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Appendix A: Derivation of Dispersion Model

In this section, we derive the dispersion model from first principles, modeling the
generation of spectral radiance as a sum of mass-spring oscillations driven by an
electromagnetic wave. This induces changes in the index of refraction, which gov-
erns the reflectance of the material with respect to light wavelength/frequency.
This is based on earlier work by Garbuny and by Spitzer et al. [5, 9].

We first start with the equation for a mass-spring oscillator driven by an
external force:

F = m
d2x

dt2
+R

dx

dt
+G · x(t). (1)

For a charged particle, F = qE, where q is charge and E = E0e
iωt for a

propagating electromagnetic wave. Thus we can substitute these in to get:

F = qE0e
iωt = m

d2x
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dt
+G · x(t) (2)

which has the solution:
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ω2
0 − ω2 + iγω

. (3)

where ω2
0 = G/m and γ = R/m.

At the same time, we can also relate x to E via the band strength:

x =
αE

q
(4)

where α is the polarizability. Using the identity ε = 1 + 4πα, we can derive the
following band strength equation:

x =
(ε− 1)E0e

iωt

4πq
. (5)
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Combining Eq. 3 and Eq. 5, we get
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iωt

4πq
=
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iωt
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ω2
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. (6)

Solving for ε:

ε =
4πq2

m

1

ω2
0 − ω2 + iγω

+ 1. (7)

Relating ε to the refractive index, εµ = n̂2 where µ = 1 and n̂ = n − ik, we
get

ε = (n− ik)2 = n2 − k2 − 2nki =
4πq2

m
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ω2
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+ 1 (8)

This yields the refractive index equations:
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4πq2

m

ω2
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(ω2
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+ 1 (9)
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Using the Lorentz-Lorenz formula, we can get

n̂2 = 1 +
4πq2

m
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(11)

where ω2
1 = ω2

0 −
4πq2

3m where ω1 < ω0. So plugging in ω1 for ω0 yields:
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This entire derivation was for a single oscillator, but in practice, there are
multiple oscillators that interact. We write this as a linear superposition given
as follows:

n2 − k2 = εr +
∑
i

4πq2fi
mi

ω2
i − ω2

(ω2
i − ω2)2 + γ2i ω

2
(14)
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∑
i

4πq2fi
mi

γiω

(ω2
i − ω2)2 + γ2i ω

2
. (15)

where fi is the strength of each individual oscillator. Using these equations,
we have two equations for two unknowns (n and k), which we showed in Section
3 of the main paper is the basis of calculating reflectance and emission.
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Appendix B: Spectral Variation

As stated in the main paper, the motivation for incorporating the dispersion
model into a differentiable program for spectral unmixing is to allow for physi-
cally plausible spectral variation of pure materials. Because it is known that ab-
sorption bands can shift in frequency and strength between different endmember
samples, the goal was to find a model that described these changes in a physically
plausible way. That is we wanted a generative model for the formation of spectra
with parameters that have ”dials” to tune the frequency, strength, and shape
of absorption bands. From the literature on analysis of the formation of spectra
from an atomistic perspective [9, 13] we find that the Lorentz-Lorenz dispersion
model is the correct approach to take. However, unlike previous works we go
further than using the model to derive optical properties of materials, we also
incorporate the dispersion model into an end-to-end spectral unmixing pipeline
that allows the parameters to be fine-tuned via differentiable programming to
account for spectral variability.

In Appendix A, the dispersion model is derived from first principles and
each absorption band is described by the parameters ρ,ωo,γ, εr. ρ is the band
strength and as it increases the absorption band becomes deeper. ωo is the reso-
nant frequency and as it increases the absorption band shifts in wavenumber (and
also slightly shifts the shape). γ is the frictional force (dampening coefficient)
and controls the shape/width of the absorption bands. εr is relative dielectric
permeability and as it increases the entire emissivity curve is shifted downwards.
Also note that absorption bands which are close to each other interact in highly
non-linear ways.

Fig. 1: A single absorption band is initialized with εr = 2.356, ω0 = 1161, γ =
0.1, ρ = 0.67. Then the parameters are perturbed such that ω0 is increased by
100, γ is increased to 120%, and ρ is increased to 120%. The plots show the effect
of changing each parameter individually to show it’s control over the shape and
width of the absorption band.

The importance of initializing the alternating optimization with good ini-
tial dispersion parameters was emphasized in the main paper, as the problem
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is non-convex and good initialization is essential. It also makes intuitive sense
to initialize with parameters fit to an endmember sample to give physical sig-
nificance to the generated spectra. As shown in the results of the main paper,
we achieve good fits with low MSE on endmember libraries used to analyze the
Martian surface as well as a semi-urban university scene. The endmember li-
braries used to fit the minerals to analyze the Mars TES data are of high quality
from the Arizona State University Thermal Emission Spectral Library [3]. The
resulting parameters from a few of the important materials from this endmember
library are provided in the following tables.

Table 1: Dispersion parameters found for Olivine Fo10
Axis Index ω0 γ ρ εr

0 0 258.45 0.018 0.022 1.07
0 1 272.71 0.038 0.070 1.07
0 2 285.33 0.027 0.035 1.07
0 3 340.81 0.021 0.015 1.07
0 4 361.06 0.067 0.187 1.07
0 5 467.03 0.060 0.091 1.07
0 6 589.36 0.032 0.043 1.07
0 7 826.60 0.011 0.015 1.07
0 8 863.05 0.030 0.083 1.07
0 9 934.94 0.018 0.038 1.07
0 10 1068.56 0.009 0.001 1.07
0 11 1349.50 0.043 0.009 1.07
0 12 1400.46 0.057 0.026 1.07
0 13 1452.82 0.064 0.020 1.07
0 14 1518.96 0.079 0.025 1.07
0 15 1597.62 0.018 0.001 1.07
0 16 1694.56 0.043 0.007 1.07
0 17 1794.69 0.032 0.002 1.07
0 18 1837.96 0.009 0.001 1.07
0 19 1934.50 0.056 0.020 1.07
1 0 293.77 0.042 0.240 1.99
1 1 303.28 0.058 0.263 1.99
1 2 317.16 0.137 0.356 1.99
1 3 473.47 0.006 0.002 1.99
1 4 496.39 0.029 0.030 1.99
1 5 504.45 0.062 0.302 1.99
1 6 562.92 0.055 0.057 1.99
1 7 577.32 0.027 0.008 1.99
1 8 891.85 0.023 0.189 1.99
1 9 990.28 0.047 0.086 1.99
1 10 1108.25 0.023 0.006 1.99
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Table 2: Dispersion parameters found for Biotite
Axis Index ω0 γ ρ εr

0 0 235.91 0.066 0.2343 1.31
0 1 432.39 0.056 0.4040 1.31
0 2 439.80 0.039 0.4131 1.31
0 3 446.34 0.014 0.0385 1.31
0 4 451.92 0.042 0.4797 1.31
0 5 594.57 0.073 0.0147 1.31
0 6 954.50 0.036 0.2510 1.31
0 7 1008.94 0.014 0.0578 1.31
0 8 1013.39 0.017 0.0184 1.31
0 9 1041.20 0.048 0.0178 1.31
0 10 1075.68 0.025 0.0198 1.31
0 11 1116.66 0.007 0.0003 1.31
0 12 1152.61 0.019 0.0012 1.31
0 13 1390.98 0.044 0.0177 1.31
0 14 1460.91 0.061 0.0280 1.31
0 15 1524.44 0.065 0.0676 1.31
0 16 1629.72 0.025 0.0271 1.31
0 17 1661.44 0.007 0.0034 1.31
0 18 1687.84 0.068 0.0723 1.31
0 19 1772.30 0.074 0.0877 1.31
0 20 1813.27 0.006 0.0009 1.31
0 21 1865.48 0.064 0.0731 1.31
0 22 1964.44 0.055 0.0131 1.31
1 0 268.77 0.073 0.4634 2.61
1 1 294.51 0.045 0.1965 2.61
1 2 313.92 0.064 0.3242 2.61
1 3 337.12 0.093 0.4930 2.61
1 4 362.24 0.062 0.1954 2.61
1 5 400.00 0.209 0.5174 2.61
1 6 462.66 0.065 0.4399 2.61
1 7 492.95 0.080 0.3498 2.61
1 8 510.47 0.061 0.0664 2.61
1 9 653.21 0.078 0.0611 2.61
1 10 718.49 0.040 0.0331 2.61
1 11 873.68 0.115 0.3343 2.61
1 12 928.32 0.048 0.0488 2.61
1 13 991.97 0.015 0.3550 2.61
1 14 1588.86 0.040 0.0607 2.61
1 15 1963.15 0.004 0.0023 2.61
1 16 1989.53 0.001 0.0002 2.61
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Table 3: Dispersion parameters found for Hematite
Axis Index ω0 γ ρ εr

0 0 258.29 0.11 0.110 1.27
0 1 279.35 0.13 0.141 1.27
0 2 294.73 0.11 0.149 1.27
0 3 335.86 0.08 0.130 1.27
0 4 471.32 0.07 0.098 1.27
0 5 526.58 0.05 0.029 1.27
0 6 543.94 0.07 0.062 1.27
0 7 563.14 0.08 0.067 1.27
0 8 609.37 0.04 0.041 1.27
0 9 619.61 0.04 0.041 1.27
0 10 632.43 0.07 0.067 1.27
0 11 654.46 0.09 0.054 1.27
0 12 686.74 0.12 0.038 1.27
0 13 798.98 0.04 0.011 1.27
0 14 890.21 0.03 0.009 1.27
0 15 916.82 0.02 0.005 1.27
0 16 958.26 0.04 0.014 1.27
0 17 1002.55 0.04 0.010 1.27
0 18 1100.72 0.03 0.022 1.27
0 19 1167.07 0.02 0.010 1.27
0 20 1238.37 0.01 0.005 1.27
0 21 1282.36 0.03 0.019 1.27
1 0 234.31 0.02 0.007 1.25
1 1 238.56 0.06 0.031 1.25
1 2 312.13 0.09 0.255 1.25
1 3 356.47 0.04 0.032 1.25
1 4 430.53 0.09 0.085 1.25
1 5 444.75 0.06 0.032 1.25
1 6 457.95 0.04 0.011 1.25
1 7 486.07 0.03 0.019 1.25
1 8 577.56 0.08 0.160 1.25
1 9 727.69 0.06 0.049 1.25
1 10 748.13 0.07 0.040 1.25
1 11 773.90 0.06 0.013 1.25
1 12 1049.92 0.10 0.058 1.25
1 13 1069.60 0.01 0.003 1.25
1 14 1140.36 0.02 0.012 1.25
1 15 1197.28 0.04 0.022 1.25
1 16 1256.54 0.02 0.010 1.25
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Appendix C: Alternating Optimization Convergence

Our ultimate goal is to solve the spectral unmixing problem which can be formu-
lated as minA,x ‖b−Ax‖22, where the minimization occurs over both the matrix
A and the unmixing vector x. This is a standard case of alternate minimization
which is known to be nonconvex [8]. In practice, alternating minimzation are
particularly hard to tackle due to the presence of suboptimal local minimas.
Recent progress on tackling nonconvex problems involves either characterizing
the optimization landscape [6, 12, 11] or providing initialization to descent al-
gorithms [1, 2] to assure convergence to the global optimum. It is known that
gradient descent applied to alternate minimization problem faces the issue of
getting stuck at local minimas [8] and hence initialization plays an important
role in solving Equation 7 in the main paper. With that in mind, in this paper
we provide a mechanism to provide good initialization to gradient descent algo-
rithm with the hope of tackling the alternating minimization problem effectively.

Initialization using dictionary A(εmodel): We investigate the properties of
matrix A as relates to the convergence of the alternating optimization. We de-
note the measured the emissivity spectrum of various materials in the lab as
εmeasured, and the physics-based dispersion model as εmodel. We then use these
emissivity spectrum to construct a dictionary A(ε) which servers as the initial-
ization for A in the alternating minimization approach in Equation 7 of the main
paper. The intuition behind this revolves around the ability of matrix A as a
dictionary of known emissivity spectra and we expect that the unknown spectra
εunknown would be described as a linear combination of columns from matrix A.

Consider the following subproblem of the alternating minimization:

min
x
‖b−A(Λ)x‖22

without the regularization terms. In order to ensure the uniqueness of the solu-
tion x∗, we need to ensure that the matrix A is full rank. The rate of convergence
for the above minimization is inversely dependent on the condition number of
the matrix A(Λ). While it is difficult to analyze this matrix analytically, we
perform an experimental characterization of the rank, condition number, and
eigenvalues of the matrix for several different runs of the optimization algorithm
with random initializations.

From the plots, we can note that the matrix A(Λ) has full rank with condi-
tion number of around 6000. The minimum and maximum eigenvalues are not
showing drastic difference which goes well with our motive to incorporate small
changes using alternate minimization to fit the spectral differences due to geo-
graphic differences. The high condition number is the reason for the relatively
slow performance for running the alternating minimization framework, with our
method taking tens of seconds to converge.
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(a) Rank of A across runs (b) Condition number of A across runs

(c) Max eigenvalue of A across runs (d) Min eigenvalue of A across runs

Fig. 2: Behaviour of A across runs

Fig. 3: Random sample of A has the following eigenvalue distribution

Appendix D: Implementation Details

Fully Constrained Least Squares We compare against Fully Constrained
Least Squares (FCLS) [7] which is a popular classical unmixing algorithm.
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FCLS solves for the the (aerial) abundances, x: x̂ = argminx||b−Ax||22 subject
to ||x||1 = 1,x ≥ 0. The constraints, referred to as the sum-to-one constraint
and the non-negativity constraint, are enforced since abundances are interpreted
as percentages.

Normal Compositional Model. The Normal Compositional Model (NCM)
[10] is one of the most popular methods for modelling endmember variability
via statistical methods. The method requires a small amount of training data
(roughly 50 samples per endmember) to learn the mean and variance of reflec-
tivity (or emissivity) of each spectral band, and modelling the variation as a
Gaussian distribution. During unmixing, Expectation Maximization is used to
simultaneously learn the abundances and the endmember variation, subject to
the abundance sum-to-one and non-negativity constraints.

The NCM is run using the Matlab code provided by Du et al. [4]. Training
data of about 50 samples of endmember variation were provided to the NCM for
each dataset. There are no hyperparameters needed for this method.

Beta Compositional Model. The Beta Compositional Model (BCM) [4] is
a more recent method for modelling spectral variability via a statistical method.
Similar to the NCM, a small amount of training data is used to learn the beta
parameters of each spectral band, and an Expectation Maximization algorithm
is used during unmixing. The beta parameters allow each spectral band to be
modelled as a more complex distribution than the NCM and has been shown to
increase performance.

The BCM is run using the Matlab code provided by Du et al. [4]. Training
data of about 50 samples of endmember variation were provided to the BCM
for each dataset. For datasets without sufficient endmember samples, we gener-
ated synthetic endmember variation with the dispersion model. We search for
the optimal hyperparameters through repeated experiments and report the best
results. The optimal BCM across all datasets was run with K = 3, σV = 100,
and σM = 0.001.

CNN for Spectral Classification and Unmixing. We baseline against
the architecture recently proposed by Zhang et al. [14] for hyperspectral unmix-
ing using both a 1D and 3D CNN. The main difference between the 1D and 3D
CNN is that the 3D CNN is operates on 3×3 bundles of pixels while the 1D CNN
is provided a single pixel. However, in both architectures the convolutional kernal
is 1D and operates along the spectral dimension. Both architectures have four
convolutional layers with Rectified Linear Unit (ReLU) and max-pooling non-
linear operations. These layers are followed by 2 fully connected layers, where the
last layer is the output abundance predictions. The ReLU of the fully connected
layers ensure non-negativity, and the sum-to-one constraint is ensured by nor-
malizing the output layer. The network is trained to minimize −x̂ log(x), where
x̂ and x are the predicted and ground truth abundances respectively. While the
1D architecture performs well on the dataset it was designed for in [14], we found
that modifications were necessary to maximize the performance on our datasets.
Namely, we found that training the network with respect to the mean squared
error (MSE) loss function, removing the max-pooling layers, and adding an ad-
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ditional fully connected layer before the output improved performance of the 1D
CNN. The 3D CNN is only applicable to datasets with spatial information, thus
is ignored for the Feely and Synthetic datasets.

CNN Baselines [14]. The architecture from Zhang et al. was used to base-
line against our method (CNN-1D and CNN-3D), as well as introducing our own
modified baseline (CNN-1D modified). All CNNs were trained for 100 epochs us-
ing the Adam optimizer with learning = 0.0005, betas = (0.9, 0.999) and weight
decay = 0.
CNN-1D: A 1x1 hyperspectral pixel is input into the network, four convolutional
layers with alternating 1x5 and 1x4 kernels and a depth of 3, 6, 12, and 24 ker-
nels in each layer respectively. All convolutional layers have ReLU activations
a 1x2 maxpooling layer. The convolutional layers are followed by a fully con-
nected layer with 150 hidden units, and an output fully connected layer with a
size that depends on the number of abundances. Normalization is used to en-
force the abundance sum-to-one constraint and the ReLU activation enforces the
non-negativity constraint. The CNN is trained to minimize the log loss between
the predicted and ground truth abundances. The network converges in about
100 epochs with a learning rate of 1e-3.
CNN-3D: CNN-3D has an almost identical architecture, although it accepts a
3x3 set of pixels at the input. Although a spatial dimension exists at the input,
the convolutions only occur in the spectral dimension. four convolutional layers
with alternating 1x5 and 1x4 kernels and a depth of 16, 32, 64, and 128 kernels
in each layer respectively. The convolutional layers are followed by a fully con-
nected layer with 150 hidden units, and an output fully connected layer with a
size that depends on the number of abundances. Normalization is used to en-
force the abundance sum-to-one constraint and the ReLU activation enforces the
non-negativity constraint. The CNN is trained to minimize the log loss between
the predicted and ground truth abundances. The network converges in about
100 epochs with a learning rate of 1e-3.
CNN-1D Modified: Finally, a modified version of CNN-1D is baselined against
to try to find the optimal architecture for performance on our datasets. The first
2 max-pooling layers are removed, an additional hidden fully connected layer
with 150 units is added before the output, and a softmax operation is applied to
the output to enforce the abundance sum-to-one constraint. Also, the network is
trained to minimize the mean squared error between the predicted and ground
truth abundances. The network converges in about 100 epochs with a learning
rate of 1e-3.

Analysis-by-Synthesis Optimization. For analysis-by-synthesis, the sparse
regularization was set with p = 0.95 and λp = 0.0001. Dispersion parameters
were constrained within a tolerance of their initial conditions with ρtol = 0.05,
γtol = 0.005, εtol = 0.001, and ωtol = 0.0001. On the Gulfport datasets γtol and
εtol were increased to 0.05 to compensate for increased variation. Analysis-by-
Synthesis alternates between finding optimal abundances (solving a regularized
least squares problem), and updating the dispersion parameters for 100 itera-
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tions using the Adam optimizer with learning rate = 0.01, betas = (0.9, 0.999),
and weight decay = 0.

Inverse Rendering CNN. The inverse rendering CNN uses the same CNN
architecture as CNN-1D modified. The input to the CNN is the spectrum (or
batch of spectra). That is there are four convolutional layers with alternating
1x5 and 1x4 kernels and a depth of 3, 6, 12, and 24 kernels in each layer re-
spectively. The convolutional layers also have ReLU activations and the last 2
layers have a 1x2 maxpooling layer. The convolutional layers are followed by
fully connected layers with 150 hidden units. The final fully connected layer has
enough units for the amount of dispersion parameters and abundances depend-
ing on the size of the endmember library and number of dispersion parameters
per endmember. Then, the dispersion parameters are used to render endmember
spectra and the mixture is reconstructed under the linear mixing model with the
predicted abundances as inputs. The network only needs the input spectra and
the abundances as inputs for training, as the reconstruction error of the spectra
is used to back-propagated through the differentiable dispersion model to teach
the network to predict good dispersion parameters. Real data (when available)
and synthetic data (around 50,000 samples) are used to train the network, which
converges after about 100 epochs. An Adam optimizer is used with learning rate
set to 1e-3, betas set to (0.9, 0.999), and weight decay set to 0.

Appendix E: Additional Results

The mineral maps produced using analysis-by-synthesis on the Mars TES data
are shown in Figures 4 - 9. The files containing the numerical abundances of
each mineral will be uploaded to the project repository.



12 J. Janiczek et al.

Fig. 4: Mineral Maps
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Fig. 5: Mineral Maps Continued
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Fig. 6: Mineral Maps
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Fig. 7: Mineral Maps
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Fig. 8: Mineral Maps
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Fig. 9: Mineral Maps
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