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Abstract. Hyperspectral unmixing is an important remote sensing task
with applications including material identification and analysis. Charac-
teristic spectral features make many pure materials identifiable from their
visible-to-infrared spectra, but quantifying their presence within a mix-
ture is a challenging task due to nonlinearities and factors of variation.
In this paper, spectral variation is considered from a physics-based ap-
proach and incorporated into an end-to-end spectral unmixing algorithm
via differentiable programming. The dispersion model is introduced to
simulate realistic spectral variation, and an efficient method to fit the pa-
rameters is presented. Then, this dispersion model is utilized as a genera-
tive model within an analysis-by-synthesis spectral unmixing algorithm.
Further, a technique for inverse rendering using a convolutional neu-
ral network to predict parameters of the generative model is introduced
to enhance performance and speed when training data is available. Re-
sults achieve state-of-the-art on both infrared and visible-to-near-infrared
(VNIR) datasets, and show promise for the synergy between physics-
based models and deep learning in hyperspectral unmixing in the future.

Keywords: hyperspectral imaging, spectral unmixing, differentiable pro-
gramming

1 Introduction

Hyperspectral imaging is a method of imaging where light radiance is densely
sampled at multiple wavelengths. Increasing spectral resolution beyond a tra-
ditional camera’s red, green, and blue spectral bands typically requires more
expensive detectors, optics, and/or lowered spatial resolution. However, hyper-
spectral imaging has demonstrated its utility in computer vision, biomedical
imaging, and remote sensing [38, 8]. In particular, spectral information is criti-
cally important for understanding material reflectance and emission properties,
important for recognizing materials.

Spectral unmixing is a specific task within hyperspectral imaging with ap-
plication to many land classification problems related to ecology, hydrology, and
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mineralogy [25, 28]. It is particularly useful for analyzing aerial images from air-
craft or spacecraft to map the abundance of materials in a region of interest.
While pure materials have characteristic spectral features, mixtures require al-
gorithms to identify and quantify material presence.

A common model for this problem is linear mixing, which assumes electro-
magnetic waves produced from pure materials combine linearly and are scaled
by the material abundance. Mathematically this is expressed as b = Ax + η
where b is the observed spectra, A is a matrix whose columns are the pure
material spectra, η is the measurement noise, and x is the abundance of each
pure material. The model assumes that the pure material spectra, referred to
as endmember spectra, is known before-hand. Nonlinear effects are known to
occur when photons interact with multiple materials within a scene for which
we refer readers to the review by Heylen et al. for techniques to account for the
non-linear mixing [25].

A key challenge that affects both linear and nonlinear mixing models is that
pure materials have an inherent variability in their spectral signatures, and thus
cannot be represented by a single characteristic spectrum. Spectral variability of
endmembers is caused by subtle absorption band differences due to factors such
as different grain sizes [39, 48, 43, 44] or differing ratios of molecular bonds [7,
51] as shown in Figure 1. Since variability causes significant errors in unmixing
algorithms, it is an active area of research [60, 16, 65].

Fig. 1. Endmember Variation: Several spectra of olivine are plotted to demonstrate
it’s spectral variability. The olivine mineral is a solid solution with continuous composi-
tional variation of Iron (Fe2) and Magnesium (Mg2) bonds. This ratio of bonds (indexed
by the Fo number), causes absorption bands to shift in frequency and strength

Recently, differentiable programming has become a popular research area
due to its potential to bridge gaps between physics-based and machine learning-
based techniques for computer vision and graphics [53, 21, 1]. Our key insight
is to leverage differentiable programming by modeling the variation of spec-
tra with a physics-based dispersion model, and incorporating this differentiable
model into an end-to-end spectral unmixing algorithm. Such an approach has the
capacity to unmix scenes with a large amount of variability, while constraining
the predictions to be physically plausible. These physically plausible variations
of endmember spectra also provide additional science data as the variation of
absorption bands can reveal properties about the composition and history of the
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material. To our knowledge, we are the first to use a generative physics model
to account for spectral variability in an unmixing algorithm.

Contributions: Our specific contributions in this paper are the following:

– We introduce a physics-based dispersion model (first presented in [49, 30,
55]) to generate and render spectral variation for various pure materials.
We provide an efficient optimization method via gradient descent to find
dispersion model parameters for this spectral variation.

– We incorporate this dispersion model into an end-to-end spectral unmix-
ing algorithm utilizing differentiable programming to perform analysis-by-
synthesis optimization. Analysis-by-synthesis is solved via alternating mini-
mization optimization and requires no training data.

– We further design an inverse rendering algorithm consisting of a convolu-
tional neural network to jointly estimate dispersion model parameters and
mineral abundances for spectral unmixing. This method requires training
data, but is computationally efficient at test time and outperforms analysis-
by-synthesis and other state-of-the-art methods.

We provide extensive analysis of our proposed methods with respect to noise
and convergence criteria. To validate our contributions, we test on both synthetic
and real datasets using hyperspectral observations in the visible and near infrared
(VNIR), and mid to far infrared (IR). The datasets also span three different
environments from laboratory, aircraft, and satellite based spectrometers. Our
methods achieve state-of-the-art across all datasets, and we compare against
several baselines from literature. Our code is openly available and accessible
here: https://github.com/johnjaniczek/InfraRender. We hope this work inspires
more fusion between physics models and machine learning for hyperspectral
imaging and computer vision more generally in the future.

2 Related Work

Optimization-based Approaches. Standard optimization techniques for lin-
ear unmixing include projection, non-negative least squares, weighted least squares,
and interior point methods [43, 24, 47, 12, 23]. Further, sparsity-based optimiza-
tion can improve abundance prediction [63, 9]. However, most optimization have
not leveraged physics priors as we do in our model.

Spectral Variability. Spectral variability has been a topic of recent inter-
est [60, 6]. One approach is to augment A with multiple variations or spectra
for each endmember. To do this, multiple endmember spectral mixture anal-
ysis (MESMA) [46] and multiple-endmember linear spectral unmixing (MEL-
SUM) [15] both require labeled data of the spectral variation for each endmem-
ber. In contrast, unsupervised techniques learn endmember sets from unlabelled
hyperspectral images, including semi-automated techniques [3], k-means cluster-
ing [3], and the sparsity promoting iterated constrained endmember algorithm
(SPICE) [58, 59] which simultaneously finds endmember sets while unmixing
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for material abundances. These techniques are limited by the amount of sets
in the endmember library, and computational complexity increases with more
additions. Our method by contrast finds an efficient parameter set to physically
model the spectral variation.

Another category of endmember variability techniques models the endmem-
ber spectral variation as samples from a multivariate distribution P(e|θ) where
e is the endmember spectra, and θ are the distribution parameters. Common
statistical distributions proposed include the normal compositional model [50],
Gaussian mixture models [65], and the beta compositional model [16]. These
distribution models have large capacity to model spectral variations, however
sometimes they can render endmember spectra that are not physically realistic.

Deep Learning for Hyperspectral Classification and Unmixing. Deep
learning has recently improved many hyperspectral imaging tasks [62, 33]. In
particular, networks process hyperspectral pixel vectors using both deep belief
networks [36] and CNNs [26, 10, 56]. For spatial hyperspectral data, CNNs [11],
joint spectral-spatial feature extraction [64], and 3D CNNs [35] are used. All
these methods require large hyperspectral datasets that are annotated correctly.
One of our methods uses analysis-by-synthesis and differentiable programming
to avoid low training data issues, but our technique can be made complementary
to deep learning architectures as we show in our inverse rendering CNN.

Differentiable Programming and Rendering. Differentiable program-
ming refers to the paradigm of writing algorithms which can be fully differ-
entiated end-to-end using automatic differentiation for any parameter [53, 54,
4]. This has been applied for audio [18] and 3D geometry processing [45]. In
graphics, differentiable rendering has improved ray tracing [34, 40, 37, 61], solved
analysis-by-synthesis problems in volumetric scattering [22, 21], estimated re-
flectance and lighting [1], and performed 3D reconstruction [52]. In our paper,
we write a forward imaging model utilizing the physics of dispersion in spectral
variation to allow our pipeline to be differentiable end-to-end.

3 Method

Our approach to hyperspectral unmixing features two main components: (1)
use of a physically-accurate dispersion model for pure endmember spectra, and
(2) a differentiable programming pipeline to perform spectral unmixing. This ap-
proach has synergistic benefits of leveraging prior domain knowledge while learn-
ing from data. Our first algorithm solves spectral unmixing in a self-supervised
fashion using analysis-by-synthesis optimization with the dispersion model as
the synthesis step. Further, we show how inverse rendering via a convolutional
neural network (CNN) can learn parameters of this model to help speed up our
end-to-end pipeline and improves performance when training data is available.

3.1 Dispersion Model

We first describe the dispersion model for generating endmember spectra. End-
member and/or endmember spectra is what we call the spectral curve for
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emissivity ε as a function of wavenumber ω. Each pure material has a charac-
teristic endmember spectrum, although spectra can vary, which is the problem
we are trying to solve/disambiguate. Let εmeasured(ω) be endmember spectra
we have measured, typically in a lab or in the field, whose emissivity is sam-

pled at different wavenumbers:
[
εmeasured(ω1), · · · εmeasured(ωN )

]T
. Our goal is

to propose a model εmodel(Λ;ω) with parameters Λ such that the following loss

is minimized: L(Λ) =
∑N
i=1

(
εmeasured(ωi)− εmodel(Λ;ωi)

)2
. That is, we fit the

model emissivity of an endmember spectrum to the measured spectrum. In prac-
tice, we need to add regularization and constraints to this endmember loss for
better fitting which we describe after the derivation of the dispersion model.

Derivation of the Dispersion model: Our model of endmember spectra is
derived from an atomistic oscillator driven by electromagnetic waves impinging
on the molecular structure of the pure material [49, 30]. In Figure 2, we show a
conceptual diagram of this model, and how it generates emissivity curves as a
function of wavelength. For the full derivation of the model from first principles,
we refer the reader to Appendix A in the supplementary material. Instead, we
outline the model below based on the equations derived from that analysis.

Fig. 2. Dispersion Model Concept Figure: The insight of the dispersion model is
that optical properties can be related to molecular structure through first principles
via an atomistic oscillator model. We use this generative model for the formation of
spectral variation in our spectral unmixing algorithm

Let Λ = [ρ,ωo,γ, εr] be a matrix of parameters, where ρ,ω0,γ, εr ∈ RK
and K is a model hyperparameter corresponding to the number of distinct mass-
spring equations used to model the emissivity. ρ is the band strength, ωo is
the resonant frequency, γ is the frictional force (dampening coefficient), and εr
is relative dielectric permeability. Please see the supplemental material for the
physical significance of these parameters to the atomistic oscillator model, and
their control over the shape of spectral absorption bands. Note: usually εr is a
constant vector which does not vary with K. Thus Λ ∈ RK×4. The refractive
index terms n, k are given as follows [49, 30]:

n(Λ;ω) =

√
θ + b

2
, k(Λ;ω) =

φ

n(Λ;ω)
, (1)
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where the expressions for θ, b, φ are given as follows:

θ = εr +

K∑
k=1

4πρkω
2
0k

(ω2
0k
− ω2)

(ω2
0k
− ω2)2 + γ2kω

2
0k
ω2
, (2)

b =
√
θ2 + 4φ2, φ =

K∑
k=1

2πρkω
2
0k

γkω0kω

(ω2
0k
− ω2)2 + γ2kω

2
0k
ω2
. (3)

We note that subscript k denotes the k-th coordinate of the corresponding vector.
Also there is another useful relation (derived in Appendix A) that n2 − k2 =
θ, nk = φ. We then define the complex refractive index as n̂(Λ;ω) = n(Λ;ω) −
i ·k(Λ;ω), where i =

√
−1 is the imaginary number. Hence, we can calculate the

emissivity as follows:

ε(Λ;ω) = 1−R(Λ;ω), where R(Λ;ω) =

∣∣∣∣ n̂(Λ;ω)− 1

n̂(Λ;ω) + 1

∣∣∣∣2 . (4)

When considering minerals, we introduce M ∈ N, the number of optical axes
of symmetry in crystal structures, (eg. 2 axes of symmetry in quartz [49, 55]), to
define the full model:

εmodel(Λ;ω) =

M∑
m=1

αm · ε(Λm;ω) such that

M∑
m=1

αm = 1, αm ≥ 0, (5)

where we use a different parameter matrix Λm and weight αm for each optical
axis of symmetry.

The dispersion model has been primarily used to analyze optical properties
of materials to determine n and k, which then can be subsequently applied to
optical models like radiative transfer [49, 55]. After n and k are found, spectra
such as reflectance, emissivity, and transmissivity can be generated. In particu-
lar, we notice that fine-grained control of the dispersion model parameters can
realistically render spectral variation that occurs in hyperspectral data. Our con-
tribution is to leverage these properties in a differentiable programming pipeline
for spectral unmixing.

Endmember Fitting. Using the dispersion model presented above, we want
to robustly estimate the model parameters to fit the spectra εmeasured captured
in a lab or in the field. To fit the model, we wish to perform gradient descent to
efficiently find these parameters. Using chain rule on the loss function, we see that
∂L
∂Λij

= ∂L
∂εmodel

∂εmodel

∂Λij
, where (ij) corresponds to that element of the parameter

matrix, and all expressions are scalars once the coordinate is specified. While
the partial derivatives can be calculated explicitly via symbolic toolboxes, the
resulting expressions are too long to be presented here. For simplicity and ease
of use, we use the autograd function [4, 41] in PyTorch [42] to automatically
compute derivatives for our model as we are performing backpropagation.

One main challenge in performing endmember fitting is that the dispersion
model is not an injective function, and hence is typically not identifiable, that
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is more than one Λ can result in the same fit. This can be solved, in-part,
through regularization to enforce sparsity, especially since a preference for fewer
dispersion parameters has been suggested in the literature [49, 55]. In our imple-
mentation, we initialize our model with K = 50 rows of the parameter matrix.
Since the parameter ρ controls the strength of the absorption band, small val-
ues of ρ do not contribute much energy to the spectra (unnecessary absorption
bands), and can be pruned. After performing sparse regression by penalizing the
L1 norm of ρ, K is typically around 10-15 in our experiments.

Thus, our modified sparse regression problem may be written as

arg min
Λmin≤Λ≤Λmax

N∑
i=1

(
εreal(ωi)− εmodel(Λ;ωi)

)2
+ λρ||ρ||1, (6)

where Λmin and Λmax restrict the variation of the dispersion parameters to
a plausible range. In addition, endmembers (particularly minerals) can have
multiple optical axes of symmetry described by separate spectra, which has
been noted in the literature [49, 55]. Without prior knowledge of the number of
axes for every material we encounter, we run this optimization for a single and
double axes, and pick the one with the lowest error. See Section 4 for results on
endmember fitting and Figure 6 for examples of modelled vs. measured spectra.

Despite the fact that this regression problem is non-convex, we solve it using
gradient descent with a random initialization; this is known to converge to a
local minimum with probability 1 [31]. A global minimum is not necessary at
this stage, since we use endmember fitting to provide a good initialization point
for the subsequent alternating minimization procedure introduced in the next
subsection.

3.2 Differentiable Programming for End-to-End Spectral Unmixing

Analysis-by-Synthesis Optimization. In Figure 3, we show our full end-
to-end spectral unmixing pipeline. Here, εmodel(Λ;ω), which is initially fit to
εmeasured, is then aggregated into the columns of A. Then, the observed spec-
tra b is linearly unmixed by solving a regularized least-squares optimization:
argminx‖b−Ax‖22+λ‖x‖p subject to sum-to-one and non-negativity constraints
‖x‖1 = 1,x ≥ 0. Given these constraints, one cannot impose sparsity with the
usual L1 norm. Instead, we use the Lp norm to induce sparsity for the predicted
abundances; this has been proposed before for spectral unmixing [9].

The key to our pipeline is that everything is fully differentiable, and thus we
can actually minimize the following equation:

arg min
x,Λ∈[Λmin,Λmax]

‖b−A(Λ)x‖22 + λ‖x‖p such that ‖x‖1 = 1,x ≥ 0. (7)

with respect to both the parameters of the dispersion model Λ and the abun-
dances x. This gives us our recipe for hyperspectral unmixing: first, perform
endmember fitting to initialize A(Λ), then, solve Equation 7 in an alternating



8 J. Janiczek et al.

Fig. 3. Analysis-by-Synthesis: The analysis-by-synthesis algorithm uses differen-
tiable programming to find optimal dispersion parameters and abundances. The initial
dispersion parameters and the target spectra are fed as inputs, and the algorithm al-
ternates between optimizing the abundances in the least squares sense and updating
the dispersion parameters with respect to the gradient

fashion for x andΛ. One could also solve this equation jointly for both unknowns,
however, we found that the alternating optimization was faster and converged
to better results.

The optimization problem established in equation (7) is an alternating min-
imization problem and is unfortunately not convex [27]. One popular approach
to tackle nonconvex problems is to find a good initialization point [17, 5], and
then execute a form of gradient descent. Inspired by this, we first initialize A(Λ)
by performing endmember fitting using Equation 6 as described in the previous
subsection. Our experiments indicate that this provides a useful initialization for
our subsequent step. We then perform alternating minimization on Equation 7
for x and Λ. Note that each iterate of the resulting alternating minimization in-
volves the solution of a subproblem which has a convergence rate which depends
on the condition number of the matrix A(Λ). For more details on this, we refer
the reader to Appendix C where we discuss on the properties of A(Λ) across
multiple runs.

In the ideal scenario, this initial matrix A(Λ) would consist of the endmem-
ber spectra that fully characterizes the mixed spectra b. However, since spectra
for the same material can significantly vary [39, 48, 43, 44, 7, 51] (see Figure 1),
the initialization can be slightly off and we follow up with (7) to obtain a better
fit. Note that this optimization problem is solving for the maximum likelihood
estimator under a Gaussian noise model. Our optimization technique is per-
forming analysis-by-synthesis, as given a single observation b, the dispersion
model synthesizes endmember variation until a good fit is achieved.

Inverse Rendering of Dispersion Model Parameters. The previous
analysis-by-synthesis optimization does not require training data (labeled abun-
dances in spectral mixtures) in order to perform spectral unmixing. However,
there is room for even more improvement by using labeled data to help improve
the parameter fitting of the model in the synthesis step. We train a CNN to pre-
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dict the parameters for a generative model, known as inverse rendering in other
domains [57]. In Figure 4, we show this inverse rendering conceptually, and how
it can be fed into our differentiable programming pipeline for end-to-end spectral
unmixing.

Our CNN architecture consists of convolutional layers followed by a series of
fully-connected layers. We refer the reader to the supplemental material for the
exact network structure and implementation details. Using a CNN for inverse
rendering is significantly faster at test time as compared to the analysis-by-
synthesis optimization. However, it does have a drawback of requiring training
data which is unavailable for certain tasks/datasets.

Fig. 4. Inverse Rendering: A CNN is trained to “inversely render” pixels of the hyper-
spectral image, by predicting both the dispersion parameters that control the spectral
variability, and the abundances that control the mixing model. During training, the
reconstruction error is back-propagated through the differentiable dispersion model to
boost the performance of the network at making physically realistic predictions

4 Experimental Results

Datasets. We utilize three separate datasets to validate our spectral unmixing
algorithms. In Figure 5, we visually represent these datasets and their exemplar
data. For specific implementation details and dataset pre-processing, please see
Appendix D in the supplemental material.

Feely et al. Dataset. We utilize 90 samples from the Feely et al. dataset [19]
of thermal emission spectra in the infrared for various minerals measured in the
lab. Ground truth was determined via optical petrography [19], and a labeled
endmember library is provided. The limited amount of data is challenging for
machine learning methods, so we utilize the dispersion model to generate 50,000
additional synthetic spectra for dataset augmentation.

Gulfport dataset. The Gulfport dataset from Gader et al. [20] contains hy-
perspectral aerial images in the VNIR along with ground truth classification
labels segmenting pixels into land types (e.g. grass, road, building). Although
the dataset is for spectral classification, it can also be used to benchmark unmix-
ing algorithms by creating synthetic mixtures of pure pixels from the Gulfport
dataset with random abundances as done by [16, 65]. We perform both spectral
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classification (Gulfport) and unmixing (Gulfport synthetic) tasks in our test-
ing. Both datasets are split into a train and test set (although some methods
do not require training data), and the training data is augmented with 50,000
synthetically generated mixtures from the dispersion model.

One main difficulty of this dataset is the endmembers identified correspond
to coarse materials such as grass and road as opposed to pure materials. Such
endmembers can significantly vary across multiple pixels, but this spectral vari-
ation is not physically described by the dispersion model. To solve this problem,
we utilize K-means clustering to learn examplar endmembers for each category
(e.g. grass, road, etc). Then the resulting centroid endmember can be fit to the
dispersion model to allow further variation such as absorption band shifts in the
spectra. We found that K = 5 worked the best for the Gulfport dataset.

TES Martian Dataset. The Thermal Emission Spectrometer (TES) [13] uses
Fourier Transform Infrared Spectroscopy to measure the Martian surface. We
utilize pre-processing from Bandfield et al. [2], and the endmember library used
by Rogers et al. to analyze Mars TES data [47]. There is no ground truth for this
dataset, as the true abundance of minerals on the Martian surface is unknown,
so other metrics such as reconstruction error of the spectra are considered.

Fig. 5. Datasets: This figure shows representative data and instrumentation for the
three datasets considered in this paper. Data includes laboratory, aircraft, and satellite
measurements, and ground truth ranges from detailed abundance analysis under a
microscope (Feely [19]) to pure pixel labels of land type for spectral classification
(Gulfport [20]) to no ground truth for the Martian data (TES [13])

Baselines. We compare against several state-of-the-art baselines in the lit-
erature. The basic linear unmixing algorithm is Fully Constrained Least Squares
(FCLS) [24] which solves least squares with sum-to-one and non-negativity con-
straints on the abundances. We also implement two state-of-the-art statistical
methods for modelling endmember variability as distributions: the Normal Com-
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positional Model (NCM) [50] and the Beta Compositional Model (BCM) [16].
NCM and BCM use a Gaussian and Beta distribution respectively, perform
expectation-maximization for unmixing, and require a small amount of training
data to determine model parameters.

We also compare against two state-of-the-art deep learning networks by
Zhang et al. [63]. The first network utilizes a 1D CNN (CNN-1D) architecture,
while the second network utilizes a 3D CNN (but with 1D convolutional kernels)
(CNN-3D). CNN-3D is only applicable to datasets with spatial information, and
not testable on the Feely and Gulfport synthetic data. We further created a
modified CNN architecture (CNN-1D Modified) to maximize the performance
on our datasets by changing the loss function to MSE, removing max-pooling
layers, and adding an additional fully connected layer before the output. In
the supplemental material, we provide information about the parameters, net-
work architectures, and training procedures we used for these baselines as well
as details for our own methods. We also have all of our code available here:
https://github.com/johnjaniczek/InfraRender.

Endmember Fitting Results. To bootstrap both the analysis-by-synthesis
and inverse rendering algorithms, good initial conditions for the dispersion pa-
rameters need to be input to the model. Determining dispersion parameters
typically required detailed molecular structure analysis or exhaustive parameter
searching methods [49, 55, 32]. One main advantage of our method is that we
utilize gradient descent to efficiently find parameter sets for different materials.
In Appendix B of the supplemental material, we share some of these parameter
sets and our insights using the dispersion model for the scientific community.

In Figure 6, we show qualitative results of our endmember fitting by mini-
mizing the loss in Equation 6 using gradient descent. The reconstructed spectra
achieves a low MSE with the measured spectra with an average MSE of 0.016
for the TES library, 0.0019 for the Feely library, and an MSE of 2.6e-5 on the
Gulfport cluster centroids. Note that there is noise in the measurements, and so
MSE is not an absolute metric of the fit to the true unknown spectra.

Fig. 6. Endmember Fitting: (Left) Measured and modelled spectra for a quartz
sample in the IR. (Right) Cluster centroids found for pixels labelled as grass in the
Gulfport dataset, and the model fit to these centroids. Note the high fidelity of fit via
the dispersion model for both these cases
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Table 1. Results: Table - Mean squared error of the abundance predictions vs. ground
truth for Feely, Gulfport, and Gulfport synthetic datasets. The bold entries indicate
top performance

Dataset FCLS
[24]

NCM
[50]

BCM
[16]

CNN-1D
[63]

CNN-3D
[63]

CNN-1D
Modified

Analysis-
by-

synthesis

Inverse
Rendering

Feely
[19]

0.121 0.119 0.131 0.469 N/A 0.205 0.052 0.188

Gulfport
[20]

0.75 0.799 0.800 1.000 0.497 0.297 0.45 0.272

Gulfport
Synthetic

0.911 0.471 0.136 0.824 N/A 0.148 0.147 0.059

Spectral Unmixing Results. In Table 1, we show results on the Feely,
Gulfport, and the Gulfport synthetic mixture datasets. For Feely, the analysis-
by-synthesis method achieved a MSE of 0.052, with the next closest method
(NCM) achieving 0.119. Due to the Feely dataset only containing 90 test samples,
the machine learning methods were trained on synthetic data which explains
their lower performance as data mismatch. Thus, the low error of analysis-by-
synthesis shows the utility of the dispersion model for modelling endmember
variability, particularly in cases with low training data.

For the Gulfport dataset, the task was to predict the material present since
the labeled data is for single coarse materials (e.g. road, grass, etc) at 100%
abundance per pixel. Here, the deep learning methods of CNNs and Inverse
Rendering have the highest performance. This is expected as there exists a large
amount of training data to learn from. Note that Inverse Rendering performs the
best at 0.272 MSE, demonstrating that the addition of a generative dispersion
model to the output of the CNN improves performance over purely learned
approaches. Also note that our analysis-by-synthesis method still has relatively
high performance (0.45 MSE) without using any training data at all.

For the Gulfport synthetic mixture dataset, Inverse Rendering achieves the
lowest MSE of 0.059, leveraging both physics-based modeling for spectral mixing
as well as learns from available training data. The BCM and the analysis-by-
synthesis methods both outperform the CNN methods, even though they do not
have access to the training data. In fact, BCM even slightly outperforms the
analysis-by-synthesis method, which could be because the sources of variation
in this data are well-described by statistical distributions.

Speed of Methods. The additional capacity of adding statistical and physical
models usually has a cost of speed in implementation. Averaged over 90 mixtures,
the convergence for a single operation was FCLS - 10ms, BCM - 1.23s, NCM -
18ms, CNN - 33ms, Inverse Rendering - 39ms, and analysis-by-synthesis - 10.2s.
Future work could potentially increase the speed of analysis-by-synthesis with
parallel processing.

Noise analysis. Prior to spectral unmixing, emissivity is separated from
radiance by dividing out the black-body radiation curve at the estimated tem-
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perature [43, 14]. In general, a Gaussian noise profile in the radiance space with
variance σ2

radiance results in wavenumber dependent noise source in the emissivity
space with the profile σ2(ω) = σ2

radiance · 1/B(ω, T ) where B is the black-body
function given by Planck’s law. In our noise experiments we use a black-body
radiation curve for a 330K target, which is the approximate temperature the
Feely dataset samples were held at. In Figure 7 left, we see that the emissivity
noise is higher where the radiance signal is lower.

We simulated varying the noise power to determine the methods’ robustness
tested on 30 samples from the Feely dataset. In Figure 7, you can see that
analysis-by-synthesis still has the best performance in the presence of noise, and
is relatively flat as noise increases compared to other methods. We note that
statistical methods, while having higher average error, seem to be robust to
increased noise as they can handle random perturbations of each spectral band
statistically. CNN and Inverse Rendering methods perform the worst for high
noise, as these methods were trained on data without noise.

Fig. 7. The left plot shows the radiance profile of a spectra perturbed by Gaussian
noise and the resulting emissivity profile after separating out the blackbody radiance.
The right figure shows the robustness of the algorithms to increasing amounts of noise

TES Data. The Mars TES data was unmixed using our analysis-by-synthesis
method to demonstrate it’s utility on tasks where zero training data is available.
The method produces mineral maps which correctly finds abundances of the
mineral hematite at Meridiani Planum in Figure 8. This is an important Martian
mineral which provides evidence for liquid water having existed at some point on
Mars, and has been verified by NASA’s Opportunity Rover [29]. Note how FCLS
predicts many sites for hematite, while our method narrows down potential sites
on the Martian surface, which is useful for planetary scientists. By allowing for
spectral variation through our physics-based approach, our method has lower
RMS reconstruction error than previous analysis of TES data. FCLS, which
was previously used on TES because of the zero training-data problem, has an
average RMS reconstruction error of 0.0043 while analysis-by-synthesis has an
average of 0.0038. This is an exciting result as our methods could provide a new
suite of hyperspectral analysis tools for scientists studying the Martian surface.
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Fig. 8. Martian Surface Map: The images show the mineral map for hematite of the
Martian surface produced by FCLS (left) and analysis-by-synthesis (right) using TES
data. Both algorithms find the known deposit of hematite on Meridiani Planum, but
analysis-by-synthesis predicts a sparser map which matches expected distributions.

5 Discussion

This paper incorporated generative physics models into spectral unmixing al-
gorithms via differentiable programming. We adopt a physics-based dispersion
model to simulate spectral variability, and show how this model can realistically
fit several real measured spectra via gradient descent. We further show how to
jointly optimize for the dispersion parameters and material abundances with an
analysis-by-synthesis optimization. A second algorithm is introduced for tasks
where additional data is available by training a CNN to “Inversely Render” a
hyperspectral image with the differentiable dispersion model in the loop.

We validate these contributions extensively on three datasets ranging from
mid to far IR and VNIR, and compared against state-of-the-art optimization,
statistical and deep learning benchmarks. From these experiments we observe
that analysis-by-synthesis has the best performance when training data is not
available, and that Inverse Rendering has the best performance when training
data is available. We also see that analysis-by-synthesis is noise resilient, and
reconstructs Mars spectra with lower error than previous techniques.

There are still limitations for the methods proposed. First, analysis-by-synthesis
has a large computational cost compared to other methods, although this could
be mitigated through parallelization. Secondly, the spectral unmixing commu-
nity is limited by the lack of quality training datasets, and it is not easy for
experts to label remote sensing datasets from prior knowledge alone. Future
work could investigate generating realistic synthetic data suitable for training
machine learning based algorithms for better performance. We hope using gen-
erative physics-based models inspires others to produce realistic synthetic data
as well as differentiable programming methods which require low training data.
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