 3]. We employ the proximal policy optimization (PPO) [37] for the search
algorithm.

The RNN is unrolled 30 steps to predict a single augmentation policy. The
number of unrolled steps, 30, corresponds to the number of discrete predictions
that must be made in order to enumerate 5 sub-policies. Each sub-policy consists
of 2 operations and each operation consists of 3 predictions corresponding to the
selected image transformation, probability of application and magnitude of the
transformation.
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In order to train each child model, we selected 5K images from the COCO
training set as we found that searching directly on the full COCO dataset to
be prohibitively expensive. We found that policies identified with this subset
of data generalize to the full dataset while providing significant computational
savings. Briefly, we trained each child model3 from scratch on the 5K COCO
images with the ResNet-50 backbone [14] and RetinaNet detector [23] using a
cosine learning rate decay [27]. The reward signal for the controller is the mAP
on a custom held-out validation set of 7392 images created from a subset of the
COCO training set.

The RNN controller is trained over 20K augmentation policies. The search
employed 400 TPU’s [18] over 48 hours with identical hyper-parameters for
the controller as [48]. The search can be sped up using the recently developed,
more efficient search methods based on population based training [15] or density
matching [21]. Since our learned augmentation method is being used as a method
to study and evaluate the performance of data augmentation on COCO, we leave
the algorithmic speedup to future work. The learned augmentation policy can
be seen in Table 7 in the Appendix.

3 Experiments

We applied our search method to the COCO dataset with a ResNet-50 [14] back-
bone with RetinaNet [23]. We are mainly interested in answering the following
two questions:

– How important is data augmentation for object detection?
– How generalizable are the found data augmentation policies?

To answer the first question, we compare the improvement of our AutoAug-
ment data augmentation policy to changing the model architecture across various
sizes. We additionally show that the augmentation policy can push the state-of-
the-art using a much simpler system than previous results on COCO. To answer
the second question, we use the top policy found on COCO and apply it to
different datasets, dataset sizes and architecture configurations to examine gen-
eralizability. Finally, we study properties of what kinds of operations are needed
for a good augmentation policy on an object detection dataset.

3.1 Understanding the policies found by AutoAugment

Searching for the data augmentation strategy on 5K COCO training images
resulted in the final augmentation policy that will be used in all of our results.
Before diving into the results, we would like to inspect the best policy found
during the search to gain a better understanding of what operations are used.

3 We employed a base learning rate of 0.08 over 150 epochs; image size was 640× 640;
α = 0.25 and γ = 1.5 for the focal loss parameters; weight decay of 1e − 4; batch
size was 64
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Upon inspection, the most commonly used operation in good policies is Rotate,
which rotates the whole image and the bounding boxes. The bounding boxes
end up larger after the rotation, to include all of the rotated objects. Despite
this effect of the Rotate operation, it seems to be very beneficial: it is the
most frequently used operation in good policies. Two other operations that are
commonly used are Equalize and BBox Only TranslateY. Equalize flattens the
histogram of the pixel values, and does not modify the location or size of each
bounding box. BBox Only TranslateY translates only the objects in bounding
boxes vertically, up or down with equal probability. This is quite encouraging as
some operations, such as BBox Only TranslateY, uniquely act on the bounding
boxes. Utilizing a combination of color, geometric and bounding box specific
operations appears to be crucial to creating an optimal data augmentation policy
for object detection.

3.2 Data augmentation policy found by AutoAugment
systematically improves object detection

We assess the quality of the data augmentation policy found by AutoAugment
on the competitive COCO dataset [24] on different backbone architectures and
detection algorithms. We start with the competitive RetinaNet object detector4

employing the same training protocol as [9]. Briefly, we train from scratch with
a global batch size of 64, images are resized to 640× 640, learning rate of 0.08,
weight decay of 1e − 4, α = 0.25 and γ = 1.5 for the focal loss parameters,
train the models for 150 epochs, use stepwise decay with the learning rate being
reduced by a factor of 10 at epochs 120 and 140. All models were trained on
TPUs [18].

The baseline RetinaNet architecture used in this and subsequent sections em-
ploys standard data augmentation techniques typically used for object detection
training [23]. This consists of doing horizontal flipping with 50% probability and
multi-scale jittering where images are randomly resized between 512 and 786
during training and then cropped to 640x640.

Our results using our augmentation policy found by AutoAugment using the
above procedures are shown in Tables 1 and 2. In Table 1, the data augmenta-
tion policy achieves systematic gains across several backbone architectures with
surprising improvements ranging from +1.6 mAP to +2.3 mAP. In compar-
ison, a previous state-of-the-art regularization technique (DropBlock) applied
to ResNet-50 [9] only achieves a gain of +1.7 mAP. Additionally, going from
a ResNet-50 model to ResNet-101 achieves a 2.1 mAP gain and going from a
ResNet-101 to ResNet-200 achieves a 1.1 mAP gain. Our data augmentation
policy achieves a 2.3 gain on ResNet-50, which is a larger improvement than
substantially increasing the architecture size, while incurring no additional in-
ference cost. Clearly we see that changing augmentation can be as, if not more,
powerful than changing around the underlying architectural components.

4 https://github.com/tensorflow/tpu
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Table 1. Improvements with AutoAugment data augmentation policy across
different ResNet backbones. All results employ RetinaNet detector [23] on the
COCO dataset [24]

Backbone Baseline AutoAugment Difference

ResNet-50 36.7 39.0 +2.3
ResNet-101 38.8 40.4 +1.6
ResNet-200 39.9 42.1 +2.2

To better understand where augmentation benefits, we break the data aug-
mentation policies applied to ResNet-50 into three parts: color operations, ge-
ometric operations, and bbox-only-operations (Table 2). Employing color op-
erations only boosts performance by +0.8 mAP. Combining the search with
geometric operations increases the boost in performance by +1.9 mAP. Finally,
adding bounding box-specific operations yields the best results when used in
conjunction with the previous operations and provides +2.3 mAP improvement
over the baseline.

Table 2. Improvements in object detection with the data augmentation
policy. All results employ RetinaNet detector with ResNet-50 backbone [23] on COCO
dataset [24].

Method mAP

baseline 36.7

baseline + DropBlock [9] 38.4

AutoAugment with color operations 37.5
+ geometric operations 38.6
+ bbox-only operations 39.0

Interestingly, we observe that the custom operations designed for object de-
tection (geometric operations and bbox-only operations) contributes 1.5 mAP
of the 2.3 mAP gain from this data augmentation policy. Using object detection
specific operations is clearly beneficial when trying to find good augmentation
policies. This further confirms our result that a diversity of augmentation oper-
ations spanning color, geometric and unique bounding box only operations are
needed to make a high performing augmentation policy. Also note that the policy
found was only searched using 5K COCO training examples and still generalizes
well when trained on the full COCO dataset.

3.3 Data augmentation policy found by AutoAugment push the
state-of-the-art on object detection models

A good data augmentation policy is one that can transfer between models, be-
tween datasets and work well for models trained on different image sizes. Here
we experiment with the AutoAugment data augmentation policy on a different
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backbone architecture and detection model. To test how the data augmentation
policy transfers to a state-of-the-art detection model, we replace the ResNet-50
backbone with the AmoebaNet-D architecture [31]. The feature-pyramid net-
work [22] was changed to NAS-FPN [10]. Additionally, we use ImageNet pre-
training for the AmoebaNet-D backbone as we found we are not able to achieve
competitive results when training from scratch. The model was trained for 150
epochs using a cosine learning rate decay with a learning rate of 0.08. The rest
of the setup was identical to the ResNet-50 backbone model except the image
size was increased from 640× 640 to 1280× 1280.

Table 3 indicates that the data augmentation policy improves +1.5 mAP
on top of a competitive detection architecture and setup. These experiments
show that the augmentation policy transfers well across a different backbone
architecture, feature pyramid network, image sizes (i.e. 640→ 1280 pixels), and
training procedure (training from scratch → using ImageNet pre-training). This
is a surprising result that shows our data augmentation policy is quite general.
We can extend these results even further by increasing the image resolution from
1280 to 1536 pixels and likewise increasing the number of detection anchors5

following [44].

Table 3. Exceeding state-of-the-art detection with the AutoAugment data
augmentation policy. Reporting mAP for COCO validation set. Previous state-of-
the-art results for COCO detection evaluated a single image at multiple spatial scales
to perform detection at test time [29]. Our current results only require a single inference
computation at a single spatial scale. The backbone model is AmoebaNet-D [31] with
NAS-FPN as the feature pyramid network [10]. For the 50.7 result, in addition to using
the data augmentation policy, we increase the image size from 1280 to 1536 and the
number of detection anchors from 3x3 to 9x9.

Architecture Change # Scales mAP mAPS mAPM mAPL

MegDet [29] multiple 50.5 - - -

AmoebaNet + NAS-FPN baseline [10] 1 47.0 30.6 50.9 61.3
+ AutoAugment policy 1 48.6 32.0 53.4 62.7

+ ↑ anchors, ↑ image size 1 50.7 34.2 55.5 64.5

This result of these simple modifications is the first single-stage detection
system to achieve state-of-the-art, single-model results of 50.7 mAP on COCO.
We note that this result only requires a single pass of the image, where as the
previous results required multiple evaluations of the same image at different
spatial scales at test time [29]. Additionally, these results were arrived at by
increasing the image resolution and increasing the number of anchors - both

5 Specifically, we increase the number of anchors from 3× 3 to 9× 9 by changing the
aspect ratios from {1/2, 1, 2} to {1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5}. When making this
change we increased the strictness in the IoU thresholding from 0.5/0.5 to 0.6/0.5
due to the increased number of anchors following [44]. The anchor scale was also
increased from 4 to 5 to compensate for the larger image size.
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simple and well known techniques for improving object detection performance
[44, 16]. In contrast, previous state-of-the-art results relied on multiple, custom
modifications of the model architecture and regularization methods in order to
achieve these results [29]. Our method largely relies on a more modern network
architecture paired with a learned data augmentation policy.

3.4 Data augmentation policy found by AutoAugment transfers to
other detection datasets

To evaluate the transferability of the data augmentation policy to an entirely dif-
ferent dataset and a different detection algorithm, we train a Faster R-CNN [35]
model with a ResNet-101 backbone on PASCAL VOC dataset [8]. We combine
the training sets of PASCAL VOC 2007 and PASCAL VOC 2012, and test our
model on the PASCAL VOC 2007 test set (4952 images). Our evaluation met-
ric is the mean average precision at an IoU threshold of 0.5 (mAP50). For the
baseline model, we use the Tensorflow Object Detection API [16] with the de-
fault hyperparameters: 9 GPU workers are utilized for asynchronous training
where each worker processes a batch size of 1. Initial learning rate is set to be
3 × 10−4, which is decayed by 0.1 after 500K steps. Training is started from a
COCO detection model checkpoint. When training with our data augmentation
policy, we do not change any of the training details, and just add our policy
found on COCO to the pre-processing. This leads to a 2.7% improvement on
mAP50 (Table 4).

Table 4. Data augmentation policy transfers to other object detection tasks.
Mean average precision (%) at IoU threshold 0.5 on a Faster R-CNN detector [35] with
a ResNet-101 backbone trained and evaluated on PASCAL VOC 2007 [8]. Note that
the augmentation policy was learned from the policy search on the COCO dataset

plane bike bird boatbottlebus car cat chaircow tabledog horsembikepersonplantsheepsofa traintv mean

baseline 86.6 82.2 75.9 63.4 62.3 84.7 86.8 92.0 55.5 83.3 63.1 89.2 89.4 85.0 85.6 50.7 76.2 73.0 86.6 76.3 76.0

ours 88.0 83.3 78.0 65.9 63.5 85.5 87.4 93.1 58.5 83.9 65.2 90.1 90.2 85.9 86.6 55.2 78.6 76.6 88.6 80.3 78.7

This result is surprising because the best policy found on COCO may appear
to be too intricate to generalize to other datasets. But the result confirms that
just like architectures, data augmentation policies transfer well across datasets.
This means that the augmentations learned on the COCO dataset are very
generic and can be used for many other object detection datasets in the future.

4 Analysis

In this section, we analyze the impact of training with the augmentation policy
in more detail. We find that:

– Relative improvement of AP due to the augmentation policy is larger for
smaller datasets. This is good news since data augmentation policies are
needed mostly for models that have small amount of data available.
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– Relative improvement is larger for more difficult detection tasks. Average
precision for small objects as well as average precision at more strict thresh-
olds benefit more from the learned augmentation.

– Data augmentation regularizes the detection model, which can be seen ei-
ther by the increased training loss or decreased magnitude of the trainable
weights.

– Having data augmentation operations that modify the locations and the sizes
of the objects in the search space is important for achieving good results with
the augmentation policy.

Below we describe these points in detail.

4.1 Data augmentation policy found by AutoAugment mimics the
performance of larger annotated datasets

In this section we conducted experiments to determine how the data augmenta-
tion policy will perform if there is more or less training data. To conduct these
experiments we took subsets of the COCO dataset to make datasets with the
following number of images: 5000, 9000, 14000, 23000 (see Table 5). All models
trained in this experiment are using a ResNet-50 backbone with RetinaNet and
are trained for 150 epochs without using ImageNet pretraining.

Table 5. Data augmentation policy is especially beneficial for small datasets
and small objects. Mean average precision (mAP) for RetinaNet model trained on
COCO with varying subsets of the original training set. mAPS, mAPM and mAPL denote
the mean average precision for small, medium and large examples. Note the complete
COCO training set consists of 118K examples. The same policy found on the 5K COCO
images was used in all of the experiments. The models in the first row were trained on
the same 5K images that the policies were searched on.

training Baseline Our results
set size mAPS mAPM mAPL mAP mAPS mAPM mAPL mAP

5000 1.9 7.1 9.7 6.5 3.2 9.8 12.7 8.7
9000 4.3 12.3 17.6 11.8 7.1 16.8 22.3 15.1
14000 6.8 17.5 23.9 16.4 9.5 22.1 29.8 19.9
23000 10.0 24.3 33.3 22.6 11.9 27.8 36.8 25.3

As we expected, the improvements due to the data augmentation policy is
larger when the model is trained on smaller datasets, which can be seen in Fig. 2
and in Table 5. We show that for models trained on 5000 training samples, the
data augmentation policy can improve mAP by more than 70% relative to the
baseline. As the training set size is increased, the effect of the data augmen-
tation policy is decreased, although the improvements are still significant. It is
interesting to note that models trained with the data augmentation policy seem
to do especially well on detecting smaller objects, especially when fewer images
are present in the training dataset. For example, for small objects, applying the
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data augmentation policy seems to be better than increasing the dataset size by
50%, as seen in Table 5. This is quite a striking finding as in many detection
applications detecting small objects is of great importance. For small objects,
training with the data augmentation policy with 9000 examples results in better
performance than the baseline when using 15000 images. In this scenario using
our augmentation policy is almost as effective as doubling your dataset size.

Fig. 2. Percentage improvement in mAP for objects of different sizes due to the data
augmentation policy.

Another interesting behavior of models trained with the data augmentation
policy is that they do relatively better on the harder task of AP75 (average
precision IoU=0.75). In Fig. 3, we plot the percentage improvement in mAP,
AP50, and AP75 for models trained with the data augmentation policy (rela-
tive to baseline augmentation). The relative improvement of AP75 is larger than
that of AP50 for all training set sizes. The data augmentation policy is particu-
larly beneficial at AP75 indicating that the augmentation policy helps with more
precisely aligning the bounding box prediction. This suggests that the augmen-
tation policy particularly helps with learned fine spatial details in bounding box
position – which is consistent with the gains observed with small objects.

Fig. 3. Percentage improvement due to the data augmentation policy on mAP, AP50,
and AP75, relative to models trained with baseline augmentation.
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4.2 Data augmentation improves model regularization

Fig. 4. Two plots showing data augmentation regularizes detection models. On the left
is training loss vs. number of training examples for baseline model (black) and with
the data augmentation policy (red). One the right is L2 norm of the weights of the
baseline (black) and our (red) models at the end of training. Note that the L2 norm of
the weights decrease with increasing training set size. The data augmentation policy
further decreases the norm of the weights.

In this section, we study the regularization effect of the data augmentation
policy. We first notice that the final training loss of a detection model is lower
when trained on a larger training set (see black curve in the left plot in Fig. 4).
When we apply the data augmentation policy, the training loss is increased
significantly for all dataset sizes (red curve). The regularization effect can also
be seen by looking at the L2 norm of the weights of the trained models. The L2

norm of the weights is smaller for models trained on larger datasets, and models
trained with the data augmentation policy have a smaller L2 norm than models
trained with baseline augmentation (see right plot in Fig. 4).

5 Related Work

Data augmentation strategies for vision models are often focused on the image
classification domain [21, 15, 41, 3, 6, 17, 28]. For example, state-of-the-art clas-
sification models trained on MNIST use elastic distortions which effect scale,
translation, and rotation [38, 2, 42, 36]. Random cropping and image mirroring
are commonly used in classification models trained on natural images [45, 19].
Among the limited data augmentation strategies for object detection, image
mirror and multi-scale training are the most widely used [12]. Object-centric
cropping is also a popular augmentation approach [26]. Instead of cropping to
focus on parts of the image, some methods randomly erase image contents for
augmentation [46, 9]. In the same vein, [43] learns an occlusion pattern for
each object to create adversarial examples. In addition to cropping and erasing,
[7] adds new objects on training images by cut-and-paste. While these object-
detection approaches work decently well, there is a real lack of studying how
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truly transferable they are, doing compositions of many different augmentation
methods at once and not typically performing as well as modeling changes [10].

To avoid the overwhelming amount of options when designing a data augmen-
tation policy, recent work has focused on learning data augmentation strategies
directly from data itself. For example, Smart Augmentation uses a network that
generates new data by merging two or more samples from the same class [20].
Tran et al. generate augmented data, using a Bayesian approach, based on the
distribution learned from the training set [40]. DeVries and Taylor used sim-
ple transformations like noise, interpolations and extrapolations in the learned
feature space to augment data [5]. Ratner et al., used generative adversarial net-
works to generate sequences of data augmentation operations [30]. More recently,
several papers use the AutoAugment [3] search space with improved optimization
algorithms to find AutoAugment policies more efficiently [15, 21].

The above learned augmentation approaches were found to be quite effective
in the classification domain due to the complexity of designing a good augmen-
tation procedure. When designing augmentation policies for object detection
the complexity only increases. Unlike classification, labeled data for object de-
tection is more scarce because it is more costly to annotate detection data.
Compared to image classification, developing a data augmentation strategy for
object detection is harder because there are more complexities introduced by
distorting the image, bounding box locations, and the sizes of the objects in
detection datasets. Furthermore, it is much less clear that augmentation policies
are transferable due to images having a richer label structure and the models
and detection algorithms being more complex. Our goal is to show that these
added complexities are handle-able using learned augmentation procedures and
that high performing data augmentation policies can be found. We surprisingly
find that these policies are highly generalizable across difference datasets, models
and detection algorithms.

6 Discussion

In this work, we challenge the common belief that focusing on changing the
detection model is the most promising research direction. Our augmentation
procedure gets larger improvements than increasing the model size, while incur-
ring no additional inference cost and minimal training cost. And although data
augmentation strategies can be intricate, they can be as transferable as archi-
tectures. Our augmentation policy learned on COCO transfers to PASCAL with
great performance. Additionally, we are able to further improve the state-of-the-
art on COCO using our learned augmentation policy found on a small 5K subset
of the COCO dataset with much smaller model, a different image resolution and
detection algorithm.
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A Appendix

A.1 AutoAugment Controller Training Details

Table 6. Table of all the possible transformations that can be applied to an image.
These are the transformations that are available to the controller during the search
process. The range of magnitudes that the controller can predict for each of the trans-
forms is listed in the third column. Some transformations do not have a magnitude
associated with them (e.g. Equalize).

Operation Name Description Range of

magnitudes

ShearX(Y) Shear the image and the corners of the bounding boxes
along the horizontal (vertical) axis with rate magnitude.

[-0.3,0.3]

TranslateX(Y) Translate the image and the bounding boxes in the hori-
zontal (vertical) direction by magnitude number of pixels.

[-150,150]

Rotate Rotate the image and the bounding boxes magnitude de-
grees.

[-30,30]

Equalize Equalize the image histogram.

Solarize Invert all pixels above a threshold value of magnitude. [0,256]

SolarizeAdd For each pixel in the image that is less than 128, add an
additional amount to it decided by the magnitude.

[0,110]

Contrast Control the contrast of the image. A magnitude=0 gives
a gray image, whereas magnitude=1 gives the original
image.

[0.1,1.9]

Color Adjust the color balance of the image, in a manner similar
to the controls on a colour TV set. A magnitude=0 gives
a black & white image, whereas magnitude=1 gives the
original image.

[0.1,1.9]

Brightness Adjust the brightness of the image. A magnitude=0 gives
a black image, whereas magnitude=1 gives the original
image.

[0.1,1.9]

Sharpness Adjust the sharpness of the image. A magnitude=0 gives
a blurred image, whereas magnitude=1 gives the original
image.

[0.1,1.9]

Cutout [6, 46] Set a random square patch of side-length magnitude pix-
els to gray.

[0,60]

BBox Only X Apply X to each bounding box content with indepen-
dent probability, and magnitude that was chosen for X
above. Location and the size of the bounding box are not
changed.
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Table 7. The sub-policies used in our learned augmentation policy. P and M correspond
to the probability and magnitude with which the operations were applied in the sub-
policy. Note that for each image in each mini-batch, one of the sub-policies is picked
uniformly at random. The No operation is listed when an operation has a learned
probability or magnitude of 0

Operation 1 P M Operation 2 P M

Sub-policy 1 TranslateX 0.6 4 Equalize 0.8 10

Sub-policy 2 BBox Only TranslateY 0.2 2 Cutout 0.8 8

Sub-policy 3 ShearY 1.0 2 BBox Only TranslateY 0.6 6

Sub-policy 4 Rotate 0.6 10 Color 1.0 6

Sub-policy 5 No operation No operation


