
Sound2Sight: Generating Visual Dynamics
from Sound and Context

Moitreya Chatterjee?1 Anoop Cherian2

1 University of Illinois at Urbana-Champaign, Urbana IL 61801, USA
2 Mitsubishi Electric Research Laboratories, Cambridge MA 02139, USA

metro.smiles@gmail.com cherian@merl.com

1 Introduction

In the supplementary materials, we include the following:

1. Additional details about the three datasets and the associated tasks in Sec-
tions 2.1, 2.2, 2.3, and 2.4 respectively.

2. The architecture of Sound2Sight and details of the training procedure.
3. Standard Deviation measures of the model performance.
4. Auxiliary evaluation of the quality of the generated videos.
5. Performances from ablative studies of our model, the effect of the choice of

hyper-parameters, per-sample comparisons with competing methods, and a
study of the effectiveness of teacher forcing training strategy. Also included
are plots showcasing the diversity of our model. Further, the alignment of
the generated frames against the input audio is quantitatively evaluated.

6. Qualitative experimental results vis-á-vis competitive baselines and figures
illustrating the diversity of the samples generated by our model.

7. Failure cases of our model.
8. Video samples are also available in the supplementary zip file and

contain prototypical samples from the three different datasets and results
produced by our scheme. We also provide qualitative video generation com-
parisons to competing methods, while showcasing our model’s capability for
diverse generation. We also include a video file showcasing the synchroniza-
tion of the generated frames against the input audio. There are eight video
files in the zip file: they are:
– Sample Moving MNIST.avi: A sample clip from the M3SO dataset.
– Sample AudioSet Drums.mp4: A sample clip from the AudioSet Drums

dataset.
– Sample Painting.mp4: A sample clip from the Youtube Painting dataset.
– M3SO NB 5 15 Sample Results.mp4: Sample generations of our method,

vis-á-vis competing methods on the M3SO-NB dataset. This file also fea-
tures diverse generations by our method.

– M3SO 30 30 Sample Results.mp4: Sample generations of our method,
vis-á-vis competing methods on the M3SO dataset. This file also features
diverse generations by our method.

? Work done as an intern at MERL.
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– Drums 15 15 Sample Results.mp4: Sample generations of our method,
vis-á-vis competing methods on the Audioset-Drums dataset. This file
also features diverse generations by our method.

– Painting 15 15 Sample Results.mp4: Sample generations of our method,
vis-á-vis competing methods on the Youtube Painting dataset. This file
also features diverse generations by our method.

– Synchronized Video Final.mp4: This file reflects the synchronization of
the generated video with the input audio for samples from the M3SO
dataset. Besides visualizing the frames of the generated video, we also
present the evolution of SSIM scores of the generated frames with time.

Furthermore, we include three folders containing raw output samples of our
method for the M3SO, Audioset-Drums, and Youtube Painting datasets re-
spectively. Accordingly, the folders are named: (i) Sound2Sight Generated M3SO Clips;
(ii) Sound2Sight Generated Drums Clips; (iii) Sound2Sight Generated Painting Clips.
VLC player is the recommended player for the videos. Also, note that
all the videos, except the raw output videos in the 3 folders men-
tioned above, have audio as well. So kindly unmute your speakers.

2 Datasets and Tasks

As described in the main paper, we present results on three Audio-Visual datasets
for our video generation task, namely (i) the Multimodal Moving MNIST with
(and without) a Surprise Obstacle (M3SO), and its variant without the obstacle
(M3SO-NB), (ii) the Audioset-Drums [3], and (iii) YouTube-Painting. Here, we
provide more details of these tasks. Please see the supplementary video
samples for a better understanding of the task. Figure 2 shows samples
from all three datasets and Table 1 presents the statistics of these datasets and
the training/val/test splits.

2.1 Multimodal Moving MNIST with a Surprise Obstacle (M3SO)

This is a novel synthetic dataset, where a randomly chosen MNIST digit [6]
moves in a box (of size 48 × 48), along rectilinear trajectories, in the seen part
of the sequence (30 frames for example). While doing so, the digit occasionally
bounces against the walls of the box which alters its trajectory of motion ran-
domly. The digit then traverses this path of motion linearly till the next collision
happens. Additionally, we associate audio with each digit (a unique tone for the
digit), and the amplitude of this tone is inversely proportional to the distance of
the moving digit from the lower-left corner of the box. When the digit bounces
off the box edges, a different tone is emanated (i.e. the frequency of the audio
changes). The audio then reverts to the original tone of the digit as it continues
its motion. This process sustains as we transition from the “seen” frames to the
ensuing “unseen” part.

At a pre-selected frame in the “unseen” part (the 42nd frame, i.e. the 12th

unseen frame) , a square obstacle is introduced in the box at a randomly chosen
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spatial location. When the digit bounces off this obstacle yet another different
but unique tone is played (i.e. the frequency changes again). Post the collision,
the digit continues its linear motion in a random direction, with its accompanying
tone switching back to the original tone of the digit.

Given this setting, our task is to use sound to generate the unseen frames
which involves capturing the dynamics of the digit, and also placing the obstacle
accurately both in time and space. For our experiments, we train all algorithms
with 30 seen frames and the task is to predict the next 30 for training. Addition-
ally, in order to evaluate the generalizability of the model into the distant future,
we ask all methods to predict 60 unseen frames at test time. The obstacle is in-
troduced in the 42nd frame, i.e. the 12th unseen frame. Figure 1 represents this
setup visually. Figure 2 shows some sample frames from a clip in this dataset.

2.2 M3SO-NB

We also conduct experiments on the proposed Multimodal Moving MNIST dataset
without the surprise obstacle component (M3SO-NB). In this setting, we train
with 5 seen frames and predict the next 15 frames. However at test time all
competing models predict 25 frames.

2.3 Audioset-Drums

This dataset was constructed by collecting videos from the Drums class of the
AudioSet dataset [3]. This particular class of videos is unique in the sense that
most of the videos in this class have correlated visual and auditory information.
We selected those videos from this class which clearly had some body-parts
(mostly hands and head) of the drummer visible - playing his (or her) drum kit
in an indoor environment. We removed videos that had animations, and those
clips in which the sound source (i.e., the drum kit) was not clearly visible. All
video clips were resized to a frame resolution of 64 × 64 at 30fps and the audio
was sampled at 44kHz. Figure 2 shows some sample frames from this dataset.
For this dataset, we train all competing techniques with 15 seen frames and
predict the next 15. At test time however, we predict further into the future by
predicting the next 30 frames after the 15 seen frames.

2.4 YouTube-Painting

Apart from the constrained or simplified audio-visual prediction context, as cap-
tured in the previous two datasets, we decided to introduce a more challenging
dataset, that is still constrained in its context, however is diverse and loose in its
spatio-temporal dynamics. After looking at a tradeoff between various possibil-
ities on a large collection of Youtube videos, including diversity in camera view
angles, types of actor motions, kinds of visual context, and a clear and distinc-
tive audio cue, we decided to use videos containing an actor painting some art.
We realized that there exists a good collection of such videos on Youtube, which



4 Chatterjee and Cherian

Audio Amplitude vs time plotMoving away from 
lower-left corner

Moving closer to 
lower-left corner

Bouncing at box edges Bouncing at obstacle edges

Audio Frequency vs time plot

Seen Frames
Unseen Frames

Obstacle introduced in unseen frames at random location

… …

…

…

Bouncing at box edges

…

Fig. 1: An illustration of our proposed “Multimodal Moving MNIST with a Sur-
prise Obstacle” (M3SO) dataset. The top row shows a few salient frames in a
sample video. The two rows below it show the frequency (middle row) and am-
plitude (bottom row) of the audio signal plotted against time. When the digit
bounces on the edges, it has a momemtary tone change, seen on the left part of
the middle row, and when the digit bounces against the block, there is a different
tone played mometarily, as is shown by the first spike on the right side of the
middle row. The last row shows the change in amplitude of the tone as the digit
moves closer/farther away from the bottom left corner of the canvas.

can provide a good training set for our scheme. While, this dataset may not be
characteristic of large motions, it contains videos taken from multiple viewing
angles, periodic motions (while painting), diversity in the visual context (such
as different mixes of colors, paint brushes, etc.), different painters, and different
orientations and types of painting canvas, brush, etc at the same time contain-
ing clear sound of the painter’s brush touching the canvas. With this idea, we
present our Youtube-Paining dataset.

The YouTube-Painting dataset was constructed by collecting videos from
YouTube where a painter (or a part of his/her body) is seen painting an acrylic
painting, inside a room [1]. We used “Taylor ASMR” as the search query to crawl
these videos. Besides the visuals of the painter painting, there is accompanying
audio emanating as a result of the painter’s brush movements upon the canvas.
The videos do not feature too much camera motion and thus the change in audio
frequency is a cue for the distance of the brush from the camera. Akin to the
AudioSet-Drums dataset, the chosen videos in this dataset also do not contain
animations, shot changes, etc. Further, videos for which the sound source, i.e.,
the brush, was not clearly seen, were dropped from the dataset. Video clips in
this dataset have frames of size 64 × 64 at 30fps, while the audio is sampled at
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Table 1: A summary of the statistics of the different datasets.

Datasets # Train # Test # Val # Frames/video

M3SO 8000 1000 1000 100

AudioSet-Data 6000 1000 1000 90

YouTube-Painting 4800 500 500 90

44kHz. Figure 2 shows sample frames from this dataset. Here too, we train our
models with 15 seen frames and predict the next 15. At test time however, we
predict further into the future by predicting the next 30 frames after having seen
the first 15 frames.

t=1 t=90

Multmodal Moving MNIST

Sampled Frames

Painting Dataset

AudioSet Data

t=30 t=60

Fig. 2: Sample frames from the three datasets that we used in our experiments.

3 Network Architecture and Training Details

We use an LSTM with 2 layers in the prediction module, the input to which is
of 138 dimensions (128 dimensions of features and 10 dimensional zt). The prior
and posterior LSTMs are both single-layered. All LSTMs have a hidden state
size of 256 dimensions. Each transformer module has one layer and four heads
for capturing multi-head self-attention. The discriminator uses an LSTM with
a single hidden layer of 256 dimensions, and a frame-history R = 2 and a look-
ahead window of size k = 1. We train the generator and discriminator jointly
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Table 2: Standard Deviation Scores of SSIM, PSNR on the test set of M3SO-NB
and M3SO Datasets.

Experiments with M3SO-NB with 5 seen frames

Method Type SSIM PSNR
Frame 6 Frame 15 Frame 25 Frame 6 Frame 15 Frame 25

Our Method Multimodal 0.0011 0.0051 0.0037 0.157 0.197 0.142

Multiple Frames - [8] Multimodal 0.0008 0.0016 0.0006 0.032 0.100 0.112
Vougioukas et al. [8] Multimodal 0.0169 0.0175 0.0169 0.069 0.120 0.121

Denton and Fergus [2] Unimodal - V 0.0009 0.0021 0.0014 0.090 0.064 0.057
Audio Only Unimodal - A 0.0045 0.0036 0.0034 0.120 0.131 0.102

Experiments on M3SO with 30 seen frames (Block is introduced in the 42nd frame)

Frame 31 Frame 42 Frame 70 Frame 31 Frame 42 Frame 70

Our Method Multimodal 0.0050 0.0064 0.0064 0.178 0.127 0.144

Multiple Frames - [8] Multimodal 0.0011 0.0029 0.0032 0.142 0.038 0.027
Vougioukas et al. [8] Multimodal 0.0008 0.0024 0.0014 0.076 0.002 0.018

Denton and Fergus [2] Unimodal - V 0.0106 0.0226 0.0193 0.417 0.182 0.147
Audio Only Unimodal - A 0.0123 0.0178 0.0179 0.307 0.306 0.307

with an initial learning rate of 0.002 for both, using the ADAM [5] optimizer.
During inference, we sample 100 futures per time step, and use the one that
maximally matches the ground-truth for evaluating our method. We use the same
evaluation for all baseline methods that can generate multiple plausible futures.
The weighting term on the KL-loss, β, and the weight on the discriminator
loss, γ, were both set to 0.0001 for all datasets. However, γ was increased by a
factor of 10 every 300 training epochs. All hyper-parameters were chosen using
cross-validation on the validation category of every dataset.

4 Standard Deviation Measures of Model Performance

Tables 2, 3 present the standard deviation of SSIM and PSNR scores on the
test set of M3SO-NB, M3SO, AudioSet-Drums, and YouTube Painting datasets.
The low standard deviation scores on both SSIM and PSNR, across all datasets,
underscore the gains of our method over competing methods. For the mean test
set SSIM and PSNR scores on these datasets, we refer the interested reader to
Tables 1 and 2 of the main paper.

5 Auxiliary Evaluation of Generated Video Quality

Besides evaluating our method against the baselines using the SSIM and PSNR
(see Table 1 and 2 in the main paper), we use some auxiliary measures to fur-
ther evaluate the quality of synthesis. Table 4 presents the fooling rate of a
discriminator trained to distinguish real video clips of length R+ (k− 1) (which
equals 2 in our case) frames (and their audio) from synthetic ones, on both real
world-datasets . We see that our approach outperforms all baselines, attesting to
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Table 3: Standard Deviation Scores of SSIM, PSNR on the test set of AudioSet,
YouTube Painting Datasets.

Experiments on the AudioSet Dataset [3], with 15 seen frames

Method Type SSIM PSNR
Frame 16 Frame 30 Frame 45 Frame 16 Frame 30 Frame 45

Our Method Multimodal 0.0092 0.0065 0.0065 0.123 0.519 0.266

Multiple Frames - [8] Multimodal 0.0168 0.0073 0.0148 0.964 0.231 0.320
Vougioukas et al. [8] Multimodal 0.0162 0.0205 0.2650 0.497 0.402 0.182

Denton and Fergus [2] Unimodal - V 0.0168 0.0102 0.0084 1.098 0.319 0.054
Hsieh et al. [4] Unimodal - V 0.0050 0.0016 0.0082 0.042 0.051 0.006
Audio Only Unimodal - A 0.0197 0.0068 0.0072 0.230 0.388 0.177

Experiments on the novel YouTube Painting Dataset, with 15 seen frames

Frame 16 Frame 30 Frame 45 Frame 16 Frame 30 Frame 45

Our Method Multimodal 0.0025 0.0093 0.0146 1.369 0.718 0.250

Multiple Frames - [8] Multimodal 0.0020 0.0040 0.0050 0.181 0.536 0.879
Vougioukas et al. [8] Multimodal 0.0143 0.0028 0.0150 0.212 0.216 0.449

Denton and Fergus [2] Unimodal - V 0.0008 0.0193 0.0390 0.431 0.338 0.459
Hsieh et al. [4] Unimodal - V 0.0028 0.0019 0.0030 0.033 0.133 0.150
Audio Only Unimodal - A 0.0115 0.0069 0.0226 0.353 0.294 0.426

Table 4: Average discriminator fooling rates for different methods on real-world
data.

Datasets Our Method Denton and Fergus [2] Audio-Only Multiframe [8]

AudioSet Data 0.7926 0.3372 0.5622 0.6095

YouTube Painting Data 0.6599 0.4282 0.4687 0.6507

the quality of the frames that are generated by our method. Note that, the dis-
criminator is trained to judge the audio-visual alignment as well as the quality
of frames. Thus, a higher discriminator fooling rate implies that the respec-
tive model generates more real looking frames, realistic dynamics, and better
alignment with audio. Additionally in Table 5, we present the human preference
score for samples of our method versus the competitive method of Multiframe [8].
The results evince that human annotators prefer samples generated
by our method overwhelmingly. For the M3SO dataset, we also measure the
intersection over union of the predicted box location against the ground truth
location. Table 6 shows that our method outperforms competing methods by a
very significant margin (nearly 30%). A high accuracy for this localization task,
such as that of our method, demands good capture of the visual dynamics of
the digits, along with synchronization against the tones corresponding to the
bouncing of the digits with the obstacle.
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Table 5: Human preference score on samples generated by our method vs. [8]

Datasets Prefer ours

M3SO- Ours vs. Multiframe [8] 88%

AudioSet- Ours vs. Multiframe [8] 83%

YouTube Painting-Ours vs. Multiframe [8] 92%

Table 6: mIoU on block localization, evaluated for the final frame of the generated
sequences on M3SO with block.

Method Localization IoU

Our Method 0.5801

Denton and Fergus [2] 0.2577

Vougioukas et al. [8] 0.1289

Audio-Only 0.1030

6 Additional Experimental Details

6.1 Ablative Analysis

Figures 3(a) and 3(b) show the performance variations of different ablated
variants of our model. Both plots highlight the gains obtained by using: (i)
transformer encoder networks [7] to encode the input audio and visual modalities
in the stochasticity module; and (ii) the multimodal discrimator network. The
transformer encoders help to emphasize the salient components of the features,
while attenuating the others by leveraging self-attention. Using the multimodal
discriminator discriminator, on the other hand, ensures that the synthesized
video clips are realistic and well-aligned with the audio.

Table 7 contrasts our full model against an ablated variant of our model,
which does not have the posterior network or the multimodal discriminator (Ours
- Only L2). This variant is trained with only the reconstruction loss (L2 loss of
Equation 5 of the main paper) and serves to disentangle its effect from the
other ones in the final objective (Equation 7 in the paper). As is evident from
the results, merely training with the reconstruction loss leads to sub-optimal
performance.

6.2 Sensitivity of Hyperparameters

Figures 4(a) and 4(b) show the empirical sensitivity analysis of how performance
varies with various choices of hyper-parameters β and γ, respectively on the
M3SO-NB dataset. As can be seen from these plots, our model attains its peak
performance when both these parameters are set to 0.0001.

6.3 Evaluating Diversity of the Prediction Network

Figures 5(a) and 5(b) quantify the diversity in our model’s generations. The
plots reveal that the more the number of candidate frames (number of futures)
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Table 7: SSIM scores for our full model vis-á-vis different variants of our model
on M3SO-NB and YouTube Painting Datasets. Highest scores are in bold.

Method Type M3SO-NB YouTube Painting
Frame 6 Frame 15 Frame 25 Frame 16 Frame 30 Frame 45

Our Method Multimodal 0.9575 0.8943 0.8697 0.9716 0.9291 0.9110
Ours - Only L2 Multimodal 0.9543 0.7624 0.5610 0.9524 0.9166 0.8986
Teacher - Forcing Multimodal 0.9412 0.8819 0.8519 0.9695 0.9293 0.9109
AV Mismatch Multimodal 0.9428 0.8569 0.8234 0.9496 0.8784 0.8520

that are sampled at every time step, during inference, the better is the approx-
imation to the ground truth video. However, sampling more frames comes at
the cost of computational complexity. Our experiments show that sampling 100
candidate frames at every time step was a good trade-off. We see the pattern of
diverse sample generation, carry over to the real world datasets too, as observed
in Figures 6(a) and 6(b). Both figures suggest that as the number of candidate
futures go up, the diversity of the generated samples increase which is why the
average pairwise SSIM between the generated samples tends to go down.

6.4 Performance on a Single Generated Video Sample

Figures 7(a) and 7(b) show the performance of a prototypical sample from the
M3SO dataset, vis-á-vis competing state-of-the-art methods. Both these plots
show that our approach, outperforms other methods by a significant margin. A
closer look into these plots reveal more interesting details. For instance, we notice
a sudden dip in performance of all methods at the 12-th frame (frame index
number 11). This is due to the sudden appearance of the block at this frame,
whose location is not known in advance. However, our model’s ability to perceive
both audio and visual modalities, allows it to improve its performance as the digit
interacts with the updated environment more and more. For instance, a collision
with the block is indicated by a sound of a certain tone, which helps to localize
the block with respect to the position of the digit. Such useful localization cues
are absent in unimodal (vision only) approaches, resulting in poor performance.
On the other hand, the approach of Multiframe - Vougioukas et al. [8], though
multimodal, does not synchronize the audio and visual modalities, and thus fails.

6.5 Training with Teacher Forcing

We considered the impact of using Teacher-Forcing for training our model, since
such a strategy has shown promise for deterministic sequence-to-sequence mod-
els [9]. Here the model is trained with ground-truth frames for the first 100
epochs, but subsequently for every batch, a Bernoulli random variable is sampled
to determine if the model is going to be trained with the ground-truth frames
(Xt) or by feeding back the synthesized frames (X̂t) as input (as is the case dur-
ing inference). We observe from the results in Table 7 that for both M3SO-NB
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(a) SSIM (b) PSNR

Fig. 3: SSIM (left) and PSNR (right) on the M3SO-NB dataset with ablated
variants of our Sound2Sight model.

(a) γ plot (b) β plot

Fig. 4: Hyperparameter Study: Variations in performance on the M3SO-NB
dataset against different choices of weighting on the discriminator loss, γ, as
measured by SSIM (left) and different choices of weighting on the KL-Divergence
loss, β, as measured by SSIM (right)

and for YouTube Painting, the Teacher-Forcing variant performs similarly to our
original training strategy. We surmise that this is due to the stochastic nature
of our model, which permits it to adapt to variations in input data distribution.

6.6 Audio-Video Synchronization

We further validate the ability of our technique to synchronize the audio and
visual inputs. A time-evolving SSIM measure of a randomly chosen sample from
the test set of M3SO, reveals how our method’s predictions can adapt to the
stochasticity of the input data (see Figure 8). We refer the interested reader to
the attached video to have a better understanding.

Additionally the importance of synchronized audio-visual context is evalu-
ated. In order to do so, we train our model in the standard setup but at inference
time we initialize the model with mismatched audio-visual inputs, i.e. the past
visual context is not from the same sample from which the audio is drawn.
The SSIM scores of the generated frames under this setting is shown in Table 7
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(a) SSIM (b) PSNR

Fig. 5: Variation in performance against ground truth video, on the Vanilla Mov-
ingMNIST without obstacle with increasing number of candidates (number of fu-
tures generated) at every time step, measured by SSIM (left) and PSNR (right).

(a) AudioSet-Drums (b) YouTube-Painting

Fig. 6: Diversity, measured by average SSIM across every pair of future candidate,
in the generated frames on AudioSet-Drums (left) and YouTube Paintings (right)
with increasing number of candidate futures.

(‘AV Mismatch’). As is evident from the sub-par performance of this setting, the
alignment of the audio and visual inputs is critical for good generation.

7 Qualitative Results

In the following, we present qualitative results of video generation by our method
vis-á-vis other state-of-the-art baselines on the Multimodal Moving MNIST
dataset (both with and without obstacle) and the real-world YouTube Painting
dataset and the AudioSet-Drums [3] datasets. Figures 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19 show visualizations of the frames generated by our method
and those by competing baselines on the M3SO-NB dataset. The figures make
the case for the superiority of our method in capturing both a digit’s appearance
and location accurately. We did not observe much of a qualitative difference be-
tween the methods of Vougioukas et al. [8] and its Multiframe version, across
any of the datasets. Hence for brevity, we show only the latter.
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Further in the case when the challenges are heightened by introducing an
obstacle, we see that our approach demonstrates reasonable performance of lo-
calizing both the block and the digit, albeit its appearance is slightly morphed.
This stretches beyond the performance of the baseline methods, significantly. In
particular, we notice the total disappearance of the digits in each of the baselines.
(see Figures 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31). The distinction
is more sharply observed, when we see the associated video (attachment in the
supplementary materials).

In Figures 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53 we see how our method fares against the
state-of-the-art in generating frames from the real world datasets of YouTube
Painting and AudioSet-Drums [3], respectively. In all the cases, we see that our
method is the closest to the ground-truth and further doesn’t introduce arti-
facts, such as discoloration which some of the baseline methods suffer from. A
comparison of the optical flow outputs corroborates this observation. Addition-
ally, the relative crispness of the hand region is suggestive of the fact that our
approach is also better at modeling the dynamics of the video. We recommend
the interested reader to the accompanying videos to gain a better understanding
of the generation performance.
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(a) SSIM

(b) PSNR

Fig. 7: Performance on a random sample from the MovingMNIST with obstacle
dataset vis-á-vis the most competitive baselines, measured by SSIM (top) and
PSNR (bottom).
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Fig. 8: A screenshot from the video illustrating how the frames predicted corre-
late with the ground-truth (as measured by SSIM) and the input audio signal.
Please see the attached video clip.
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Fig. 9: Sample generations on the M3SO-NB dataset by our method vis-á-vis
other baselines.
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Fig. 10: Sample generations on the M3SO-NB dataset by our method vis-á-vis
other baselines.
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Fig. 11: Sample generations on the M3SO-NB dataset by our method vis-á-vis
other baselines.
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Fig. 12: Sample generations on the M3SO-NB dataset by our method vis-á-vis
other baselines.
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Fig. 13: Sample generations on the M3SO-NB dataset by our method vis-á-vis
other baselines.
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Fig. 14: Sample generations on the M3SO-NB dataset by our method vis-á-vis
other baselines.
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Vougioukas	et	al.

Fig. 15: Sample generations on the M3SO-NB dataset by our method vis-á-vis
other baselines.
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Fig. 16: Sample generations on the M3SO-NB dataset by our method vis-á-vis
other baselines.
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Fig. 17: Sample generations on the M3SO-NB dataset by our method vis-á-vis
other baselines.
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Fig. 18: Sample generations on the M3SO-NB dataset by our method vis-á-vis
other baselines.
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Fig. 19: Sample generations on the M3SO-NB dataset by our method vis-á-vis
other baselines.
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Fig. 20: Sample generations on the MovingMNIST with Surprise Obstacle
dataset by our method vis-á-vis other baselines.
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Fig. 21: Sample generations on the MovingMNIST with Surprise Obstacle
dataset by our method vis-á-vis other baselines.
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Fig. 22: Sample generations on the MovingMNIST with Surprise Obstacle
dataset by our method vis-á-vis other baselines.
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Fig. 23: Sample generations on the MovingMNIST with Surprise Obstacle
dataset by our method vis-á-vis other baselines.
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Fig. 24: Sample generations on the MovingMNIST with Surprise Obstacle
dataset by our method vis-á-vis other baselines.
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Fig. 25: Sample generations on the MovingMNIST with Surprise Obstacle
dataset by our method vis-á-vis other baselines.
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Fig. 26: Sample generations on the MovingMNIST with Surprise Obstacle
dataset by our method vis-á-vis other baselines.
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Fig. 27: Sample generations on the MovingMNIST with Surprise Obstacle
dataset by our method vis-á-vis other baselines.
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Fig. 28: Sample generations on the MovingMNIST with Surprise Obstacle
dataset by our method vis-á-vis other baselines.
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Fig. 29: Sample generations on the MovingMNIST with Surprise Obstacle
dataset by our method vis-á-vis other baselines.
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Fig. 30: Sample generations on the MovingMNIST with Surprise Obstacle
dataset by our method vis-á-vis other baselines.
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Fig. 31: Sample generations on the MovingMNIST with Surprise Obstacle
dataset by our method vis-á-vis other baselines.
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Fig. 32: Sample generations from the YouTube-Painting dataset by our method
vis-á-vis other baselines and optical flows across frames. The red squares denotes
regions of high motion.
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Fig. 33: Sample generations from the YouTube-Painting dataset by our method
vis-á-vis other baselines and optical flows across frames. The red squares denotes
regions of high motion.
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Fig. 34: Sample generations from the YouTube-Painting dataset by our method
vis-á-vis other baselines and optical flows across frames. The red squares denotes
regions of high motion.
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Fig. 35: Sample generations from the YouTube-Painting dataset by our method
vis-á-vis other baselines and optical flows across frames. The red squares denotes
regions of high motion.



30 Chatterjee and Cherian

t=1 t=5 t=16 t=19 t=21

G
T

Multiframe	-	
Vougioukas	et	al.

Seen Frames Predicted Frames

Denton and Fergus

Ours

t=15 t=17 t=18 t=20 t=43 t=44 t=45

Audio	Only

Multiframe	-	
Vougioukas	et	al.	Flow

Audio	Only	Flow
 

Denton and Fergus Flow
 

Ours Flow

GT Flow

Fig. 36: Sample generations from the YouTube-Painting dataset by our method
vis-á-vis other baselines and optical flows across frames. The red squares denotes
regions of high motion.
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Fig. 37: Sample generations from the YouTube-Painting dataset by our method
vis-á-vis other baselines and optical flows across frames. The red squares denotes
regions of high motion.



32 Chatterjee and Cherian

t=1 t=5 t=16 t=37 t=39

G
T

Multiframe	-	
Vougioukas	et	al.

Seen Frames Predicted Frames

Denton and Fergus

Ours

t=15 t=17 t=18 t=38 t=41 t=42 t=43

Audio	Only

Multiframe	-	
Vougioukas	et	al.	Flow

Audio	Only	Flow
 

Denton and Fergus Flow
 

Ours Flow

GT Flow

Fig. 38: Sample generations from the YouTube-Painting dataset by our method
vis-á-vis other baselines and optical flows across frames. The red squares denotes
regions of high motion.
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Fig. 39: Sample generations from the YouTube-Painting dataset by our method
vis-á-vis other baselines and optical flows across frames. The red squares denotes
regions of high motion.
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Fig. 40: Sample generations from the YouTube-Painting dataset by our method
vis-á-vis other baselines and optical flows across frames. The red squares denotes
regions of high motion.
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Fig. 41: Sample generations from the YouTube-Painting dataset by our method
vis-á-vis other baselines and optical flows across frames. The red squares denotes
regions of high motion.
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Fig. 42: Sample generations on the AudioSet-Drums dataset by our method vis-
á-vis other baselines and optical flows across frames. The red square denotes
regions of high motion.
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Fig. 43: Sample generations on the AudioSet-Drums dataset by our method vis-
á-vis other baselines and optical flows across frames. The red square denotes
regions of high motion.
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Fig. 44: Sample generations on the AudioSet-Drums dataset by our method vis-
á-vis other baselines and optical flows across frames. The red square denotes
regions of high motion.
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Fig. 45: Sample generations on the AudioSet-Drums dataset by our method vis-
á-vis other baselines and optical flows across frames. The red square denotes
regions of high motion.
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Fig. 46: Sample generations on the AudioSet-Drums dataset by our method vis-
á-vis other baselines and optical flows across frames. The red square denotes
regions of high motion.
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Fig. 47: Sample generations on the AudioSet-Drums dataset by our method vis-
á-vis other baselines and optical flows across frames. The red square denotes
regions of high motion.
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Fig. 48: Sample generations on the AudioSet-Drums dataset by our method vis-
á-vis other baselines and optical flows across frames. The red square denotes
regions of high motion.
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Fig. 49: Sample generations on the AudioSet-Drums dataset by our method vis-
á-vis other baselines and optical flows across frames. The red square denotes
regions of high motion.
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Fig. 50: Sample generations on the AudioSet-Drums dataset by our method vis-
á-vis other baselines and optical flows across frames. The red square denotes
regions of high motion.
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Fig. 51: Sample generations on the AudioSet-Drums dataset by our method vis-
á-vis other baselines and optical flows across frames. The red square denotes
regions of high motion.
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Fig. 52: Sample generations on the AudioSet-Drums dataset by our method vis-
á-vis other baselines and optical flows across frames. The red square denotes
regions of high motion.
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Fig. 53: Sample generations on the AudioSet-Drums dataset by our method vis-
á-vis other baselines and optical flows across frames. The red square denotes
regions of high motion.
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7.1 Diverse Sample Generations

In Figures 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 96, 97, 98 we present qualitative visualizations of
a set of diverse generations for every sample across all datasets. The green box
highlights frames which are noticeably distinct across samples, underscoring the
variety of the generated samples for both synthetic and real-world datasets.
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Fig. 54: Diverse sample generations on the M3SO-NB dataset by our method.
The green square highlights frames where noticeable differences are observed
across samples.
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Fig. 55: Diverse sample generations on the M3SO-NB dataset by our method.
The green square highlights frames where noticeable differences are observed
across samples.
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Fig. 56: Diverse sample generations on the M3SO-NB dataset by our method.
The green square highlights frames where noticeable differences are observed
across samples.
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Fig. 57: Diverse sample generations on the M3SO-NB dataset by our method.
The green square highlights frames where noticeable differences are observed
across samples.
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Fig. 58: Diverse sample generations on the M3SO-NB dataset by our method.
The green square highlights frames where noticeable differences are observed
across samples.
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Fig. 59: Diverse sample generations on the M3SO-NB dataset by our method.
The green square highlights frames where noticeable differences are observed
across samples.
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Fig. 60: Diverse sample generations on the M3SO-NB dataset by our method.
The green square highlights frames where noticeable differences are observed
across samples.
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Fig. 61: Diverse sample generations on the M3SO-NB dataset by our method.
The green square highlights frames where noticeable differences are observed
across samples.
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Fig. 62: Diverse sample generations on the M3SO-NB dataset by our method.
The green square highlights frames where noticeable differences are observed
across samples.



Sound2Sight: Generating Visual Dynamics from Sound and Context 53

G
T

Seen Frames Predicted Frames
t=1 t=3 t=6 t=13 t=15t=5 t=7 t=8 t=14 t=28 t=29 t=30

Sample 1

Sample 2

Sample 3

Sample 4

Fig. 63: Diverse sample generations on the M3SO-NB dataset by our method.
The green square highlights frames where noticeable differences are observed
across samples.

G
T

Seen Frames Predicted Frames
t=1 t=3 t=6 t=13 t=15t=5 t=7 t=8 t=14 t=28 t=29 t=30

Sample 1

Sample 2

Sample 3

Sample 4

Fig. 64: Diverse sample generations on the M3SO-NB dataset by our method.
The green square highlights frames where noticeable differences are observed
across samples.
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Fig. 65: Diverse sample generations on the Multimodal MovingMNIST with Sur-
prise Obstacle dataset by our method. The green square highlights frames where
noticeable differences are observed across samples.
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Fig. 66: Diverse sample generations on the Multimodal MovingMNIST with Sur-
prise Obstacle dataset by our method. The green square highlights frames where
noticeable differences are observed across samples.

G
T

Seen Frames Predicted Frames
t=1 t=15 t=31 t=48 t=50t=30 t=32 t=33 t=49 t=88 t=89 t=90

Sample 1

Sample 2

Sample 3

Sample 4

Fig. 67: Diverse sample generations on the Multimodal MovingMNIST with Sur-
prise Obstacle dataset by our method. The green square highlights frames where
noticeable differences are observed across samples.
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Fig. 68: Diverse sample generations on the Multimodal MovingMNIST with Sur-
prise Obstacle dataset by our method. The green square highlights frames where
noticeable differences are observed across samples.
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Fig. 69: Diverse sample generations on the Multimodal MovingMNIST with Sur-
prise Obstacle dataset by our method. The green square highlights frames where
noticeable differences are observed across samples.
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Fig. 70: Diverse sample generations on the Multimodal MovingMNIST with Sur-
prise Obstacle dataset by our method. The green square highlights frames where
noticeable differences are observed across samples.
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Fig. 71: Diverse sample generations on the Multimodal MovingMNIST with Sur-
prise Obstacle dataset by our method. The green square highlights frames where
noticeable differences are observed across samples.
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Fig. 72: Diverse sample generations on the Multimodal MovingMNIST with Sur-
prise Obstacle dataset by our method. The green square highlights frames where
noticeable differences are observed across samples.
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Fig. 73: Diverse sample generations on the Multimodal MovingMNIST with Sur-
prise Obstacle dataset by our method. The green square highlights frames where
noticeable differences are observed across samples.



Sound2Sight: Generating Visual Dynamics from Sound and Context 59

G
T

Seen Frames Predicted Frames
t=1 t=15 t=31 t=54 t=56t=30 t=32 t=33 t=55 t=88 t=89 t=90

Sample 1

Sample 2

Sample 3

Sample 4

Fig. 74: Diverse sample generations on the Multimodal MovingMNIST with Sur-
prise Obstacle dataset by our method. The green square highlights frames where
noticeable differences are observed across samples.
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Fig. 75: Diverse sample generations on the Multimodal MovingMNIST with Sur-
prise Obstacle dataset by our method. The green square highlights frames where
noticeable differences are observed across samples.
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Fig. 76: Diverse sample generations on the Multimodal MovingMNIST with Sur-
prise Obstacle dataset by our method. The green square highlights frames where
noticeable differences are observed across samples.
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Fig. 77: Diverse sample generations on the YouTube Painting dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where noticeable
differences are observed across samples.



62 Chatterjee and Cherian

t=1 t=5 t=16 t=19 t=21

G
T

Seen Frames Predicted Frames
t=15 t=17 t=18 t=20 t=22 t=23 t=24

GT Flow

Sample 2

Sample	3

Sample 1

Sample 1 Flow

Sample 2 Flow

Sample 3 Flow

Sample	4

Sample 4 Flow

Fig. 78: Diverse sample generations on the YouTube Painting dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where noticeable
differences are observed across samples.
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Fig. 79: Diverse sample generations on the YouTube Painting dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where noticeable
differences are observed across samples.
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Fig. 80: Diverse sample generations on the YouTube Painting dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where noticeable
differences are observed across samples.
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Fig. 81: Diverse sample generations on the YouTube Painting dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where noticeable
differences are observed across samples.
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Fig. 82: Diverse sample generations on the YouTube Painting dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where noticeable
differences are observed across samples.



Sound2Sight: Generating Visual Dynamics from Sound and Context 67

t=1 t=5 t=16 t=37 t=39

G
T

Seen Frames Predicted Frames
t=15 t=17 t=18 t=38 t=41 t=42 t=43

GT Flow

Sample 2

Sample	3

Sample 1

Sample 1 Flow

Sample 2 Flow

Sample 3 Flow

Sample	4

Sample 4 Flow

Fig. 83: Diverse sample generations on the YouTube Painting dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where noticeable
differences are observed across samples.
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Fig. 84: Diverse sample generations on the YouTube Painting dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where noticeable
differences are observed across samples.
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Fig. 85: Diverse sample generations on the YouTube Painting dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where noticeable
differences are observed across samples.
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Fig. 86: Diverse sample generations on the YouTube Painting dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where noticeable
differences are observed across samples.



Sound2Sight: Generating Visual Dynamics from Sound and Context 71

t=1 t=5 t=16 t=26 t=28

G
T

Seen Frames Predicted Frames
t=15 t=17 t=18 t=27 t=32 t=33 t=34

GT Flow

Sample 2

Sample	3

Sample 1

Sample 1 Flow

Sample 2 Flow

Sample 3 Flow

Sample	4

Sample 4 Flow

Fig. 87: Diverse sample generations on the AudioSet Drums dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where notice-
able differences are observed across samples.



72 Chatterjee and Cherian

t=1 t=5 t=16 t=22 t=24

G
T

Seen Frames Predicted Frames
t=15 t=17 t=18 t=23 t=29 t=30 t=31

GT Flow

Sample 2

Sample	3

Sample 1

Sample 1 Flow

Sample 2 Flow

Sample 3 Flow

Sample	4

Sample 4 Flow

Fig. 88: Diverse sample generations on the AudioSet Drums dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where notice-
able differences are observed across samples.
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Fig. 89: Diverse sample generations on the AudioSet Drums dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where notice-
able differences are observed across samples.
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Fig. 90: Diverse sample generations on the AudioSet Drums dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where notice-
able differences are observed across samples.
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Fig. 91: Diverse sample generations on the AudioSet Drums dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where notice-
able differences are observed across samples.
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Fig. 92: Diverse sample generations on the AudioSet Drums dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where notice-
able differences are observed across samples.
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Fig. 93: Diverse sample generations on the AudioSet Drums dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where notice-
able differences are observed across samples.
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Fig. 94: Diverse sample generations on the AudioSet Drums dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where notice-
able differences are observed across samples.
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Fig. 95: Diverse sample generations on the AudioSet Drums dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where notice-
able differences are observed across samples.
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Fig. 96: Diverse sample generations on the AudioSet Drums dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where notice-
able differences are observed across samples.
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Fig. 97: Diverse sample generations on the AudioSet Drums dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where notice-
able differences are observed across samples.



82 Chatterjee and Cherian

t=1 t=5 t=21 t=25 t=27

G
T

Seen Frames Predicted Frames
t=15 t=22 t=23 t=26 t=31 t=32 t=33

GT Flow

Sample 2

Sample	3

Sample 1

Sample 1 Flow

Sample 2 Flow

Sample 3 Flow

Sample	4

Sample 4 Flow

Fig. 98: Diverse sample generations on the AudioSet Drums dataset by our
method along with the optical flows between frames. The red square denotes
regions of high motion, while the green square highlights frames where notice-
able differences are observed across samples.
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7.2 Failure Cases

Figure 99 shows some scenarios where our model fails to generate visually com-
pelling frames. This is mainly seen when the region of motion in the seen frames
is localized to a small region. Our model, in such cases, essentially displays a
static frame. This is typified by the slender ‘1’ in Multimodal MovingMNIST or
the limited hand motion (Figure 99) in the case of the YouTube Painting dataset.
We intend to resolve this issue in our future work by replacing the Mean-Squared
loss term in our objective, which uniformly penalizes all pixels, with a weighted
version that would attend more to ‘regions of interest’ - where more motion is
observed.
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Fig. 99: An assortment of some of the failure cases of our method on the 3
datasets.
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