
Beyond the Nav-Graph: Vision-and-Language
Navigation in Continuous Environments

Jacob Krantz1 Erik Wijmans2,3 Arjun Majumdar2 Dhruv Batra2,3 Stefan Lee1

1Oregon State University 2Georgia Institute of Technology 3Facebook AI Research

Abstract. We develop a language-guided navigation task set in a con-
tinuous 3D environment where agents must execute low-level actions to
follow natural language navigation directions. By being situated in contin-
uous environments, this setting lifts a number of assumptions implicit in
prior work that represents environments as a sparse graph of panoramas
with edges corresponding to navigability. Specifically, our setting drops
the presumptions of known environment topologies, short-range oracle
navigation, and perfect agent localization. To contextualize this new task,
we develop models that mirror many of the advances made in prior settings
as well as single-modality baselines. While some transfer, we find signifi-
cantly lower absolute performance in the continuous setting – suggesting
that performance in prior ‘navigation-graph’ settings may be inflated by
the strong implicit assumptions. Code at jacobkrantz.github.io/vlnce

Keywords: Vision-and-Language Navigation, Embodied Agents

1 Introduction

Springing forth from the pages of science fiction and capturing the daydreams
of weary chore-doers everywhere, the promise and potential of general-purpose
robotic assistants that follow natural language instructions has been long un-
derstood. Taking a small step towards this goal, recent work has begun devel-
oping artificial agents that follow natural language navigation instructions in
perceptually-rich, simulated environments [4,6]. An example instruction might
be “Go down the hall and turn left at the wooden desk. Continue until you reach
the kitchen and then stop by the kettle.” and agents are evaluated by their ability
to follow the described path in (potentially novel) simulated environments.

Many of these tasks have been developed from datasets of panoramic images
captured in real scenes – e.g. Google StreetView images in Touchdown [6] or
Matterport3D panoramas captured in homes in Vision-and-Language Navigation
(VLN) [4]. This paradigm enables efficient data collection and high visual fidelity
compared to 3D scanning or creating synthetic environments; however, scenes
are only observed from a sparse set of points relative to the full 3D environment
(∼117 viewpoints per environment in VLN). As a consequence, environments in
these tasks are defined in terms of a navigation graph (or nav-graph for short)
– a static topological representation of 3D space. As shown in Fig. 1(a), nodes
in the nav-graph correspond to 360° panoramic images taken at fixed locations

https://jacobkrantz.github.io/vlnce

2 J. Krantz et al.

(a) Vision-and-Language Navigation (VLN) (b) VLN in Continuous Environments (VLN-CE)

Fig. 1. The VLN setting (a) operates on a fixed topology of panoramic images (shown
in blue) – assuming perfect navigation between nodes (often meters apart) and precise
localization. Our VLN-CE setting (b) lifts these assumptions by instantiating the task
in continuous environments with low-level actions – providing a more realistic testbed
for robot instruction following.

and edges between nodes indicate navigability. This nav-graph based formulation
introduces a number of assumptions that make it a poor proxy for what a robotic
agent would encounter while navigating the real world.

Focusing our discussion on Vision-and-Language Navigation (VLN), the
existence and common usage of the nav-graph imply the following assumptions:
– Known topology. Rather than continuous environments in which agents can
move freely, agents operate on a fixed topology of traversable nodes (shown
in blue in Fig. 1(a)). Aside from being a poor match to robot control, this
also provides prior information about environment layout to agents – even
in “unseen” test settings. For example, it is common practice to define agent
actions by selecting directions in the current panorama and ‘snapping’ to the
nearest adjacent nav-graph node in that direction. How an actual agent might
acquire and update such a topology in new environments is an open question.

– Oracle navigation. Movement between adjacent nodes in the nav-graph
is deterministic, implying the existence of an oracle navigator capable of
accurately traversing multiple meters in the presence of obstacles – abstracting
away the problem of visual navigation. Further, this movement between nodes
is perceptually akin to teleportation – the current panorama is simply replaced
by the panorama at the new location meters away. This is in contrast to the
continuous stream of observations a real agent would encounter while moving.

– Perfect localization. Agents are given their precise location and heading at
all times. Most works use this data to encode precise geometry between nodes
in the nav-graph as part of the decision making process, e.g. moving 30°W and
1.12m forward from the previous node. Others use precise agent localization to
construct spatial maps of the environment on which to reason about paths [3].
However, precise localization indoors is still a challenging problem.

Taken together, these assumptions make current settings poor reflections of the
real world both in terms of control (ignoring actuation, navigation, and localiza-
tion error) and visual stimuli (lacking the poor framing and long observation-
sequences agents will encounter). In essence, the problem is reduced to that of

Vision-and-Language Navigation in Continuous Environments 3

visually-guided graph search. As such, closing the loop by transferring these
trained agents to physical robotic platforms has not been examined.

These assumptions are often justified by invoking existing technologies as
potential oracles. For example, simultaneous localization and mapping (SLAM) or
odometry systems can offer strong localization in appropriate conditions [16, 21].
Likewise, algorithms for path planning and control can navigate short distances
in the presence of obstacles [11,25,31]. Further, it is reasonable to suggest that
issuing commands at the level of relative waypoints (in analogy to nav-graph
nodes) is the proper interface between language-guided AI navigators and lower-
level agent control. However, these techniques are each independently far from
perfect and such an agent would need to learn the limitations of these lower-
level control systems – facing consequences when proposed waypoints cannot be
reached effectively. Integrative studies that combine and evaluate techniques for
control and mapping with learned AI agents are not possible in current nav-graph
based problem settings. In this work, we develop a continuous setting that enables
such studies and take a first step towards integrating VLN agents with control.

Vision-and-Language Navigation in Continuous Environments. In
this work, we focus in on the Vision-and-Language Navigation (VLN) [4] task
and lift these implicit assumptions by instantiating it in continuous 3D environ-
ments [5, 19]. Consequently, we call this task Vision-and-Language Navigation in
Continuous Environments (VLN-CE). Agents in our task are free to navigate
to any unobstructed point through a set of low-level actions (e.g. move forward
0.25m, turn-left 15 degrees) rather than teleporting between fixed nodes. This
setting introduces many challenges ignored in prior work. Agents in VLN-CE
face significantly longer time horizons; the average number of actions along a
path in VLN-CE is ∼55 compared to the 4-6 node hops in VLN (as illustrated in
Fig. 1). Moreover, the views the agent receives along the way are not well-posed
by careful human operators as in the panoramas, but rather a consequence of
the agent’s actions. Agents must also learn to avoid getting stuck on obstacles,
something that is structurally impossible in VLN’s navigability defined nav-graph.
Further, agents are not provided their location or heading while navigating.

We develop agent architectures for this task and explore how popular mecha-
nisms for VLN transfer to the VLN-CE setting. Specifically, we develop a simple
sequence-to-sequence baseline architecture as well as a cross-modal attention-
based model. We perform a number of input-modality ablations to assess the
biases and baselines in this new setting (including models without perception or
instructions as suggested in [27]). Unlike in VLN where depth is rarely used, our
analysis reveals depth to be an integral signal for learning embodied navigation
– echoing similar findings in point-goal navigation tasks [19,31]. We also apply
existing training augmentations [17,24,26] popular in VLN to our setting, finding
mixed results. Overall, our best performing agent successfully navigates to the
goal in approximately a third of episodes in unseen environments.

To further examine the relationship between the nav-graph-based VLN task
and VLN-CE, we also transfer paths from agents trained in continuous environ-
ments back to the nav-graph to provide a direct comparison. We find significant

4 J. Krantz et al.

Table 1. Comparison of language-guided visual navigation tasks. Ours is the only to
provide unconstrained navigation in real environments for crowdsourced instructions.

Task Instructions Environment Navigation

LANI [20] Crowdsourced Synthetic Unconstrained
StreetNav [13] Templated Real Nav-Graph Based
Touchdown [6] Crowdsourced Real Nav-Graph Based
VLN [4] Crowdsourced Real Nav-Graph Based

VLN-CE (ours) Crowdsourced Real Unconstrained

gaps in performance between these settings indicative of the strong prior provided
by the nav-graph. This suggests prior results in VLN may be overly optimistic in
terms of progress towards instruction-following robots functioning in the wild.

Contributions. To summarize our contributions, we:
– Lift the VLN task to continuous 3D environments – removing many unrealistic
assumptions imposed by the nav-graph-based representation.

– Develop model architectures for the VLN-CE task and evaluate a suite of
single-input ablations to assess the biases and baselines of the setting.

– Investigate how a number of popular techniques in VLN transfer to this more
challenging long-horizon setting – identifying significant gaps in performance.

2 Related Work

Language-guided Visual Navigation Tasks. Language-guided visual naviga-
tion tasks require agents to follow navigation directions in simulated environments.
There have been a number of recent tasks proposed in this space [4,6,13,20]. Chen
et al. [6] introduce the Touchdown task which studies outdoor language-guided
navigation in Google Street View panoramas. Hermann et al. [13] investigates
the same setting; however, the instructions are automatically generated from
Google Map directions rather than being crowdsourced from human annotators.
Both adopt a nav-graph setting due to the source data being panoramic images
– constraining agent navigation to fixed points. Misra et al. [20] introduce a
simulated environment with unconstrained navigation and a dataset of crowd-
sourced instructions; however, the environments are unrealistic, synthetic scenes.
Most related to our work is the Vision-and-Language Navigation (VLN) task
of Anderson et al. [4]. VLN provides nav-graph trajectories and crowdsourced
instructions in Matterport3D [5] environments as the Room-to-Room (R2R)
dataset. We build VLN-CE directly on these annotations – converting R2R
panorama-based trajectories to fine-grained paths in continuous Matterport3D
environments (Fig. 1(a) to Fig. 1(b)). This shift to continuous environments with
unconstrained agent navigation lifts a number of unrealistic assumptions.

The variation in these tasks is primarily in the source of navigation instructions
(crowdsourced from human annotators vs. generated via template), environment
realism (hand-designed synthetic worlds vs. captures from real locations), and
constraints on agent navigation (nav-graph based navigation vs. unconstrained

Vision-and-Language Navigation in Continuous Environments 5

agent motion). Tab. 1 provides a comparison between tasks along these axes. Our
proposed VLN-CE task provides the first setting with crowdsourced instructions
in realistic environments with unconstrained agent navigation.

Approaches to Vision-and-Language Navigation. VLN has seen con-
siderable progress. Multimodal attention mechanisms have become popular to
provide better grounding between instructions and the observations [29]. Or-
thogonal to new modeling architectures, improvements have also come from new
training approaches and data augmentation methods. One prevalent technique is
to utilize inverse “speaker” models to re-rank candidate trajectories or augment
the available training data by generating instructions for novel trajectories [9].
Tan et al. [26] improve upon this idea by improving the diversity of the generated
instructions. Ma et al. [17] show that an additional training signal can be gained
by explicitly estimating progress toward the goal (referred to as self-monitoring).
We adapt these methods to VLN-CE and examine their impact.

Other Language-based Embodied AI. A number of other embodied
tasks have considered language-conditioned navigation. For instance, referring to
specific rooms or objects that agents must then navigate to [7, 10,30]. However,
these settings use language to specify end-goals or query agent knowledge rather
than to provide navigational directions. For example, specifying “ lamp” or “What
color is the lamp in the living room? ” rather than multi-step, grounded navigation
instructions. This loose coupling of intermediate agent action with the language
instruction differentiates these tasks from language-guided navigation settings.

3 VLN in Continuous Environments (VLN-CE)

We consider a continuous setting for the vision-and-language navigation task which
we refer to as Vision-and-Language Navigation in Continuous Environments (VLN-
CE). Given a natural language navigation instruction, an agent must navigate
from a start position to the described goal in a continuous 3D environment by
executing a sequence of low-level actions based on egocentric perception alone. In
overview, we develop this setting by transferring nav-graph-based Room-to-Room
(R2R) [4] trajectories to reconstructed continuous Matterport3D environments
in the Habitat simulator [19]. We discuss these details below.

Continuous Matterport3D Environments in Habitat. We set our prob-
lem in the Matterport3D (MP3D) [5] dataset, a collection of 90 environments
captured through over 10,800 high-definition RGB-D panoramas. In addition
to the panoramic images, MP3D also provides corresponding mesh-based 3D
environment reconstructions. To enable agent interaction with these meshes, we
develop the VLN-CE task on top of the Habitat Simulator [19], a high-throughput
simulator that supports basic movement and collision checking for 3D environ-
ments including MP3D. In contrast to the simulator used in VLN [4], Habitat
allows agents to navigate freely in the continuous environments.

Observations and Actions. We select observation and action spaces to
emulate a ground-based, zero-turning radius robot with a single, forward-mounted
RGBD camera, similar to a LoCoBot [1]. Agents perceive the world through

6 J. Krantz et al.

egocentric RGBD images from the simulator with a resolution of 256×256 and a
horizontal field-of-view of 90 degrees. Note that this is similar to the egocentric
RGB perception in the original VLN task [4] but differs from the panoramic
observation space adopted by nearly all follow-up work [9, 17,26,29].

While the simulator is quite flexible in terms of agent actions, we consider
four simple, low-level actions for agents in VLN-CE – move forward 0.25m,
turn-left or turn-right 15 degrees, or stop to declare that the goal position
has been reached. These actions can easily be implemented on robotic agents with
standard motion controllers. In contrast, actions to move between panoramas
in [4] traverse 2.25m on average and can include avoiding obstacles.

3.1 Transferring Nav-Graph Trajectories

Rather than collecting a new dataset of trajectories and instructions, we instead
transfer those from the nav-graph-based Room-to-Room dataset to our continuous
setting. Doing so enables us to compare existing nav-graph-based techniques with
our methods that operate in continuous environments on the same instructions.

Matterport3D Simulator and the Room-to-Room Dataset. The orig-
inal VLN task is based on panoramas from Matterport3D (MP3D) [5]. To enable
agent interaction with these panoramas, Anderson et al. [4] developed the Mat-
terport3D Simulator. Environments in this simulator are defined as nav-graphs
E = {V, E}. Each node v ∈ V corresponds to a panoramic image I captured
by a Matterport camera at location x, y, z – i.e. v = {I, x, y, z}. Edges in the
graph correspond to navigability between nodes. Navigability was defined by
ray-tracing between node locations at varying heights to check for obstacles in the
reconstructed MP3D scene and then manually inspected. Edges were manually
added or removed based on judgement whether an agent could navigate between
nodes – including by avoiding minor obstacles1. Agents act by teleporting between
adjacent nodes in this graph. Based on this simulator, Anderson et al. [4] collect
the Room-to-Room (R2R) dataset containing 7189 trajectories each with three
human-generated instructions on average. These trajectories consist of a sequence
of nodes τ = [v1, . . . , vT] with length T averaging between 4 and 6 nodes.

Converting Room-to-Room Trajectories to Habitat. Given a mapping
between the coordinate frames of Matterport3D Simulator and MP3D in Habitat,
it is seemingly simple to transfer the Room-to-Room trajectories – after all, each
node has a corresponding xyz location. However, node locations often do not
correspond to reachable locations for a ground-based agent – existing at variable
height depending on tripod configuration or placed on top of flat furniture like
tables. Further, the reconstructions and panoramas may differ if objects are
moved between camera captures.

For each node, v = {I, x, y, z}, we would like to identify the nearest, navigable
point on the reconstructed mesh – i.e. the closest point that can be occupied by
a ground-based agent represented by a 1.5m tall cylinder of diameter of 0.2m.
Directly projecting to the nearest mesh location fails for 73% of nodes where
1 Details included from correspondence with the author of [4]

Vision-and-Language Navigation in Continuous Environments 7

(a) Node Location Displacement (b) Discontinuities (c) Trajectory Length in Actions

Fig. 2. We successfully transfer 77% of the R2R trajectories. (a) Most panorama nodes
transfer directly, but 3% require horizontal adjustment – with an average displacement of
0.19m. (b) Some trajectories are not navigable due to differences between the panoramas
and reconstructed environments, e.g. holes in the 3D mesh (top) or objects like chairs
being moved between panorama captures (bottom). (c) Optimal paths in our setting
require 10x more agent actions per trajectory – 55.88 compared to 5 in R2R.

failure is projecting to distant (>0.5m) or non-navigable points. Many of these
points project to surfaces other than the floor due to camera height. Instead, we
cast a ray up to 2m directly downward from the node. At small, fixed intervals
along this ray, we project to the nearest mesh point. If multiple navigable points
are identified, we take the one with minimal horizontal displacement from the
original location. If no navigable point is found with less than a 0.5m displacement,
we consider this MP3D node unmappable to the 3D mesh and thus invalid. We
manually reviewed invalid nodes and made corrections if possible, e.g. shifting
nodes around furniture. After these steps, 98.3% of nodes transferred successfully.
We refer to these transferred nodes as waypoint locations. In Fig. 2(a), points
needing adjustment (3% of points) require small displacement, averaging 0.19m.

Given a trajectory of converted waypoints τ = [w1, . . . , wT], we verify that
an agent can actually navigate between each location. We employ an A*-based
search algorithm to compute an approximate shortest path to a goal. We run this
algorithm between each waypoint in a trajectory to the next (e.g. wi to wi+1). A
trajectory is considered navigable if for each pairwise navigation, an agent can
follow the shortest path to within 0.5m of the next waypoint (wi+1). In total, we
find 77% of the R2R trajectories navigable in the continuous environment.

Non-Navigable Trajectories. Among the 23% of trajectories that were not
navigable, we observed two primary failure modes. First and most simply, 22%
included one of the 1.7% of invalid nodes that could not be projected to MP3D
3D meshes. The remaining unnavigable trajectories spanned disjoint regions of
the reconstruction – i.e. lacking a valid path from some waypoint wi to wi+1.
As shown in Fig. 2(b), this may be due to holes or other mesh errors dividing
the space. Alternatively, objects like chairs may be moved in between panorama
captures – possibly resulting in a reconstruction that places the object mesh
on top of individual panorama locations. Nodes in the R2R nav-graph were
manually connected if there appeared to be a path between them, even if most
other panoramas (and thus the reconstruction) showed blocking objects.

8 J. Krantz et al.

Ti
m
e GRU

ℎ"#$
(&)

𝑎"

ℎ"
(&)

ResNet50
(PointNav)

ResNet50
(ImageNet)

Head upstairs and walk past the
piano th rough an arc hway
directly in fron t. Turn righ t
when t he hallw ay ends a t
pictures a nd table. Wait by t he
moose antlers on the wall.In

st
ru
ct
io
n

D
ep

th
RG

B

LSTM

Mean
Pool

Flatten

(a) Sequence-to-Sequence Baseline

𝑎"#$ ℎ"#$
('""()

𝑎"

ℎ"
('""()

ResNet50
(PointNav)

ResNet50
(ImageNet)

Bi-LSTM
Depth

In
st

ru
ct

io
n

D
ep

th
RG

B

Instruction
Attention

GRU

𝑎"#$

Visual Attention

RGB

Visual Attention

ResNet50
(PointNav)ResNet50

(ImageNet)

ℎ"#$
(')

ℎ"
(')Mean

Pool

GRU
Flatten

(b) Cross-Modal Attention Model

Fig. 3. We develop a simple baseline agent (a) as well as an attentional agent (b)
comparable to that in [29]. Both receive RGB and depth frames represented by pretrained
networks for image classification [8] and point-goal navigation [31], respectively.

3.2 VLN-CE Dataset

In total, the VLN-CE dataset consists of 4475 trajectories converted from R2R
train and validation splits. For each trajectory, we provide the multiple R2R
instructions and a pre-computed shortest path following the waypoints via low-
level actions. As shown in Fig. 2(c), the low-level action space of VLN-CE makes
for a longer horizon task – with 55.88 steps on average compared to 4-6 in R2R.

4 Instruction-guided Navigation Models in VLN-CE

We develop two models for VLN-CE. A simple sequence-to-sequence baseline
and a more powerful cross-modal attentional model. While there are many
differences in the details, these models are conceptually similar to early [4] and
more recent [29] work in the nav-graph based VLN task. Exploring these gives
insight into the difficulty of this setting in isolation and by comparison relative
to VLN. Further, these models allow us to test whether improvements from early
to later architectures carry over to a more realistic setting. Both of our models
make use of the same observation and instruction encodings described below.

Instruction Representation. We convert tokenized instructions to GLoVE
[23] embeddings which are processed by recurrent encoders for each model. We
denote these encoded tokens as w1, . . . ,wT for a length T instruction.

Observation Encoding. For RGB, we apply a ResNet50 [12] pretrained
on ImageNet [8] to collect semantic visual features. We denote the final spatial
features of this model as V = {vi} where i indexes over spatial locations. Likewise
for depth, we use a modified ResNet50 that was trained to perform point-goal
navigation (i.e. to navigate to a location given in relative coordinates) [31] and
denote these as D = {di}.

4.1 Sequence-to-Sequence Baseline

We consider a simple sequence-to-sequence model shown in Fig. 3(a). This model
consists of a recurrent policy that takes visual observations (depth and RGB)

Vision-and-Language Navigation in Continuous Environments 9

and instructions at time step t to predict an action a. We can write the agent as

v̄t = mean-pool (Vt) , d̄t = [d1, . . . ,dwh] , s = LSTM (w1, . . . ,wT) (1)

h
(a)
t = GRU

([
v̄t, d̄t, s

]
,h

(a)
t−1

)
, at = argmax

a
softmax

(
Wah

(a)
t + ba

)
(2)

where [·] denotes concatenation and s is the final hidden state of an LSTM in-
struction encoder. This model enables straight-forward input-modality ablations.

4.2 Cross-Modal Attention Model

The previous model lacks powerful inductive biases common to vision-and-
language tasks including cross-modal attention and spatial reasoning which
are intuitively important for language-guided visual navigation. In Fig. 3(b) we
consider a model incorporating these mechanisms. This model consists of two
recurrent networks – one tracking visual history and the other tracking attended
instruction and visual features. We write the first recurrent network as:

h
(attn)
t = GRU

([
v̄t, d̄t,at−1

]
,h

(attn)
t−1

)
(3)

where at−1 ∈ R32 and is a learned linear embedding of the previous action. We
encode instructions with a bi-directional LSTM and reserve all hidden states:

S = {s1, . . . , sT} = BiLSTM (w1, . . . ,wT) (4)

We then compute an attended instruction feature ŝt over these representations
which is then used to attend to visual (v̂t) and depth (d̂t) features. Concretely,

ŝt = Attn
(
S,h(attn)

t

)
, v̂t = Attn (Vt, ŝt) , d̂t = Attn (Dt, ŝt) (5)

where Attn is a scaled dot-product attention [28]. For a query q ∈ R1×dq ,
x̂ = Attn({xi},q) is computed as x̂=

∑
i αixi for αi=softmaxi((WKxi)

Tq /
√
dq).

The second recurrent network then takes a concatenation of these features
including at−1 and h

(attn)
t and predicts an action.

h
(a)
t = GRU

([
ŝt, v̂t, d̂t,at−1,h

(attn)
t

]
,h

(a)
t−1

)
(6)

at = argmax
a

softmax
(
Wah

(a)
t + ba

)
(7)

4.3 Auxiliary Losses and Training Regimes

Aside from modeling details, much of the remaining progress in VLN has come
from adjusting the training regime – adding auxiliary losses / rewards [17,29],
mitigating exposure bias during training [4, 29], or incorporating synthetic data
augmentation [9, 26]. We explore some common variants of these directions in

10 J. Krantz et al.

VLN-CE. We suspect addressing exposure bias and data sparsity will be important
in VLN-CE where these issues may be amplified by lengthy action sequences.

Imitation Learning. A natural starting point for training is maximizing
the likelihood of the ground truth trajectories. To do so, we perform teacher-
forcing training with inflection weighting (IW). As described in [30], IW places
emphasis on time-steps where actions change (i.e. at−1 6= at), adjusting loss
weight proportionally to the rarity of such events. This was found to be helpful
for navigation problems with long sequences of repeated actions. We observe a
positive effect in early experiments and apply IW in all our experiments.

Coping with Exposure Bias. Imitation learning in auto-regressive settings
suffers from a disconnect between training and test – agents are not exposed
to the consequences of their actions during training. Prior work has shown sig-
nificant gains by addressing this issue for VLN through scheduled sampling [4]
or reinforcement learning fine-tuning [26, 29]. In this work, we apply Dataset
Aggregation (DAgger) [24] towards the same end. While DAgger and scheduled
sampling share many similarities, DAgger trains on the aggregated set of trajec-
tories from all iterations 1 to n. Thus, the resulting policy after iteration n is
optimized over all past experiences and not just those collected from iteration n.

Synthetic Data Augmentation. Another popular strategy is to learn a
‘speaker’ model that produces instructions given a trajectory. Both [26] and [9]
use these models to generate new trajectory-instruction pairs and many following
works have leveraged these additional trajectories. We convert ∼150k synthetic
trajectories generated this way from [26] to our continuous environments.

Progress Monitor. An important aspect of success is identifying where to
stop. Prior work [17] found improvements from explicitly supervising the agent
with a progress-toward-goal signal. Specifically, agents are trained to predict their
fraction through the trajectory at each time step. We apply progress estimation
during training with a mean squared error loss term akin to [17].

5 Experiments

Setting and Metrics. We train and evaluate our models in VLN-CE. We
perform early stopping based on val-unseen performance. We report standard
metrics for visual navigation defined in [2,4,18] – trajectory length in meters (TL),
navigation error in meters from goal at termination (NE), oracle success rate (OS),
success rate (SR), success weighted by inverse path length (SPL), and normalized
dynamic-time warping (nDTW). For full details on metrics, see [2, 4, 18].

Implementation Details. We utilize the Adam optimizer [15] with a learn-
ing rate of 2.5× 10−4 and a batch size of 5 full trajectories. We set the inflection
weighting coefficient [30] to 3.2 (inverse frequency of inflections in our ground-
truth paths). We train on all ground-truth paths until convergence on val-unseen
(at most 30 epochs). For DAgger [24], we collect the nth set by taking the oracle
action with probability β=0.75n and the current policy action otherwise. We
collect 5, 000 trajectories at each stage and then perform 4 epochs of imitation
learning (with inflection weighting) over all collected trajectories. Once again, we

Vision-and-Language Navigation in Continuous Environments 11

Table 2. No-learning baselines and input modality ablations for our baseline sequence-
to-sequence model. Given the long trajectories involved, we find both random agents
and single-modality ablations to perform quite poorly in VLN-CE.

Val-Seen Val-Unseen

Model Vision Instr. History TL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑

Random - - - 3.54 10.20 0.28 0.04 0.02 0.02 3.74 9.51 0.30 0.04 0.03 0.02
Hand-Crafted - - - 3.83 9.56 0.33 0.05 0.04 0.04 3.71 10.34 0.30 0.04 0.03 0.02

Seq2Seq RGBD X X 8.40 8.54 0.45 0.35 0.25 0.24 7.67 8.94 0.43 0.25 0.20 0.18
– No Image D X X 7.77 8.55 0.46 0.31 0.24 0.23 7.87 9.09 0.41 0.23 0.17 0.15
– No Depth RGB X X 4.93 10.76 0.29 0.10 0.03 0.03 5.54 9.89 0.31 0.11 0.04 0.04
– No Vision - X X 4.26 11.07 0.26 0.03 0.00 0.00 4.68 10.06 0.30 0.07 0.00 0.00
– No Instruction RGBD - X 7.86 9.09 0.42 0.26 0.18 0.17 7.27 9.03 0.42 0.22 0.17 0.16

train to convergence on val-unseen (6 to 10 dataset collections, depending on the
model). We implement our agents in PyTorch [22] and on top of Habitat [19].

5.1 Establishing Baseline Performance for VLN-CE

No-Learning Baselines. To establish context for our results, we consider
random and hand-crafted agents in Tab. 2 (top two rows). The random agent
selects actions according to the action distribution in train. 2 The hand-crafted
agent picks a random heading and takes 37 forward actions (dataset average)
before calling stop. Both these agents achieve a ∼3% success rate in val-unseen
despite no learned components or input processing. A similar hand-crafted model
in VLN yields a 16.3% success rate [4]. Though not directly comparable, this gap
illustrates the strong structural prior provided by the nav-graph in VLN.

Seq2Seq and Single-Modality Ablations. Tab. 2 also shows performance
for the baseline Seq2Seq model along with input ablations. All models are trained
with imitation learning without data augmentation or any auxiliary losses. Our
baseline Seq2Seq model significantly outperforms the random and hand-crafted
baselines, successfully reaching the goal in 20% of val-unseen episodes.

As illustrated in [27], single modality models can be strong baselines in em-
bodied tasks. We train models without access to the instruction (No Instruction)
and with ablated visual input (No Vision/Depth/Image). All of these ablations
under-perform the Seq2Seq baseline. We find depth is a very strong signal for
learning – models lacking it (No Depth and No Vision) fail to outperform chance
(≤1% success rates). We believe depth enables agents to quickly begin traversing
environments effectively (e.g. without collisions) and without this it is very diffi-
cult to bootstrap to instruction following. The No Instruction model achieves
17% success, similarly to a hand-crafted agent in VLN, suggesting shared tra-
jectory regularities between VLN and VLN-CE. While these regularities can be
manually exploited in VLN via the nav-graph, they are implicit in VLN-CE as
2 68% forward, 15% turn-left, 15% turn-right, and 2% stop

12 J. Krantz et al.

Table 3. Performance in VLN-CE. We find that popular techniques in VLN have
mixed benefit in VLN-CE; however, our best performing model combining all examined
techniques succeeds nearly 1/3rd of the time in new environments. * denotes fine-tuning.

PM
[17]

DA
[24]

Aug.
[26]

Val-Seen Val-Unseen

Model TL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑

1

Seq2Seq
Baseline

- - - 8.40 8.54 0.45 0.35 0.25 0.24 7.67 8.94 0.43 0.25 0.20 0.18
2 X - - 8.34 8.48 0.47 0.32 0.22 0.21 8.93 9.28 0.40 0.28 0.17 0.15
3 - X - 9.32 7.09 0.53 0.44 0.34 0.32 8.46 7.92 0.48 0.35 0.26 0.23
4 - - X 8.23 7.76 0.51 0.34 0.26 0.25 7.22 8.70 0.44 0.26 0.19 0.17
5 X X* X 9.37 7.02 0.54 0.46 0.33 0.31 9.32 7.77 0.47 0.37 0.25 0.22

6

Cross-Modal
Attention

- - - 8.26 7.81 0.49 0.38 0.27 0.25 7.71 8.14 0.47 0.31 0.23 0.22
7 X - - 8.51 8.17 0.47 0.35 0.28 0.26 7.87 8.72 0.44 0.28 0.21 0.19
8 - X - 8.90 7.40 0.52 0.42 0.33 0.31 8.12 8.00 0.48 0.33 0.27 0.25
9 - - X 8.50 8.05 0.49 0.36 0.26 0.24 7.58 8.65 0.45 0.28 0.21 0.19
10 X X* X 9.26 7.12 0.54 0.46 0.37 0.35 8.64 7.37 0.51 0.40 0.32 0.30

11 X - X 8.49 8.29 0.47 0.36 0.27 0.25 7.68 8.42 0.46 0.30 0.24 0.22
12 - X* X 9.32 6.76 0.55 0.47 0.37 0.33 8.27 7.76 0.50 0.37 0.29 0.26

evidenced by the significantly lower performance of our random and hand crafted
agents which collide with and get stuck on obstacles. The No Image model also
achieves 17% success, similarly failing to reason about instructions. This hints at
the importance of grounding visual referents (through RGB) for navigation.

5.2 Model Performance in VLN-CE

Tab. 3 shows a comparison of our models (Seq2Seq and Cross-Modal) under three
training augmentations (Progress Monitor, DAgger, Data Augmentation).

Cross-Modal Attention vs. Seq2Seq. We find the cross-modal attention
model outperforms Seq2Seq under all settings for new environments. For example,
in teacher-forcing training (row 1 vs. 6), the cross-modal attention model improves
from 0.18 to 0.22 SPL on val-unseen, an improvement of 0.04 SPL (22% relative).
When applying all three augmentations (row 5 vs. 10), the cross-modal model
improves from 0.22 to 0.30 SPL, an improvement of 0.08 SPL (36% relative).

Training Augmentation. We find DAgger-based training impactful for both
the Seq2Seq (row 1 vs. 3) and Cross-Modal (row 6 vs. 8) models – improving
by 0.03-0.05 SPL in val-unseen. Contrary to findings in prior work, we observe
negative effects from progress monitor auxiliary loss or data augmentation for both
models (rows 2/4 and 7/9) – dropping 0.01-0.03 SPL from standard training (rows
1/6). Despite this, we find combining all three techniques to lead to significant
performance gains for the cross-modal attention model (row 10). Specifically, we
pretrain with imitation learning, data augmentation, and the progress monitoring
loss, then finetune using DAgger (with β=0.75n+1) on the original data. This
Cross-Modal Attention PM+DA*+Aug model achieves an SPL of 0.35 on val-seen
and 0.30 on val-unseen – succeeding on 32% of episodes in new environments.

Vision-and-Language Navigation in Continuous Environments 13

Fig. 4. Example of our Cross Modal Attention model taken in an unseen environment.

We explore this trend further for the Cross-Modal model. We examine the
validation performance of PM+Aug (row 11) and find it to outperform Aug or PM
alone (by 0.02-0.03 SPL). Next, we examine progress monitor loss on val-unseen
for both PM and PM+Aug. We find that without data augmentation, the progress
monitor over-fits considerably more (validation loss of 0.67 vs. 0.47) – indicating
that the progress monitor can be effective in our continuous setting but tends to
over-fit on the non-augmented training data, negatively affecting generalization.
Finally, we examine the performance of DA*+Aug (row 12) and find that this
outperforms DA (by 0.01-0.02 SPL), but is unable to match pre-training with
the progress monitor and augmented data (row 10).

Example. We examine our Cross-Modal Attention PM+DA*+Aug model
in an unseen environment (Fig. 4). The example demonstrates the increased
difficultly of VLN-CE (37 actions vs. 4 hops in VLN). It also shows a failure of
the agent – the agent navigates towards the wrong windows and fails to first
“pass the kitchen” – stopping instead at the nearest couch. We observe failures
when the agent never sees the instruction referent(s) – with a limited egocentric
field-of-view, the agent must actively choose to observe the surrounding scene.

5.3 Examining the Impact of the Nav-Graph in VLN

To draw a direct comparison between the VLN and VLN-CE settings, we convert
trajectories taken by our Cross-Modal Attention (PM+DA*+Aug.) model in
continuous environments to nav-graph trajectories (details in the supplement)
and then evaluate these paths on the VLN leaderboard.3 We emphasize that the
point of this comparison is not to outperform existing approaches for VLN, but
rather to highlight how important the nav-graph is to the performance of existing
VLN systems by contrasting them with our model. Unlike the approaches shown,
our model does not benefit from the nav-graph during training or inference.

As shown in Tab. 4, we find significant gaps between our model and prior work
in the VLN setting. Despite having similar cross-modal attention architectures,
RCM [29] achieves an SPL of 0.38 in test environments while our model yields
0.21. Further, state-of-the-art on the test set is near 0.47 SPL, over 2x what we
3 Note that the VLN test set is not publicly available except through this leaderboard.

14 J. Krantz et al.

Table 4. Comparison on the VLN validation and test sets with existing models. Note
there is a significant gap between techniques that leverage the oracle nav-graph at train
and inference (top set) and our best method in continuous environments.

Val-Seen (VLN) Val-Unseen (VLN) Test (VLN)

Model TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑ TL ↓ NE ↓ OS ↑ SR ↑ SPL ↑

V
L
N

T
as
k

VLN-Seq2Seq [4] 11.33 6.01 0.52 0.38 - 8.39 7.81 0.28 0.21 - 8.13 7.85 0.27 0.20 0.18
Self-Monitoring [17] - 3.18 0.77 0.68 0.58 - 5.41 0.68 0.47 0.34 18.04 5.67 0.59 0.48 0.35
RCM [29] 10.65 3.53 0.75 0.66 - 11.46 6.09 0.50 0.42 - 11.97 6.12 0.495 0.43 0.38
Back-Translation [26] 10.1 4.71 - 0.55 0.53 9.37 5.49 - 0.46 0.43 11.7 - - 0.51 0.47

Cross-Modal (PM+DA*+Aug.) 6.92 7.77 0.30 0.25 0.23 7.42 8.17 0.28 0.22 0.20 9.47 8.55 0.32 0.24 0.21

report. However, it is unclear if these gains could be realized on a real system
given the strong assumptions set by the nav-graph. In contrast, our approach does
not rely on external information and recent work has shown promising sim2real
transferability for navigation agents trained in continuous simulations [14].

Caveats. Direct comparisons between drastically different settings are chal-
lenging, we note some caveats. About 20% of VLN trajectories are non-navigable
in VLN-CE and thus our models cannot succeed on these. Further, continuous
VLN-CE paths can translate poorly to nav-graph trajectories when traversing
areas of the environment not well-covered by the sparse panoramas. Comparing
VLN-CE val results in Tab. 3 with the same in Tab. 4 shows these effects account
for a drop of ∼0.10 SPL. Even compensating for this possible underestimation,
nav-graph-based approaches still outperform our continuous models significantly.

6 Discussion

In this work, we explore the problem of following navigation instructions in
continuous environments with low-level actions – lifting many of the unrealistic
assumptions in prior nav-graph-based settings. Our work lays the groundwork
for future research into reducing the gap between simulation and reality for
VLN agents. Crucially, setting our VLN-CE task in continuous environments
(rather than a nav-graph) provides the community a testbed where integrative
experiments studying the interface of high- and low-level control are possible.
This includes studying the effect of imperfect actuation by leveraging recent
features in the Habitat simulator [19], reasoning about (potentially dynamic)
objects inserted in the 3D environment, or developing modular planner-controller
architectures that leverage existing robot path planning algorithms.

Acknowledgements. We thank Anand Koshy for his implementation of
nDTW. The GT effort was supported in part by NSF, AFRL, DARPA, ONR
YIPs, ARO PECASE, Amazon. The OSU effort was supported in part by DARPA.
The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the U.S. Government, or any sponsor.

Vision-and-Language Navigation in Continuous Environments 15

References

1. Locobot: An open source low cost robot (2019), https://locobot-website.netlify.
com/ 5

2. Anderson, P., Chang, A., Chaplot, D.S., Dosovitskiy, A., Gupta, S., Koltun, V.,
Kosecka, J., Malik, J., Mottaghi, R., Savva, M., et al.: On evaluation of embodied
navigation agents. arXiv preprint arXiv:1807.06757 (2018) 10

3. Anderson, P., Shrivastava, A., Parikh, D., Batra, D., Lee, S.: Chasing ghosts:
Instruction following as bayesian state tracking. NeurIPS (2019) 2

4. Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sünderhauf, N., Reid,
I., Gould, S., van den Hengel, A.: Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In: CVPR (2018) 1,
3, 4, 5, 6, 8, 9, 10, 11, 14

5. Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M., Savva, M., Song,
S., Zeng, A., Zhang, Y.: Matterport3D: Learning from RGB-D data in indoor
environments. In: 3DV (2017), MatterPort3D dataset license available at: http:
//kaldir.vc.in.tum.de/matterport/MP_TOS.pdf 3, 4, 5, 6

6. Chen, H., Suhr, A., Misra, D., Snavely, N., Artzi, Y.: Touchdown: Natural language
navigation and spatial reasoning in visual street environments. In: CVPR (2019) 1,
4

7. Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., Batra, D.: Embodied Question
Answering. In: CVPR (2018) 5

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale
Hierarchical Image Database. In: CVPR (2009) 8

9. Fried, D., Hu, R., Cirik, V., Rohrbach, A., Andreas, J., Morency, L.P., Berg-
Kirkpatrick, T., Saenko, K., Klein, D., Darrell, T.: Speaker-follower models for
vision-and-language navigation. In: NeurIPS (2018) 5, 6, 9, 10

10. Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D., Farhadi, A.: IQA:
Visual question answering in interactive environments. In: CVPR (2018) 5

11. Gupta, S., Davidson, J., Levine, S., Sukthankar, R., Malik, J.: Cognitive mapping
and planning for visual navigation. In: CVPR (2017) 3

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.
In: CVPR (2016) 8

13. Hermann, K.M., Malinowski, M., Mirowski, P., Banki-Horvath, A., Anderson, K.,
Hadsell, R.: Learning to follow directions in street view. AAAI (2020) 4

14. Kadian, A., Truong, J., Gokaslan, A., Clegg, A., Wijmans, E., Lee, S., Savva, M.,
Chernova, S., Batra, D.: Are we making real progress in simulated environments?
measuring the sim2real gap in embodied visual navigation. In: IROS (2020) 14

15. Kingma, D., Ba, J.: Adam: A Method for Stochastic Optimization. In: ICLR (2015)
10

16. Kohlbrecher, S., Meyer, J., von Stryk, O., Klingauf, U.: A flexible and scalable slam
system with full 3d motion estimation. In: SSRR. IEEE (November 2011) 3

17. Ma, C.Y., Lu, J., Wu, Z., AlRegib, G., Kira, Z., Socher, R., Xiong, C.: Self-
monitoring navigation agent via auxiliary progress estimation. ICLR (2019) 3, 5, 6,
9, 10, 12, 14

18. Magalhaes, G., Jain, V., Ku, A., Ie, E., Baldridge, J.: Effective and general evaluation
for instruction conditioned navigation using dynamic time warping. arXiv preprint
arXiv:1907.05446 (2019) 10

19. Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Zhao, Y., Wijmans, E.,
Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J., Parikh, D., Batra, D.: Habitat:
A Platform for Embodied AI Research. ICCV (2019) 3, 5, 11, 14

https://locobot-website.netlify.com/
https://locobot-website.netlify.com/
http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf
http://kaldir.vc.in.tum.de/matterport/MP_TOS.pdf

16 J. Krantz et al.

20. Misra, D., Bennett, A., Blukis, V., Niklasson, E., Shatkhin, M., Artzi, Y.: Mapping
instructions to actions in 3d environments with visual goal prediction. In: EMNLP
(2018) 4

21. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate
monocular slam system. IEEE Transactions on Robotics 31(5), 1147–1163 (2015) 3

22. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. In: NeurIPS (2019) 11

23. Pennington, J., Socher, R., Manning, C.D.: GloVe: Global Vectors for Word Repre-
sentation. In: EMNLP (2014) 8

24. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and structured
prediction to no-regret online learning. In: AISTATS (2011) 3, 10, 12

25. Stentz, A.: Optimal and efficient path planning for partially known environments.
In: Intelligent Unmanned Ground Vehicles, pp. 203–220. Springer (1997) 3

26. Tan, H., Yu, L., Bansal, M.: Learning to navigate unseen environments: Back
translation with environmental dropout. In: NAACL HLT (2019) 3, 5, 6, 9, 10, 12,
14

27. Thomason, J., Gordon, D., Bisk, Y.: Shifting the baseline: Single modality perfor-
mance on visual navigation & qa. In: NAACL HLT (2019) 3, 11

28. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017) 9

29. Wang, X., Huang, Q., Celikyilmaz, A., Gao, J., Shen, D., Wang, Y.F., Wang, W.Y.,
Zhang, L.: Reinforced cross-modal matching and self-supervised imitation learning
for vision-language navigation. In: CVPR (2019) 5, 6, 8, 9, 10, 13, 14

30. Wijmans, E., Datta, S., Maksymets, O., Das, A., Gkioxari, G., Lee, S., Essa, I.,
Parikh, D., Batra, D.: Embodied question answering in photorealistic environments
with point cloud perception. In: CVPR (2019) 5, 10

31. Wijmans, E., Kadian, A., Morcos, A., Lee, S., Essa, I., Parikh, D., Savva, M., Batra,
D.: DD-PPO: Learning near-perfect pointgoal navigators from 2.5 billion frames.
In: ICLR (2020) 3, 8

	Beyond the Nav-Graph: Vision-and-Language Navigation in Continuous Environments

