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1 Hyper-parameters used in our ADTC model

Here we list the hyper-parameters we used in our model. Results reported in the main
text is based on the settings in Table 1 here. The results of different settings of hyper-
parameters are given in Sec. 2.

2 Robustness analysis of the model

We carry out experiments to explore the robustness of our model with respect to hyper-
parameters. Here we mainly focus on four hyper-parameters: the number of clusters, the
margin in the triplet loss, the number of hidden units (bottleneck units) in the channel
branch of the voxel attention module and the size of dimension reduction of the features
for clustering. Each time, we vary one hyper-parameter in a range each time and the oth-
ers are fixed. First we show the effect of the number of clusters, as this is unknown in
advance but needs to pre-specified4. We check the model performance on Market1501
by setting different numbers of clusters, varying from 300 to 1500, in two-stage clus-
tering. Table 2 shows that the model performance is quite robust over a wide range of
cluster numbers, even when the data is largely under-segmented or over-segmented.

Results of varying other hyper-parameters are given in Table 3. We see that the per-
formances of our model are rather robust with respect to the triplet margin, the number
of hidden units (bottleneck units) in the channel branch of the voxel attention module
and the size of dimension reduction of the features for clustering. It seems that the size
of nearest neighbours p in the two-stage clustering has an impact on the model perfor-
mance. The reason is when p is small (p = 5), the number of selected images is small,

4 Although some methods such as density-based clustering do not require specifying the number
of clusters, they do need to pre-define the minimum number of points for the neighborhood
and the maximum distance for two points to be considered as in the same cluster. To our best
knowledge, there is no clustering algorithm which does not impose any pre-defined constraint
on clustering.
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Data pre-processing:
Image size 256 × 128
Random horizontal flip True
Color jitter False
Image crop False
Normalize to (0,1) True
Standardization True
RandomErasing False
Optimization related parameters:
Optimizer Adam
Learning rate 0.0001
Epochs per round 10
Exponentially decay at epochs 5
Weight decay 0.0005
IDs per batch 32
Images per ID 4
Voxel attention related parameters:
Number of units in bottleneck (d) 800
Two-stage clustering related parameters:
Number of clusters (M ) 1000
Number of PCs (for dimension reduction) 50
The size of nearest neighbours (p) 20
Loss function related parameters:
Triplet margin 0.3
Hard example mining True
Identification loss (softmax loss) False

Table 1. Hyper-parameters used in our ADTC model.

which may lead to under-fitting of our model. Table 3 also shows that when the number
of update epochs per round is too large (corresponding to a small clustering frequency),
the model performance is degraded considerably. The underlying reason is also straight-
forwardly understandable. If the number of parameters update at each round is too large,
the model tends to overfit to the current pseudo labeled data. This is dangerous, since
at the beginning of training, the feature points are intertwined with each other which
means that the pseudo labels are unreliable , and over-training on these unreliable data
will lead to degenerate performances. In practice, we can avoid this by not setting the
number of updating epochs at each round too large.

M 300 500 700 900 1100 1300 1500
mAP 46.1 51.8 53.8 56.5 58.3 55.5 53.6
rank1 70.0 74.5 75.5 77.1 78.3 76.8 75.9

Table 2. The model performance vs. the cluster number. Experiments are carried out on Mar-
ket1501. The ground truth for the number of clusters is 751.
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mAp rank1 rank5 rank10
the triplet margin (m):
m = 0.1 55.4 76.8 88.9 92.5
m = 0.2 58.5 78.3 90.6 93.5
m = 0.3 59.7 79.3 90.8 94.1
m = 0.4 60.1 79.1 90.9 94.4
m = 0.5 59.4 78.7 89.9 93.4
the number of units in bottleneck (d):
d = 700 58.9 79.3 90.9 93.9
d = 800 59.7 79.3 90.8 94.1
d = 900 59.1 78.4 89.9 93.2
d = 1000 57.5 76.8 89.7 93.1
the number of PCs (for dimension reduction):
PCs = 50 59.7 79.3 90.8 94.1
PCs = 100 57.6 78.1 90.4 93.6
PCs = 150 59.5 79.1 90.9 94.0
PCs = 200 57.7 77.2 89.7 93.3
the size of nearest neighbours (p):
p = 5 45.9 70.6 85.2 89.9
p = 10 49.4 72.7 87.7 92.0
p = 15 49.7 73.7 87.7 91.7
p = 20 59.7 79.3 90.8 94.1
the number of updated epochs per round (E):
E = 2 54.2 76.1 89.3 92.5
E = 5 53.9 75.1 88.7 92.4
E = 10 59.7 79.3 90.8 94.1
E = 20 41.3 66.3 82.0 87.1
E = 30 31.7 56.7 75.4 80.7
E = 40 24.8 49.1 68.3 75.7

Table 3. Model robustness to hyper-parameters. Experiments are carried out on the Market1501
dataset.

3 Model performance under an unbalanced data distribution

The unlabeled data distribution is an important factor which influences the model per-
formance under the unsupervised setting. The benchmark datasets we have used are well
balanced for different classes. In reality, however, the collection of pedestrian images
is typically biased. For example, the people working nearby and the children playing
around the cameras tend to have higher chances of being included. It is therefore im-
portant to check the robustness of our model for unbalanced data. Using Market1501
(the result for DukeMTMC is similar), we artificially generate a set of unbalanced data
and a set of balanced data having equal numbers. Here we first describe the process of
unbalanced data generation.

Denote Pi the set of images of a pedestrian i in the dataset X , which is written as,

Pi = {P 1
i } ∪ {P 2

i }... ∪ {PR
i }, (1)
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where the subset {P r
i } represents the images of the pedestrian collected from the cam-

era r, 1 ≤ r ≤ R. R is the number of cameras that Pi collected from. To generate
the unbalanced data for each pedestrian, we select images from 0 ≤ S ≤ R cameras,
with S a random number uniformly distributed in the range [0, R]. These S cameras
are randomly sampled from all cameras. By this, the numbers of images from different
pedestrians become highly unbalanced (see Fig. 1A). The obtained unbalanced data is
written as:

Punbalanced,i = {P r1
i } ∪ {P

r2
i }... ∪ {P

rs
i }, (2)

where r1, r2, ..., rs is the indexes of the selected cameras, and rs ≤ R. We only create
an unbalanced dataset for Market1501. The model performance for unbalanced data of
DukeMTMC is similar.

For the generated unbalanced dataset, the total number of images (6624) is about a
half of the original images (12936). To make a fair comparison, we trained the model
with a balanced dataset having the similar size as the unbalanced data. Since the original
Market 1501 is well-balanced when collected, for each pedestrian, we simply randomly
sample half images from each {P r

i } to get the balanced dataset. The total number of
images in the created balanced dataset is 6473. We observe that our model achieves a
slightly degraded but still comparable performance on the unbalanced data compared
to that on the balanced one (see Fig. 1B).
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Fig. 1. (A) Illustrating the balanced and biased data distributions used for robustness analysis. (B)
The model performances in the two data distributions. Market1501 is used.

4 Model performances on the labeled dataset

Following the convention, before training our model on the unlabeled dataset (the target
dataset), we initialize the model on a labeled dataset (the source dataset). Table 4 shows
the hyper-parameters we used when trained on the source dataset. The model architec-
ture is the same as we described in Sec.4.2, i.e., a Resnet50 pre-trained on ImageNet as
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data pre-processing:
Image size 256 × 128
Random horizontal flip True
Color jitter False
Image crop False
Normalize to (0,1) True
Standardization True
RandomErasing True
Optimization related parameters:
Optimizer Adam
Learning rate 0.0002
Training epochs 200
Exponentially decay at epochs 100
Weight decay 0.0005
IDs per batch 32
Images per ID 4
Loss function related parameters:
Triplet margin 0.3
Hard example mining True
Identification loss (softmax loss) False

Table 4. Hyper-parameters used in supervised training on the source dataset.

mAp rank1 rank5 rank10
Market1501 72.7 88.3 95.4 97.6

Market1501 to DukeMTMC 18.2 34.0 49.1 55.9
DukeMTMC 62.8 79.2 89.9 93.1

DukeMTMC to Market1501 18.8 44.0 62.1 69.4
Table 5. The performances of the initialized model on the source dataset and on the target dataset
before training.

the backbone followed by the global pooling layer and a batch normalization layer. No-
tably, we only initialize the model on the source labeled dataset and then train it without
any auxiliary label information in the unlabeled domain (as described in Sec.4.3).

Table 5 presents the performance of the model trained on the source dataset and
the performance of the trained model directly applied on the unlabelled target dataset,
which can be treated as the baseline for comparison in Table 1 and Table 2 in the
main text. Although the baseline performance is quite low (mAp/rank1: 18.2%/34.0%
on DukeMTMC and 18.8%/44.0% on Market1501) at the beginning (serving as a
warmup), it is important for our method to exploit this weak signal to bootstrap the
discriminating power of the proposed ADTC model.

5 Improving the clustering quality with voxel attention

Here, we demonstrate that voxel attention contributes to improving the clustering qual-
ity by visualizing the learned features. As shown in Fig. 2, with voxel attention, data
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Fig. 2. T-SNE visualization of input images after training. 50 classes of person images are selected
from DukeMTMC for visualization. Different colors represent different classes.

points belonging to the same class are better aggregated than that without voxel at-
tention. Specifically, with voxel attention, the margin between different classes are en-
larged, making the retrieval much easier.

6 More examples with the two-stage clustering strategy

The two-stage clustering strategy we used serves as a refinement of the original kmeans
clustering algorithm (see Sec.3.2 and Sec.4.5), which is crucial for our model (see
Sec.4.7). Here, we present more examples displaying the superior performance of two-
stage clustering compared to the kmeans algorithm (Fig. 3).
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Fig. 3. (A-B): two clusters from Market1501. (C-D): two clusters from DukeMTMC. Upper pan-
els: results without two-stage clustering. Lower panels: results with two-stage clustering. Images
in red box: wrongly assigned images in the cluster. Distance to the cluster centroid increases from
left to right.


