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Abstract. Object pose increases interclass object variance which makes
object recognition from 2D images harder. To render a classifier robust to
pose variations, most deep neural networks try to eliminate the influence
of pose by using large datasets with many poses for each class. Here, we
propose a different approach: a class-agnostic object pose transformation
network (OPT-Net) can transform an image along 3D yaw and pitch axes
to synthesize additional poses continuously. Synthesized images lead to
better training of an object classifier. We design a novel eliminate-add
structure to explicitly disentangle pose from object identity: first ‘elim-
inate’ pose information of the input image and then ‘add’ target pose
information (regularized as continuous variables) to synthesize any target
pose. We trained OPT-Net on images of toy vehicles shot on a turntable
from the iLab-20M dataset. After training on unbalanced discrete poses
(5 classes with 6 poses per object instance, plus 5 classes with only 2
poses), we show that OPT-Net can synthesize balanced continuous new
poses along yaw and pitch axes with high quality. Training a ResNet-18
classifier with original plus synthesized poses improves mAP accuracy by
9% over training on original poses only. Further, the pre-trained OPT-
Net can generalize to new object classes, which we demonstrate on both
iLab-20M and RGB-D. We also show that the learned features can gen-
eralize to ImageNet. (The code is released at this github url)

Keywords: pose transform, data augmentation, disentangled represen-
tation learning, object recognition, GANs

1 Introduction and related work

In object recognition from 2D images, object pose has a significant influence on
performance. An image depends on geometry (shape), photometry (illumination
and material properties of objects) and dynamics (as objects move) of the scene.
Thus, every image is a mixture of instance-specific information and nuisance
factors [26], such as 3D viewpoint, illumination, occlusions, shadows, etc. Nui-
sance factors often depend on the task itself. Specifically, in object recognition
from 2D images, we care for instance-specific information like shape, while the
dynamics of pose is a nuisance that often degrades classification accuracy [26].

https://github.com/gyhandy/Pose-Augmentation
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Fig. 1. Object pose transformation with OPT-Net. The first column shows input im-
ages from the test dataset, and the remaining columns show target pose images trans-
formed by OPT-Net. Integer poses (1, 2, 3, 4, 5, 6 in red) are defined in the training
dataset, while decimal poses (1.5, 2.5, 3.5, 4.5, 5.5 in green) are new poses, which shows
OPT-Net can achieve continuous pose transformation.

Deep convolution neural networks (CNNs) have achieved great success in ob-
ject recognition [22,34,14,37,16] and many other tasks, such as object detection
[10,31,30,9], image segmentation [32,27,13], etc. Most research tries to discount
pose, by eliminating pose information or improving pose robustness of a classi-
fier. Typical CNN architectures, such as LeNet [24] AlexNet [22] and VGG [34]
use convolution layers and pooling layers to make the high-level feature represen-
tations invariant to object pose over some limited range [42]. In contrast, recent
results have shown that explicitly modeling pose information can help an ob-
ject recognition task [42,2,39,1]. Some approaches use multi-task learning where
pose information can be an auxiliary task or regularization to improve the main
object recognition task [41,40,17,36]. These neural networks have the potential
to disentangle content from their instantiation attributes [29,43,12]. Training on
multiple views of the object can improve recognition accuracy [35]. A common
method is collecting all poses of the object and creating a pose-balanced dataset,
with the hope that pose variations will average out. However, collecting pose-
balanced datasets is hard and expensive. One notable such dataset is iLab-20M
which comprises 22 million images of 704 toy vehicles captured by 11 cameras
while rotating on a turntable [4]. Here, we use a subset of this data to learn
about pose transformations, then transferring this knowledge to new datasets
(RGB-D [23], ImageNet [8]).

2D images can be seen as samples of 3D poses along yaw and pitch axes
(Fig.2(a)). We want our OPT-Net to imitate the 3D pose transformation along
these two axes. Thus given any single pose image, we can ’rotate’ the object
along yaw and pitch axes to any target pose. Instead of directly training a
transformation model to continuously ’rotate’ images, we start with a discrete
transform, which is easier to constrain. Then we can make the pose representa-



Class-agnostic Object Pose Transformation 3

tion continuous and normalize the continuous transform process. Here, we use
sampled discrete poses along yaw and pitch as our predefined poses (Fig.2(b), 6
poses along the yaw axis and 3 poses along pitch axis). We treat different object
poses as different domains so that discrete pose transformation can be seen as
an image-to-image translation task, where a generative model can be used to
synthesize any target pose given any input pose. Recently, Generative Adver-
sarial Networks (GAN) [11] have shown a significant advantage in transforming
images from one modality into another modality [28,18,33,44,21]. GANs show
great performance in various tasks, such as style transfer [5,20], domain adap-
tation [15,38], etc. However, there is a high cost in our task, because we should
train specific GANs for all pairs of poses [3]. StarGAN [7] and CollaGAN [25]
proposed a method for multi-domain mapping with one generator and showed
great results in appearance changes such as hair color, age, and emotion trans-
form. However, pose transform creates a large, nonlinear spatial change between
input and output images. The traditional structure of the generators (Unet [32],
Vnet [27]) has few shared structures which satisfy all randomly paired pose
transformation. It makes StarGAN training hard to converge (see Exp 4.1).

Learning a better representation could also reduce variance due to pose. [45]
tried to learn better representation features to disentangle identity rotation and
view features. InfoGAN [6] learns disentangled representations in an unsuper-
vised manner. [19] seeks a view-invariant representation shared by views.

To combine the idea of better representation and multi-domain image trans-
formation, we propose a class-agnostic object pose transformation neural net-
work (OPT-Net), which first transforms the input image into a canonical space
with pose-invariant representation and then transform it to the target domain.
We design a novel eliminate-add structure of the OPT-Net and explicitly disen-
tangle pose from object identity: OPT-Net first ‘eliminates’ the pose information
of the input image and then ‘adds’ target pose information to synthesize any tar-
get pose. Convolutional regularization is first used to implicitly regularize the
representation to keep only the key identification information that may be use-
ful to any target pose. Then, our proposed pose-eliminate module can explicitly
eliminate the pose information contained in the canonical representation by ad-
versarial learning. We also add a discriminator leveraging pose classification and
image quality classification to supervise the optimization of transforming.

Overall our contributions are multifold: (1) developed OPT-Net, a novel class-
agnostic object pose transformation network with an eliminate-add structure
generator that learns the class-agnostic transformation among object poses by
turning the input into a pose-invariant canonical representation. (2) design a
continuous representation of 3D object pose and achieve continuous pose trans-
forming in 3D, which can be learned from limited discrete sampled poses and ad-
versarial regularization. (3) demonstrated the generative OPT-Net significantly
boosts the performance of discriminative object recognition models. (4) showed
OPT-Net learns class-agnostic pose transformations, generalizes to out-of-class
categories and transfers well to other datasets like RGB-D and ImageNet.
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Fig. 2. (a) Discrete predefined pose images sample. (b) Predefined sample poses and
pose change along pitch and yaw axes. (c) Given any pose (1st and 8th columns), OPT-
Net can transform it along pitch and yaw axes to target poses (remaining columns)

2 Object Pose Transforming Network

As shown in Fig. 3, the proposed OPT-Net has an eliminate-add structure gen-
erator, a discriminator and a pose-eliminate module.

2.1 Eliminate-add structure of the generator

The generator (G) of OPT-Net transforms an input object pose image x into a
target object pose y conditioned on the target pose label c, G(x, c) →y. Differ-
ent from the hair color, gender and age transform, which have more appearance
transfer with smaller shape changes, object pose transformation creates large
shape differences. Our eliminate-add structure generator (Fig.3 (a)) first turns
the input pose image into a pose-invariant canonical representation by ‘elimi-
nating’ pose information, and then ‘adds’ target pose information to turn the
representation into the target pose. As shown in Fig. 3(b), given an input image,
we randomly select the target pose domain. We do not input target pose along

Fig. 3. Flow of OPT-Net, consisting of three modules: eliminate-add structure gener-
ator G, discriminator D, and pose-eliminate module. (a) Pose transformation sketch
(b) Origin to target pose transformation. In the pose ‘eliminate’ part, G takes in the
original pose image and first uses both implicit regularization and the explicit pose-
eliminate module to eliminate pose information of the input, yielding a pose-invariant
canonical representation. Then, in the pose ‘add’ part, the representation features are
concatenated with a target pose mask and the target pose image is synthesized. D
learns to distinguish between real and fake images and to classify real images to their
correct pose. (c) Training OPT-Net: G first maps the original pose image to target
pose and synthesizes a fake image, then G tries to reconstruct the original pose image
from the fake image given the original pose information.
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with the input image. Instead, in the ‘eliminate’ part, the first several convo-
lution layers with stride s > 2 are used to implicitly regularize the preserved
representation features. This implicit regularization makes the representation
features contain only key information for the transformation (appearance, color,
shape), and eliminates useless information which may hinder transformation
(pose). At the same time (Fig. 3(b)), the ‘pose-eliminate module’ (Pelim) explic-
itly forces the representation to contain as little pose information as possible,
by predicting equal probability for every pose. After both implicit and explicit
elimination of pose information, the input image is turned to a pose-invariant
canonical representation space. We then ‘add’ the target pose information by
concatenating it with the representation feature map. The remaining layers in
the generative model transform the concatenated features into the target pose
image. This eliminate-add structure is shared and can be used for any pose
transformation. This shared structure makes the generator easy to converge. To
control the translation direction, as shown in Fig. 3(b), we use an auxiliary clas-
sifier as discriminator D to guide the image quality and pose transform. Given
one image, the discriminator has two outputs, the probability that the input im-
age is real, which represents the quality of the synthesized image, and the output
pose, which should match the desired target pose, D : x→ {Dsrc(x), Dcls(x)}

2.2 Pose-eliminate module

The pose-eliminate module (Pelim) takes the preserved representation feature
xr as input and outputs pose classification {Pelim(xr)}. Pelim can be treated as
a discriminator which forms an adversarial learning framework with the ‘elimi-
nate’ part of the generator (Gelim). The canonical representation features of real
images with pose labels are used to train Pelim. We use Cross-Entropy loss to
make Pelim predict the correct pose from the pose-invariant feature after Gelim.
Different from traditional adversarial training, when using Pelim to train Gelim,
we want the generator to eliminate all pose information in the pose-invariant
feature, which makes Pelim produce equal output probability for every pose. We
use the uniform probability (1/N) as the ground truth label to compute the
pose-eliminate loss, which is used to optimize the Gelim.

2.3 Continuous pose transforming training

We design a 2-dimension linear space to represent pitch and yaw values, in which
we could interpolate and achieve continuous pose representation (Fig.1). The yaw
and pitch values can be duplicated as a matrix with same h and w dimension
as the canonical representation features and N (totally 6, 3 for yaw and 3 for
pitch) channel dimension, which is easy to be concatenated and can be adjusted
depending on the canonical features channel. We start the training on discrete
sampled poses (which can be represented as integer in linear space). After the
network has converged, we randomly sample decimal poses as target poses and
use a style consistency loss to regularize the synthesized images, which keeps
pose representation consistent along yaw and pitch axes.
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2.4 Loss Function

Our goal is to train a generator G that learns object pose transformations along
yaw and pitch axes. The overall loss is formed by adversarial loss, domain clas-
sification loss, reconstruction loss, pose-eliminate loss and style consistency loss.
Adversarial Loss. The adversarial loss is used to make the synthesized image
indistinguishable from real images.

Ladv = Ex[logDsrc(x)] + Ex,c[log(1−Dsrc(G(x, c)))] (1)

Dsrc(x) represent the probability that input x belongs to the real images given
by D. The generator G tries to minimize the loss, while the discriminator D
tries to maximize it.
Pose Classification Loss. The pose classification loss is used to guide the
pose transformation which makes the synthesized image y belong to the target
pose c. This pose classification loss is used to optimize both D and G. The pose
classification loss of D is defined as

Lr
cls = Ex,c′ [−logDcls(c

′|x)] (2)

The loss for D is similar to a traditional Cross-Entropy loss for classification,
whereDcls(c

′|x) means the predicted probability of real image x belongs to the
ground truth pose label c′ . The pose classification loss of G is defined as

Lf
cls = Ex,c[−logDcls(c|G(x, c))] (3)

G tries to minimize this loss to make the synthesized fake image G(x, c) be
classified as the target pose c.
Reconstruction Loss. To make the synthesized image preserve the content
information and change only the object pose, as shown in fig3(c), we use the
cycle consistency loss [44] to optimize G.

Lrec = Ex,c,c′ [‖x−G(G(x, c)|c′)‖1] (4)

where G can reconstruct the original image x by transforming the synthesized
fake target pose image G(x, c) back to the original pose c′ . L1 norm is used as
reconstruction loss.
Pose-eliminate Loss. In the eliminate-add structure of G, to eliminate the pose
information in preserved canonical representation features, we designed pose-
eliminate loss to optimize the pose eliminate module ( Pelim) and the eliminate
part of G,(Gelim ). The pose eliminate loss is

LP
pose = Ex,c′ [−logPelim(c′|Gelim(x))] (5)

where Pelim(c′|Gelim(x)) means the predicted probability of the canonical rep-
resentation features of a real image belongs to the ground truth pose label c′ .
The pose eliminate loss for Gelim is defined as

LG
pose = −Ex

N∑
ci=1

1/N · log(Pelim(ci|Gelim(x))) (6)
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where N is the number of pose classes we defined, ci represent the pose label, ci ∈
[0, N) , Pelim(ci|Gelim(x)) represent the probability of the synthesized canonical
representation belongs to the ci pose. In ideal situations, the Pelim can hardly
predict the correct pose from canonical representation features and output equal
probability for every pose, which means the pose information is eliminated in
preserved canonical features. We use equal prediction of every pose to optimize
Gelim instead of minimizing the pose classification accuracy of to avoid a ‘cheated
optimize’ that Pelim tries to predict all input to a fixed pose class.

Style consistency Loss. After the converge of the previous loss, we randomly
sample decimal target pose instead of all integers to make continuous pose trans-
forming, the style consistency loss can regularize the synthesized images. The
equation of style consistency loss is same as adversarial loss above, but the target
pose is randomly sampled decimal value along yaw and pitch axes.

Full Loss Function. Finally, we optimize:

LG = Ladv + λclsL
f
cls + λrecLrec + λposeL

G
pose (7)

LD = −Ladv + λclsL
r
cls (8)

LPelim
= LP

pose (9)

where λcls, λrec and λpose are hyper-parameters that control the relative impor-
tance of classification, reconstruction, and pose-eliminate losses.

3 Experimental Methods

3.1 Datasets

iLab-20M dataset [4]. The iLab-20M dataset is a controlled, parametric dataset
collected by shooting images of toy vehicles placed on a turntable using 11 cam-
eras at different viewing points. There are in total 15 object categories with
each object having 25 160 instances. Each object instance was shot on more
than 14 backgrounds (printed satellite images), in a relevant context (e.g., cars
on roads, trains on rail tracks, boats on water). In total, 1,320 images were cap-
tured for each instance and background combinations: 11 azimuth angles (from
the 11 cameras), 8 turntable rotation angles, 5 lighting conditions, and 3 fo-
cus values (-3, 0, and +3 from the default focus value of each camera). The
complete dataset consists of 704 object instances, with 1,320 images per object-
instance/background combination, almost 22M images (18 times of ImageNet).

RGB-D dataset. The RGB-D Object Dataset consists of 300 common house-
hold objects organized into 51 categories. This dataset was recorded using a
Kinect style 3D camera. Each object was placed on a turntable and video se-
quences were captured for one whole rotation. For each object, there are 3 video
sequences, each recorded with the camera mounted at a different height so that
the object is shot from different viewpoints.
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3.2 Network Implementation

OPT-Net consists of two parts, pose ‘eliminate’, ( including Gelim and Pelim)
and pose ‘add’, (including Gadd and D). As shown in Fig. 3(b), Gelim first has
3 convolution layers, 2 of them with stride size of 2 to down-sample the input
image. Then, 3 Residual blocks [14] form the backbone of Gelim. The output
Gelim(x) is the pose-invariant canonical representation feature. The canonical
feature is copied to different streams, one concatenates with the target pose
mask, forming the input of Gadd to synthesize the target pose image. The other
one is treated as the input of Pelim to predict the pose class. Gadd uses first layer
merge the target pose information, then has 5 Residual blocks as a backbone and
ends with 3 convolution layers (2 of them perform up-sampling) to transform
the canonical representation features to a target pose image, given a target pose
information mask. For discriminator D, we adopt the PatchGAN [18] network.

Pelim has a traditional classification network structure, which has the first
3 convolution layers with stride size of 2 to down-sample the input features,
followed with 1 Residual block and another 3 down-sampling convolution layers.
In the end, the output layer turns the feature to a N-dimensional (N poses)
vector and we use Softmax to obtain the prediction of pose class.

We use Wasserstein GAN objective with a gradient penalty [1, 4] to stabilize
the training process. We adjust theλpose during training the generator, at the
beginning epochs of training, improving the value of λpose can accelerate the
convergence of generator, which makes the synthesized fake pose image have
meaningful corresponding spacial structure. We gradually reduce the value of
λpose. At the last ending part of the training, λpose can be very small to make
the optimization concentrate on improving the image quality. (More network
architecture and training details are in supplementary materials )

4 Experiments and Results

We have five main experiments: in Section 4.1 on object pose transformation
task, we compare OPT-Net with baseline StarGAN [7] by quantitatively and
qualitatively comparing the synthesized object pose image quality. In Section 4.2,
we use the OPT-Net as a generative model to help the training of a discriminative
model for object recognition, by synthesizing missing poses and balancing a pose
bias in the training dataset. In Section 4.3, we further show the class-agnostic
transformation property of OPT-Net by generalizing the pretrained OPT-Net to
new datasets. In Section 4.4, we study the influence of object pose information for
objects which are mainly distinguishable by shape, as opposed to other features
like color. Finally, in Section 4.5, we further demonstrate how the learned pose
features in OPT-Net and object recognition model with the iLab-20M dataset
can generalize to other datasets like ImageNet.

4.1 Object Pose Transformation Experiments

Because the baseline models can only do discrete pose transform, we fix the
pitch value and use 6 different yaw viewpoints among the 88 different views of
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Fig. 4. Object pose transform comparison for StarGAN and OPT-Net.

iLab-20M as our predefined pose to implement our OPT-Net. As is shown in Fig.
2, the selected 6 viewpoints have big spatial variance which can better represent
the general object pose transformation task. In training set, each pose has nearly
26k images with 10 vehicle classes (Table 2). Each class contains 20∼80 different
instances. The test set has the same 10 vehicle categories, but different instances
than the training set. Both training and test datasets are 256x256 RGB images.
The training dataset is used to train our OPT-Net and the baseline models,
StarGAN. Our OPT-Net has one generator, one discriminator and one pose-
eliminate module; StarGAN has one generator and one discriminator.

Qualitative evaluation. The experiment results are shown in Fig. 4. Com-
pared with StarGAN, which struggles with large pose variations, the synthesized
target pose images by OPT-Net are high quality with enough details. One possi-
ble reason is that eliminate-add structure decrease the conflicts between different
directions on pose transformation. Fig.1 shows more results of OPT-Net.

Quantitative evaluation. Real target pose images of input are used as
ground truth. To reduce background influence, we segment the foreground vehi-
cle with the Graph-Based Image Segmentation method and only compute mean
squared error (MSE) and peak signal to noise ratio (PSNR) of foreground be-
tween the synthesized image and ground truth (Table 1). The result is the mean
MSE and PSNR computed by 200 different instances, the MSE and PSNR for
each instance is the average of 6 synthesized fake pose images. Table 1 shows
that the quality of synthesized images by OPT-Net is better than StarGAN.

Table 1. Average Mean squared error (MSE; lower is better) and peak-signal-to-noise
ratio (PSNR; higher is better) for different methods

StarGAN OPT-Net

Mean MSE 502.51 374.76
Mean PSNR 21.95 23.04

4.2 Object Recognition Experiment

We design an object recognition experiment to explore the performance of OPT-
Net as a generative model to help the training of a discriminative model. Two
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different training datasets are tailored from iLab-20M, pose-unbalanced (P-UB)
and pose-balanced (P-B). In P-UB (Table 2), 5 classes of vehicles (boat, car,
semi, tank, and van) have all 6 pose images (same poses as 4.1), while the
other 5 classes (bus, military car, monster, pickup, and train) have only two
poses (pose2 and pose5), which has significant pose bias. In P-B, each category
among 10 classes of vehicles has all 6 pose images (no pose bias). The test
dataset is a pose-balanced dataset which contains different instances of the 10
classes of vehicles that were not in either training dataset (P-UB and P-B). The
classification neural network we used is Resnet-18 [14] (no pre-training).

Table 2. Poses used in the pose-unbalanced (P-UB) training dataset to train OPT-Net

Pose1 Pose2 Pose3 Pose4 Pose5 Pose6

boat X X X X X X
bus X X
car X X X X X X
mil X X
monster X X
pickup X X
semi X X X X X X
tank X X X X X X
train X X
van X X X X X X

We first train the classification model on P-UB and P-B, calculating the test
accuracy of each class of vehicles on the test dataset. To evaluate the performance
of OPT-Net, we first train it on P-UB to learn the object transformation abil-
ity. After training, for each category in P-UB which have only pose2 and pose5
(bus, military car, monster, pickup, and train), we use the trained OPT-Net to
synthesize the missing 4 poses (pose1, pose3, pose4, pose6). We combine the
synthesized images with P-UB and form a synthesized-pose-balanced (S-P-B)
training dataset. To show continuous transforms, we also interpolate pose values
and synthesize 5 new poses beyond the predefined ones, and form a synthesized-
additional-pose-balanced (SA-P-B) training dataset. S-P-B and SA-P-B were
used to train the same resnet-18 classification model from scratch and to cal-
culate test accuracy of each class of vehicles in the test dataset. We also use
common data augmentation methods (random crop, horizontal flip, scale resize,
etc) to augment the P-UB dataset to the same number of images as P-B, called
A-P-UB (Table 3).

The test accuracy of each class is shown in Table 4. From P-UB to S-P-B,
the overall accuracy improved from 52.26% to 59.15%, which shows the synthe-
sized missing pose images by OPT-Net can improve the performance of object
recognition. It is also shown that OPT-Net, as a generative model, can help the
discriminative model. Specifically, the vacant pose categories show significant
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Table 3. Different training and testing datasets for object recognition

Dataset P-UB P-B S-P-B SA-P-B A-P-UB Test

Source real real synthesized synthesized augmented real
Size 25166 37423 37423 66041 37423 4137

improvement in accuracy: military improved by 11.68%, monster improved by
14.97%, pickup and train improved by 8.74% and 16.12% respectively. The com-
parison of S-P-B and A-P-UB shows that synthesized images by OPT-Net are
better than traditional augmented images in helping object recognition. Because
of the continuous pose transformation ability, our OPT-Net can synthesize ad-
ditional poses different from the 6 poses in P-B. With these additional poses,
SA-P-B (61.23%) performs even better than the P-B (59.20%), achieve 9% im-
provement compared with P-UB.

Table 4. Testing object recognition accuracy (%) of each class after trained on different
training dataset. Comparing S-P-B and SA-P-B with P-UB shows how much classifi-
cation improves thanks to adding synthesized images for missing poses in the training
set, reaching or surpassing the level of when all real poses are available (P-B). Our
synthesized poses yield better learning than traditional data augmentation (A-P-UB)

Category P-UB P-B S-P-B SA-P-B A-P-UB

boat 54.0 61.6 65.4 57.7 51.3
bus 35.2 42.5 38.1 47.8 37.2
car 85.1 76.3 79.8 64.0 78.9
mil 73.8 84.2 85.4 86.4 70.7
monster 45.3 67.4 60.2 66.0 52.9
pickup 17.8 26.7 26.6 36.5 18.7
semi 83.9 79.8 79.0 83.5 86.1
tank 78.1 69.4 78.6 77.0 72.5
train 41.1 65.1 57.2 58.1 43.1
van 23.6 18.6 24.2 20.7 21.0
overall 52.3 59.2 59.2 61.2 52.3

4.3 Class-agnostic Object Transformation Experiment

Our proposed OPT-Net can simultaneously make pose transformation on differ-
ent classes of vehicles, which demonstrate that the learned object pose trans-
formation has not fixed with object classes, it is a class-agnostic object pose
transformation. To further explore the class-agnostic property of OPT-Net, we
design experiments that generalize OPT-Net’s ability for object pose transfor-
mation from one dataset to other datasets.
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15 categories of objects from RGB-D are used. They are both common house-
hold objects with big spatial variance between different object poses. Similar
poses of objects in RGB-D are selected and defined as the same pose as iLab-
20M. For each pose, RGB-D contains only about 100 images which cannot train
our OPT-Net from scratch, thus we use RGB-D to finetune OPT-Net pre-trained
on iLab-20M. We can see (Fig. 5) that our pre-trained OPT-Net can general-
ize well to other datasets, which demonstrates that OPT-Net is a class-agnostic
object pose transformation framework.

To further explore the performance of OPT-Net as a generative model to
help a discriminative model of object recognition, we split RGB-D into a pose-
unbalanced (P-UB) training dataset, where each category randomly takes 3 poses
among all 6 poses; pose-balanced (P-B), and test dataset similar to 4.2.

We first use P-UB to finetune the pretrained OPT-Net, and then use the
trained OPT-Net to synthesize missing poses of household objects in RGB-D.
The synthesized images and the original pose-unbalanced images form the syn-
thesized pose balanced (S-P-B) training dataset. Similarly, to eliminate the in-
fluence of the number of training images, we created A-P-UB using common
data augmentation methods. We trained Alexnet [22] on the 4 training datasets
separately, and showed the test accuracy for each category in Table 5.

Table 5. Overall object recognition accuracy for different training dataset in RGB-D

Dataset P-UB P-B S-P-B A-P-UB

Accuracy(%) 99.1 99.9 99.7 99.2

The (small) accuracy improvement in S-P-B compared with P-UB demon-
strates that our pretrained OPT-Net can be generalized to different datasets
after finetune, which can help the discriminative model in object recognition.
While the overall improvement is small, below we show that this is not the case
uniformly across all object categories.

Input Output Input Output

Fig. 5. Generalization results of OPT-Net on RGB-D dataset pretrained on iLab-20M.
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4.4 Object Pose Significance on Different Object Recognition Tasks

Because the accuracy improvement in RGB-D is smaller than in iLab-20M, we
tested whether this was the case across all object categories, or whether those
which look more alike would benefit more from synthesized images from OPT-
Net. Indeed, maybe classifying a black keyboard vs. a blue stapler can easily
be achieved by size or color even without pose-dependent shape analysis. To
verify our hypothesis, we use the confusion matrix of classification to select cat-
egories which are more confused by classifier: marker, comb, toothbrush, stapler,
lightbulb, and sponge. We then assign different fixed poses to each category to
improve overall pose variance and form P-UB-1 (randomly fix 1 pose for each
category), P-UB-2 (randomly fix 2 poses for each category), and P-UB-3 (ran-
domly fix 3 poses for each category) pose-unbalanced datasets (suppl. material).

Similarly, we create 3 other training datasets using the same method as in 4.2
and 4.3: (S-P-B: use pretrained OPT-Net to synthesize the missing poses; P-B,
and A-P-UB for each unbalanced datasets), and report the object recognition
performance on the test dataset in Table 6.

Table 6. Object recognition overall accuracy for different datasets

Dataset P-UB-1 A-P-UB-1 S-P-B-1 P-UB-2 A-P-UB-2 S-P-B-2

Accuracy(%) 75.1 77.6 83.2 90.4 91.2 94.2

Dataset P-UB-3 A-P-UB-3 S-P-B-3 P-B

Accuracy(%) 99.3 99.2 99.4 99.8

The results in Table 6 demonstrate that object pose information has different
degrees of impact on the object recognition task. Compared with the results in
4.3, where the improvement between P-UB and S-P-B is less than 1%, here, when
the class variance is small, OPT-Net can improve more accuracy after synthe-
sizing the missing poses in the unbalanced dataset. The accuracy improvement
in experiment group 1 (P-UB-1 and S-P-B-1) is 8.1%. This result verified our
hypothesis that pose balance is more important in small between-class variance
object cognition tasks. Meanwhile, comparing the different accuracy improve-
ments in different experimental groups, group 2 (P-UB-2 and S-P-B-2) is 3.8%,
while group 3 (P-UB-3 and S-P-B-3) is 0.1%. This demonstrates that when class-
variance is fixed, the more pose bias we have, the more accuracy improvement
we will get with the help of our OPT-Net pose transformation.

4.5 Generalization to Imagenet

We directly use the pretrained OPT-Net on iLab-20M to synthesize images of
different poses on ImageNet (Shown in suppl. material). Results are not as good
and might be improved using domain adaptation in future work. However, the
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Fig. 6. Top 8 ImageNet images for each pose predicted by discriminator in OPT-Net
without finetune.

discriminator of OPT-Net makes decent prediction of image poses: Fig. 6 shows
the top 8 ImageNet images for each of our 6 poses. To test object recognition
in ImageNet, we replace real images by OPT-Net synthesized images in S-P-B
(4.2) and form a S-P-B (OPT-Net) dataset (all synthesized images). Similarly,
we use StarGAN synthesized images form S-P-B (StarGAN). We use a resnet18
10-class vehicles classifier pretrained with this two synthesized datasets and pre-
dict 4 classes of vehicles in ImageNet which have similar meanings as iLab-20M,
with good results on some classes like car (Shown in suppl. material). To further
explore generalization, we pretrian an AlexNet on S-P-B which synthesized pose
images by StarGAN and OPT-Net respectively and then finetune it on Ima-
geNet. Results in suppl. material shows significantly better accuracy compared
to training from scratch when using only a small number of images per class,
demonstrating generalization from iLab-20M to ImageNet.

5 Conclusions

We proposed OPT-Net, a class-agnostic object pose transformation network
(OPT-Net) to synthesize any target poses continuously given a single pose image.
The proposed eliminate-add structure generator can first eliminate pose informa-
tion and turn the input to a pose-invariant canonical representation, then adding
the target pose information to synthesize the target pose image. OPT-Net also
gives a more common framework to solve big variance continuous transforma-
tion problems. OPT-Net generated images have higher visual quality compared
to existing methods. We also demonstrate that the OPT-Net, as a generative
model can help the discriminative model in the object recognition task, which
achieve a 9% accuracy improvement. We design experiments to demonstrate that
pose balance is more important in small between-class variance object cognition
tasks. Finally, we demonstrate the learned pose features in OPT-Net with the
iLab-20M dataset can better generalize to other datasets like ImageNet.
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