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Abstract. Generating photorealistic images of human faces at scale re-
mains a prohibitively difficult task using computer graphics approaches.
This is because these require the simulation of light to be photorealistic,
which in turn requires physically accurate modelling of geometry, ma-
terials, and light sources, for both the head and the surrounding scene.
Non-photorealistic renders however are increasingly easy to produce. In
contrast to computer graphics approaches, generative models learned
from more readily available 2D image data have been shown to produce
samples of human faces that are hard to distinguish from real data. The
process of learning usually corresponds to a loss of control over the shape
and appearance of the generated images. For instance, even simple dis-
entangling tasks such as modifying the hair independently of the face,
which is trivial to accomplish in a computer graphics approach, remains
an open research question. In this work, we propose an algorithm that
matches a non-photorealistic, synthetically generated image to a latent
vector of a pretrained StyleGAN2 model which, in turn, maps the vector
to a photorealistic image of a person of the same pose, expression, hair,
and lighting. In contrast to most previous work, we require no synthetic
training data. To the best of our knowledge, this is the first algorithm of
its kind to work at a resolution of 1K and represents a significant leap
forward in visual realism.

1 Introduction

Generating photorealistic images of human faces remains a challenge in com-
puter graphics. While we consider the arguably easier problem of still images as
opposed to animated ones, we note that both pose unsolved research questions.
This is because of the complicated and varied appearance of human tissue found
in the hair, skin [45], eyes [7] and teeth of the face region. The problem is further
complicated by the fact that humans are highly attuned to the appearance of
faces and thus skilled at spotting any unnatural aspect of a synthetic render [36].

Machine learning has recently seen great success in generating still images
of faces that are nearly indistinguishable from the domain of natural images to
a non-expert observer. This gives methods like StyleGAN2 (SG2) [28] a clear
advantage over computer graphics if the goal is to generate photorealistic image
samples only. The limitation of models like SG2 is that we get RGB data only,
and that such samples are often only useful if annotations such as head pose,
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Fig. 1: Pairs of synthetic input images, and samples from our algorithm at 1K
resolution. Best viewed zoomed in, and in colour.

UVs, or expression parameters are available for downstream tasks. The second
major issue is that generative models necessarily inherit the bias of the data
they were trained on. For large image collections, this may be hard to assess
[48]. In computer graphics on the other hand, annotations such as UVs can be
trivially obtained for an image. Since the assets that define the data input into
the renderer need to be explicitly created, bias control becomes more feasible.

In this paper, we propose to play to the strengths of both fields by using
machine learning to change the appearance of non-photorealistic renders to be
more natural, while keeping semantics such as the shape, the expression of the
face, and the lighting as consistent as possible given constraints imposed by the
training data. This means that the annotations obtained from the renders are
still largely valid for the images after domain transfer. Because we do not require
photo-realism from the synthetic renders, we can produce them at scale and with
significant variety using a traditional graphics pipeline.

In contrast to other work using non-photorealistic renders to train models
that map from one domain to another (e.g. [17] for faces, or [8]), we require
no synthetic images for training at all, and thus no paired data. In fact, our
method only requires a pre-trained StyleGAN2 model, and a small number of
manual annotations from the data it was trained on as outlined below. For a
given synthetic image (generated with [5]), our methods works best if masks of
the hair and background are available. These can be easily obtained from any
renderer. Our method works by finding an embedding in the latent space of SG2
that produces an image which is perceptually similar to a synthetic sample, but
still has the characteristic features of the data the GAN was trained with. In
terms of the scale space of an image [10,11], we attempt to match the coarser
levels of an image pyramid to the synthetic data, and replace fine detail with
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that of a photorealistic image. Another way to interpret this is that we attempt
to steer StyleGAN2 with the help of synthetic data [25].

While embedding images in the latent space of SG2 is not a new concept
[1,2], the issue with using existing approaches is that they either do not, or
struggle to, enforce constraints to keep the results belonging to the distribution
of real images. In fact, the authors in [2] explicitly note that almost any image
can be embedded in a StyleGAN latent space. If closeness to the domain of real
images is not enforced, we simply get an image back from the generator that
looks exactly like the synthetic input whose appearance we wish to change.

We make the observation that samples from the prior distribution usually
approzimately form a convex set, i.e. that convex combinations of any set of
such points mapped through the generator are statistically similar to samples
from the data distribution the GAN was trained on. We also note that showing
interpolations between pairs of latent vectors is a common strategy of evaluating
the quality of the latent embeddings of generative models [37]. As part of our
method, we propose an algorithm, Convex Set Approximate Nearest Neighbour
Search (CS-ANNS), which can be used to traverse the latent space of a generative
model while ensuring that the reconstructed images closely adhere to the prior.
This algorithm optimises for the combination of a set of samples from the SG2
prior by gradient descent, and is detailed in the method section below.

In summary, our contributions are:

1. The first zero-shot domain transfer method to work at 1K and with only
limited annotations of the real data, and

2. a novel algorithm for approximate nearest neighbour search in the latent
spaces of generative models.

2 Related Work

2.1 Generative Models

Generative models are of paramount importance to deep learning research. In
this work, we care about those that map samples from a latent space to images.
While many models have been proposed (such as Optimized MMD [40], Noise
Contrastive Estimation [20], Mixture Density Networks [9], Neural Autoregres-
sive Distribution Estimators [33,41], Diffusion Process Models [39], and flow-
based models [13,14,32]), the most popular ones are the family of Variational
Autoencoders (VAEs) [26,30], and Generative Adversarial Networks (GANS)
[19].

Because GANSs are (at the time of writing) capable of achieving the highest
quality image samples, we focus on them in this work, and specifically on the
current state of the art for face images, StyleGAN2 (SG2) [28]. In any GAN,
a neural sampler called the generator is trained to map samples from a simple
distribution to the true data distribution, defined by samples (the training set).
A second network, called the discriminator, is trained to differentiate samples
produced by the generator and those from the data space.



4 S. J. Garbin et al.

Our method takes as input only the pretrained generator of SG2, and while
we backpropagate through it, we do not modify its weights as part of our algo-
rithm. Since SG2 uses a variant of Adaptive Instance Normalisation (Adaln)[22],
its latent space is mapped directly to the Adaln parameters at 18 different layers.
We do not use the additional noise inputs at each layer. This way of controlling
the generator output via the Adaln inputs is the same methodology as used in
the Image2StyleGAN work [2]. The authors in [2] also consider style transfer by
blending two latent codes together, but choose very different image modalities
such as cartoons and photographs. We build on their work by defining a process
that finds a close nearest neighbour to blend with, thereby creating believable
appearance transfer that preserves semantics.

2.2 Zero-Shot Domain Transfer

To the best of our knowledge, there are no zero-shot image domain transfer
methods in the literature that require only one source domain operating at com-
parable resolution. By domain adaptation we mean the ability to make images
from dataset A look like images from dataset B, while preserving content. While
one-shot methods like [49] or [6] have been proposed, they work at significantly
lower resolution than ours and still require one sample from the target domain.
ZstGAN [34], the closest neighbour, requires many source domains (that could
for example be extracted from image labels of one dataset). The highest resolu-
tion handled in that work is 1282, which is signifantly lower than our method.
The categories are used to bootstrap the appearance transfer problem, as if mul-
tiple datasets were available. Without labels for dividing the data into categories,
we were unable to use it as a baseline.

2.3 Domain Adaptation

If paired training data from two domains is available, Pix2Pix [24] and its suc-
cessors (e.g. Pix2Pix HD [43], which uses multiple discriminators at multiple
scales to produce high resolution images) can be used effectively for domain
adaptation.

CycleGAN does not require paired training data [50]. This brings it closer
to the application we consider. However, it still requires a complete dataset of
both image modalities. Many improvements have since been suggeted to improve
CycleGAN. HarmonicGAN adds an additional smoothness constraint to reduce
artefacts in the outputs [47], Sem-GAN exploits additional information [12], as
does [3], Discriminative Region Proposal Adversarial Networks (DRPAN) [42]
add steps to fix errors, Geometry-Consistent GANs (GcGAN) [15] use consis-
tency under simple transformations as an additional constraint. Some methods
also model a distribution of over possible outputs, such as MUNIT [23] or FUNIT
[35].

However, none of these methods are capable of zero-shot domain adaptation.



Zero-Shot Synthetic — Real Transfer 5

3 Method

Fig. 2: Tllustration of the different steps of our method. (a) is the input synthetic
render, (b) the output of the sampling in step 1, (c¢) the result of Convex Set
Approximate Nearest Neighbour Search in step 2, and (d-f) results from step 3.

In the following, any variable containing w refers to the 18 x 512 dimensional
inputs of the pretrained SG2 generator, G. Any variable prefixed with I refers
to an image, either given as input, or obtaining by passing a w through the
generator G. The proposed method takes as input a synthetically rendered image
I?, and returns a series of ws that represent domain adapted versions of that
input.

Our algorithm has four stages,
each producing results more closely
matching the input. In the first, we Synthetic Alpha - Hair
find the latent code, w?, of an approx- ’
imate nearest neighbour to a given
synthetic input image, I°, by sam-
pling. This is the starting point of our
method. For the second step, we pro-
pose Convex Set Approximate Near-
est Neighbour Search (CS-ANNS), an
algorithm to refine the initial sample
by traversing the latent space while
being strongly constrained to adhere
to the prior. This gives us a refined la- Fig. 3: Example tuples of renders and al-
tent code, w™. Please note that addi- pha masks, {I®, %, I®mir} derived from
tional details and results can be found synthetic images. Note that we apply a
in the supplementary material. falloff at sharp boundaries to preserve

In the third step, we fit SG2 to them as described in the text.
the synthetic image without any con-
straint to obtain another latent code
wf that matches I° as closely as possible. We can then combine wf and w”
with varying interpolation weights to obtain a set of final images that strongly
resemble I°) but which have the appearance of real photographs.
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Because w®, w™ and the results from step 3 are all valid proposals for the
final result, we select the latent code that gives an image as semantically similar
to I? as possible from among them in the fourth and final step. An example of
the different steps of our method can be seen in Figure 2.

We note that the SG2 model used in this section was trained on the FFHQ
dataset [27], a dataset of photographs at high resolution. We use the same pre-
processing and face normalisation as the authors of that work.

Since we care about closely matching the face in this work, we construct
floating-point alpha masks from the synthetic renders that de-emphasize the
background and allow us to separate the hair. This gives us tuples of renders
and alpha masks {I°, I, [%«ir} for each input. We observe that in order to get
accurate matching of face boundaries, the sharp opacity edges of I, that come
from the renderer need to be extended outwards from the face. We compute the
distance transfer for the face boundary and produce a quickly decaying falloff by
mapping the resulting values, remapped to be in the range 0 — 1, by z'°, where =
is the output of the distance transform at a pixel. This is illustrated in Figure 3.

3.1 Step 1: Sampling

To find a good initialisation, we could
sample from the prior of SG2 and
take the best match as input to the
other steps. However, we found that,
for a finite number of samples, this
could fail to produce convincing re-
sults for faces at an angle, under non
frontal illumination etc. because our
synthetic data is more varied in pose,
lighting and ethnicity than FFHQ.
To overcome this problem, we anno-
tate a small subset of 2000 samples
from SG2 with a series of simple at-
tributes to obtain a set of 33 control
vectors, Veontrol- Lhese are detailed in
the supplementary material. The ef-
fect of adding some of these to the
mean face of SG2 is shown in Fig-
ure 4. We also select a set of centroids,
Vcentroid, 10 sample around. As can be
seen in Figure 5, these are selected to
be somewhat balanced in terms of sex,
skin tone and age, and are chosen em-
pirically. We are unable to prove conclusively that this leads to greater overall
fairness [16], and acknowledge that this sensitive issue needs closer examination
in future work.

Fig. 4: Example of adding our control
vectors to the 'mean’ face of SG2: (a)
face angle; (b) hair length (including
headgear); (c) beard length; (d) hair
curlyness. Note that these can be found
by only rough annotations of a small
number of samples.
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The loss used in the sampling step is a combination of the LPIPS distance
[46], an L1 loss with different weights for colour and luminance, and landmark
loss based on 68 points computed with DLIB [29].

This loss is computed at a quarter resolution of 2562 pixels after low pass
filtering, and multiplication with the mask I*. We do not compute the loss at
full resolution because our synthetics do not exhibit fine-scale details, and we
use a low-pass filter to not penalise their presence in the result. The entire loss
function for the sampling step is thus:

Lsampiing = Lrprps(r(I® « 1%),r(G(w®) * I*))
Fium * y(r(1° 1)) = y(r(G(w?) « 1) )
FAcot * [[ulr(1° 5 1) = u(r(G(w®) * I)|!

HFianam * [1(r(I° % 1) = 1(r(G(w®) = I%))|*,

(w?
(w?

where r is the resampling function that changes image size after Gaussian
filtering, u separates out the colour channels in the YUV colour space, y the
luminance channel, G is the pretrained SG2 generator, I® a synthetic image, w?*
a latent code sample, and [ the landmark detector. Ay, is set to 0.1, M.y to
0.01, and Ajgndm to le — 5.

For each sample at this stage of
our method, we pick one of the cen-
troids veentroid With uniform probabil-
ity, and add Gaussian noise to it.

We then combine this with a ran-
dom sample of our control vectors to
vary pose, light, expression etc. The
i’th sample is thus obtained as:

Wi = $(Veentroia) + N (0.0,02)

+Vcontrol * Nuniform * 2~Oa

(2)

where s is the random centroid se-
lection function, ¢?> = 0.25, and
Nuniform is uniform noise to scale the
control vectors.

The output of this stage is simply
the best w® under the loss in Equa-
tion 1, for any of the 512 samples

taken.

Fig.5: Our manually curated set of cen-
troids for sampling.

3.2 Step 2: Latent Code
Refinement

In step 2, we refine the previously obtained w® while keeping the results con-
strained to the set of photorealistic images the SG2 generator can produce. The
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intuition is that any convex combination of samples from the prior in the latent
space also leads to realistic images when decoded through G. We highlight that
w™ is the current point in the latent space, and updated at every iteration. It is
initialised with the result from step 1.

At each step, we draw 512 samples using the same procedure as before. Each
of these sample proposals wP is obtained as:

wf = S(Ucentroid) + N(007 02)' (3)

To ensure samples are sufficiently close to the current w”™, we interpolate each
w? with w™ using a random weight drawn at uniform from the range 0.25—0.75.

We then optimise for a set of weights, «, which determine how the w!s and
current w” are combined. It is an important detail that we use sets of o for each
of the 18 StyleGAN2 latent space inputs for this optimisation, i.e. « is a matrix
of shape [512 + 1,18] (note how the current w™ is included).

We constrain the optimisation to make sure each row of a sums to 1 using
the softmax function, ensuring a convex combination of the samples. In addition
to a, we include the control vectors in the optimisation, which are scaled by a
learnable parameter 8. Because this last step could potentially lead to solutions
far outside the space of plausible images, we clamp § to 2.0. The loss is the
same as Equation 1, just without the non-differentiable landmark term, i.e. with
Aandm Set to 0.

We use 96 outer iterations for which the sample proposals w? are redrawn,
and « and 8 reset so that the current w™ is the starting point (i.e. § is set to
zero, and alpha to one only for the current w™). For each of these outer loops,
we optimise o and § using Adam [31] with a learning rate of 0.01 in an inner
loop. We divide the initial learning rate by 10.0 for every 4 iterations in that
inner loop, and return the best result at any point, which gives us the refined
w™. We name this algorithm Convex Set Approximate Nearest Neighbour Search
(CS-ANN). More details can be found in the supplementary material.

3.3 Step 3: Synthetic Fit and Latent Code Interpolation

To fit SG2 to the synthetic image I°, we use the method of [28] with minor
modifications based on empirical observation. We set the number of total steps
to 1000, the initial learning rate to 0.01, and the initial additive noise to 0.01.
These changes are justified as we start from w™ and so have a much-improved
initialisation compared to the original algorithm. We also mask the loss using
the same I as above.

Having obtained a latent code w?® that closely resembles the synthetic input
image I°, and a latent code that describes that apprximate nearest neighbour
1™, we can combine them in such a way that preserves the overall facial geometry
of I* but has the fine detail of I™. We use simple interpolation to do this, i.e.
the final latent code is obtained as:

w! " = w, x /a4 w, * V1.0 — a, (4)
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Fig. 6: Interpolating beteen the output of step 2 (a0) and the output of the exact
fit to the synthetics (e4). (a — e) represent the number of latent codes used for
blending, and (0 — 4) the floating point weights for them.

where wf™™ is a candidate for the final output of our method. We generate
candidates by letting « retain the first {1,3,5,7} of the 18 latent codes with a
floating point weight of {1.0,0.9,0.8,0.7} each. An example of the effect of this
interpolation can be seen in Figure 6.

3.4 Step 4: Result Sample Selection

Having obtained a sequence of proposals, from step 1-4, we simply select the one
that matches input most using the Structural Similarity (SSIM) [44] metric at
a resoluton of 3682 pixels, which we empirically found to give better qualitative
results than the LPIPS distance. We hypothesise that this is due to the fact
that perceptual losses prioritise texture over shape [18], and alignment of facial
features is important for effective domain adaptation. We note that step 1-3 are
run ten times with different random seeds to ensure that even difficult samples
are matched with good solutions.

4 Experiments

We want to establish how realistic the images generated by our method are,
and how well they preserve the semantics of the synthetic images, specifically
head pose and facial features. To do so, we obtain a diverse set of 1000 synthetic
images, and process with them with our method, as well as two baselines.

We evaluate our algorithm quantitatively against the fitting method proposed
in [28], wich was designed to provide a latent embedding constrained to the
domain of valid images in a pretrained SG2 model, and also operates at 1K
resolution. This method is referred to as the StyleGANZ2 Baseline.

To assess how well we can match face pose and expression, we additionally
compare facial landmark similarity as computed by OpenFace [4].

A qualitative comparison is made to the StyleGANZ2 Baseline, and Cycle-
GAN [50], with the latter trained on the entirety of our synthetic dataset. We
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conducted a user study to assess the perceived realism of our results compared
to the StyleGAN2 Baseline as well as the input images, and to provide an initial
assessment of loss of semantics.

We make use of two variants of our results throughout this section. For
Ours (only face), we replace the background and hair using the masks from the
synthetic data by compositing them using a Laplacian Pyramid [11]. Because of
the close alignment of our results with the input, this produces almost no visible
artefacts. This allows us to ensure that the background does not impact the
quantitive metrics., and to isolate just the appearance change of the face itself.

4.1 Qualitative Experiments

We train CycleGAN on FFHQ as well as a dataset of 12000 synthetic images,
using the default training parameters suggested by the authors. Despite having
access to the synthetic training data, and using a much tighter crop, we found the
results after 50 epochs unconvincing. Even at 1282, the images show artefacts,
and lack texture detail. We show some results in Figure 7, and more in the
supplementary material. Because of the overall quality of the results and because
this method has access to the entire synthetic dataset during training, we do not
include it in our user study. Instead, we focus on the StyleGAN2 Baseline for
extensive evaluation.

We show each annotator three images: The synthetic input, the baseline
result and our result, in random order. We ask if our result or the baseline is
more photorealistic, and which image is the overall most realistic looking, i.e.
comparable to a real photograph. Finally, we ask if the synthetic image and our
result could be the same image of the same person. In this case, we let each
annotator answer {Definitely No, Slightly No, Slightly Yes, Definitely Yes}.

From the annotation of 326 images, our results are considered more photoreal
than the StyleGAN2 Baseline in 94.48% of cases. In 95.1% of responses, our
result was considered more realistic looking than the input or the baseline.

In terms of whether the annotators thought the input and our result could
be a photograph of the same person, the responses to the options {Definitely No,
Slightly No, Slightly Yes, Definitely Yes} were selected {18.71,19.1,30.67,31.6}
percent of the time. Despite the large gap in appearance, and the fact that
our results are designed to alter aspects of the face like freckles which could
be considered part of identity, roughly 60% still believed our results sufficiently
similar to pass as photograph of the same person at the same moment in time.

Figure 8 shows some of our results compared to the input synthetic images
and the baseline.

4.2 Quantitative Experiments

The preservation of important facial features is also assessed quantitatively by
examing the alignment of 68 landmarks [4]. On our 1024% images, the median
absolute error in pixels is just 20.2 horizontally, and 14.2 vertically.
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Synthetic Ours (only face) CycleGAN

Fig. 7: Representative comparison of results of our zero-shot method vs Cycle-
GAN trained on the whole synthetic dataset. Note how CycleGAN is unable to
change the input images enough to make them look realistic. We suggest viewing
this figure zoomed in.
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Synthetic  Ours (only face) Ours SG2 Baseline

Fig.8: Representative comparison of results of our method vs the StyleGAN2
Baseline. Both variants of our method are able to produce substantially more
realistic samples with much greater detail. We suggest viewing this figure zoomed
in.
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Fig.9: Ours (only face) uses the same background and hair as the renders, while
Ours replaces the entire image with our fit. We hypothesise that the difference
in FID between Ours (only face) and Ours is because the background HDRs are
visible in the renders, and those backgrounds are photographs. Note that we
resize the large crop to match CycleGAN resolution when calculating the IS.

(a) IS and FID (to FFHQ) - large crop. (b) IS and FID (to FFHQ) - tight crop.

IS |FID (to FFHQ) IS |FID (to FFHQ)
SG2 Baseline 3.4965(90.342 SG2 Baseline 3.398 |78.185
Ours (only face)|3.3187|78.728 Ours (only face)|3.464(70.731
Ours 3.653 [81.06 Ours 3.435 |76.947

We illustrate alignment errors per landmark in

Figure 10. The results indicate that the biggest errors @ .22, o .22 @
occur on the boundary of the face near the ears, and @ : )
that in the face region the eyebrows and lips have the @ P ®
highest degree of misalignment. Since FFHQ contains @ Sege® @
mostly smiling subjects, or images of people with their [ ) ": a; :" [
mouth closed, it is unsurpising that the diverse facial ® . eee . ®
expressions from the synthetic data would show the oo 0

greatest discrepancy in these features. We emphasize
however, that these errors are less than two percent Fig.10: Standard devi-
of the effective image resolution on average. ation of the L; land-
We also compute both the FID [21] and IS [38] mark error in our re-
metrics. The results are shown in Table 9 for the sults (scaled 20x for
large and small crops used throughout this paper. Our figure). Blue/red = hor-
method improves the FID signifcantly compared to izontal/vertical error.
the baseline, and slightly in case of the IS. This backs
up the user study in terms of the perceptual plausi-
bility of our results, but a larger number of samples would be beneficial for a
conclusive result.
The FID difference between Ours and Ours (only face) shows that the back-
ground can significantly impact this metric, which is not reflected in human
assessment.

5 Conclusions

We have presented a novel zero-shot algorithm for improving the realism of non-
photorealistic synthetic renders of human faces. The user study indicates that it
produces images which look more photorealistic than the synthetic images them-
selves. It also shows that previous work on embedding images in the StyleGAN2
latent space produces results of inferior visual quality.

This result is reflected in quantitative terms in both the FID and IS metrics
comparing our result to real images from FFHQ. CycleGAN, having access to
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a large dataset of synthetic images which our method never sees, and working
on an inherently easier crop, is clearly not able to compare with our results
qualitatively or quantitively as well.

A downside of our method is that it requires substantial processing time per
image. We hypothesise that this could be amortised by training a model that
predicts the StyleGan2 embeddings directly from synthetic images once a large
enough dataset has been collected. We leave temporal consistency for processing
animations as future work, and show more results as well as failure cases (for
which the algorithm can simply be repeated with a different random seed) in
the supplementary material.

We would like to conclude by noting that our algorithm works across a wide
range of synthetic styles (due to its zero-shot nature), and even with some non-
photoreal images. Examples of this can be seen in Figure 11.

Fig. 11: Our method applied to synthetic characters from popular culture. Left
to right, row by row, these are: Nathan Drake from Uncharted, Geralt of Rivia
from the Witcher, Flynn Rider from Tangled, Aloy from Horizon Zero Dawn,
Grand Moff Tarkin from Rogue One, and Ellie from The Last of Us. We note
that this is the output of only step 1 and 2 of our method. This indicates that
we can find visually plausible nearest neighbours even with some exaggerated
facial proportions.
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