A Closer Look at Generalisation in RAVEN: Appendices

Steven Spratley, Kris Ehinger, and Tim Miller

School of Computing and Information Systems The University of Melbourne, Victoria, Australia

A. Context-blind Performance

We list the results of context-blind variants of our solvers in Table 1. Note that these solvers have the stack function removed; sequence encoders are simply given all answer frames/embeddings instead. Rel-Base displays near-perfect performance in several configurations; this, as mentioned in our main paper, points to the importance of independent processing in comparing answer frames over RAVEN, if it is to be used to fairly assess the reasoning ability of these networks.

Table 1. Accuracy (%) of ResNet and Rel-Base, trained context-blind on RAVEN.

	Acc	Centre	2x2	3x3	L-R	U-D	O-IC	O-IG
ResNet	83.11	84.23	65.34	68.70	95.14	95.82	92.02	80.53
$\operatorname{Rel-Base}$	92.46	98.49	78.66	80.52	99.22	99.66	98.63	92.04

B. Model Parameters

In Table 2, we provide all hyperparameters essential to reproducing the models in our main paper. This is intended to complement our code, released online¹. All models were optimised with Adam, using *de facto* default parameters: $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 10^{-8}$, and a learning rate of 3e-4. We used split-batch training to enable parallelisation across two GPUs, with a batch size of 32.

We wish to refer readers to the online repository of the Pyro library² as the hyperparameters set by this code were largely unchanged in our AIR module; we used a learning rate of 0.1 for the data-dependent baselines, a z presence prior of 0.01, and a decoder output bias of -2. Where we differed was in the scale prior's mean and standard deviation, μ and σ , which had to be fine-tuned for specific problem configurations in RAVEN. For the most part, we found $\mu = 2.0$ and $\sigma = 0.4$ worked well. For the **3x3Grid** set, pushing μ to 3.0 and σ to 0.2 was necessary to predispose the module to using small, regularly-sized attention windows – and therefore fill all 9 slots, instead of perceiving larger compound objects. As mentioned in the paper, AIR didn't correctly decompose **Dut-InGrid**; instead, it produced 2 slots corresponding to the outer and grouped inner shapes.

¹ https://github.com/SvenShade/Rel-AIR

² https://github.com/pyro-ppl/pyro/tree/dev/examples/air

2 Spratley *et al.*

Table 2. Details of the modules built for ResNet, Rel-Base, and Rel-AIR, along with their components listed in architectural order. Note that 'in/hidden/out' refers to the number of channels, and N refers to the number of object slots.

Module	Component	Parameters		
		12 1 .	7	
	Convolutional layer		7	
	(1D or 2D)	Padding:	3	
~		Stride:	1 if 1D layer	
Convolutional block			2 if $2D$ layer	
	ELU nonlinearity			
	Batch normalisation			
	Spatial dropout	Probability:	0.1	
	Convolutional block			
Residual block	Convolutional block			
	Skip connection	+ max. pool if	strided blocks	
	Skip connection	T max. poor n	Strided Dioeks	
Frame encoder (Rel-Base) &	2D Residual block	In/hidden/out:	1, 64, 64	
Object encoder (Rel-AIR)	2D Residual block	In/hidden/out:	64, 64, 16	
Frame encoder	1D Residual block	In/hidden/out:	, ,	
(Rel-AIR)	1D Residual block	In/hidden/out:	128, 128, 1	
Frame conditioning	Bilinear layer	In-1/In-2/out:	400 3 403	
(Rel-AIR)	ELU nonlinearity	111-1/111-2/0ut.	400, 5, 405	
(itel-Aiit)	ELC nonnearty			
	1D Residual block	In/hidden/out:	9, 64, 128	
Sequence encoder	Max. pool	Downsample:	4x	
(Rel-Base & Rel-AIR)	1D Residual block	In/hidden/out:	128, 128, 64	
	Adaptive avg. pool	Size:	16	
Sequence encoder	2D Residual block	In/hidden/out:	0 64 64	
$({ m ResNet})$	2D Residual block	In/hidden/out:	64, 64, 64	
	Linear layer	In:	1600 (ResNet)	
			1024 (Rel-Base	
			Rel-AIR	
MLP		Out:	512	
(All models)	ELU nonlinearity	0 40.		
	Batch normalisation			
	Dropout	Probability:	0.5	
	-	-		
	Linear layer	In/out:	512, 1	