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1 Implementation Details

Training We find that the joint learning of the descriptors and the attention
model poses some challenges to the training process. Similar to [2], we adopt a
two-stage training strategy. First, we train our feature embedding networks with
all weights in the heatmap as 1.0. Then the heatmap head networks are learned
given all other fixed networks. To make the training process more efficient, ran-
dom noise is added to the predicted pose which is then fed to the WFM module
as a better input. As we adopt a coarse-to-fine scheme in the WFM module,
it is interesting to note that well-trained coarser levels can impede the training
process of finer levels in the network. Therefore, we choose to add random noise
to the initial poses for all different levels in the WFM module. To be more spe-
cific, we add uniformly distributed random noise of [0 ∼ 2.0]m, [0 ∼ 0.4]m and
[0 ∼ 0.2]m in x − y dimension from coarse to fine, respectively, and [0 ∼ 2.0]◦,
[0 ∼ 0.4]◦ and [0 ∼ 0.2]◦ in yaw dimension, respectively. The batch size and the
learning rate are set to be 1 and 0.001.

Hyperparameters We randomly pre-select K = 4096 points as the can-
didate pool in the AKS module. From coarse-to-fine, we select (128, 256, 512)
and (32, 64, 128) keypoints in different resolutions of the image pyramid in
the AKS module during training and mapping, respectively. From coarse-to-
fine, the solution space of the cost volume in WFM module is set as 7 × 7 × 7,
7 × 7 × 7 and 5 × 5 × 5, respectively. And the steps in (x, y, yaw) dimensions
are (0.5m, 0.5m, 0.5◦), (0.25m, 0.25m, 0.25◦) and (0.125m, 0.125m, 0.125◦), re-
spectively. Therefore, the maximum affordable offset of the predicted pose is
about (0.5 × 7−1

2 = 1.5m, 1.5m, 1.5◦), which is sufficient for our application.
As we mentioned, we monitor the variance of estimated probability vectors
P (∆zi), z ∈ {x, y, ψ} for “unavailable” localization results. For single or multi-
cameras, we use (0.4m2, 0.4m2, 0.4(◦)2) or (0.625m2, 0.625m2, 0.625(◦)2). as the
threshold, respectively.

Feature-based Method We adopt the original HF-Net implementation
from https://github.com/ethz-asl/hfnet. With regard to the threshold of matched
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inliers for an “available” status, we use 30 and 40 for single and multi-camera ver-
sions, respectively. When we build the prior map for the feature-based method,
ground truth poses were used in the SfM triangulation stage as the initial values,
and a BA was used to further refine the rotation parameters with the translation
ones fixed. We verified the shift was no more than 1-2 cm even if we don’t fix
them.

2 More about the Dataset

Our vehicle platform is equipped with a Velodyne HDL-64E LiDAR, a NovA-
tel PwrPak7D-E1 GNSS receiver integrated with dual antennas and an Epson
EG320N IMU, and three Leopard AR0231 rolling shutter cameras facing for-
ward, rear-left, and rear-right. More importantly, the cameras are hardware syn-
chronized with the LiDAR and compensated for the rolling shutter and vehicle
motion effect, yielding precise alignment between 3D point clouds and images
as shown in Figure 1. For the sake of accurate ground truth poses in chal-
lenging scenarios, for example, urban canyons, a near navigation grade IMU
sensor, IMU-ISA-100C, containing fiber optic gyros and MEMS accelerometers,
was also installed in the vehicle together with a NovAtel ProPak6 GNSS re-
ceiver. The ground truth poses in our experiments are provided using the above
mentioned advanced sensors through a post-processing solution plus necessary
LiDAR SLAM methods [4, 6, 1].

Our data was collected approximately every once a week in the northwest
region of Beijing, China, close to the Daoxiang Lake park as shown in Figure 2. It
is split into two non-overlapping regions A and B. Data from area A was used for
training and area B was used for testing to verify the generalization capability
of the network. The training data composes of 10,385 frames evenly sampled
from 104,000 frames (189.7 km) to accelerate the training procedure by avoiding
visually repetitive data. The testing data includes 30,495 frames over 59.4 km.
The data collection time, date and usage are detailed in Table 1. More sample
images are shown in Figure 3 demonstrating that the diversity of our dataset in
terms of both the urban driving scenarios captured and the time spent on data
collection. The frame rates of our cameras are 10hz (front) and 15hz (rear left
and right) with a high image resolution of 1920× 1080.

3 More Ablations on Loss and Keypoints

Loss Function In Section 4.6, we propose to use multiple loss functions to-
gether. We then take a deeper look at the contribution of each of these func-
tions and display the results in Table 2. It is seen that only using the absolute
loss already achieves acceptable results. If we incorporate the concentration or
similarity loss function, both can improve the overall performance in terms of
accuracy, however, the N/A ratio with the similarity loss drops a lot. Overall, we
achieve the best performance when we use all the three loss functions together.
Furthermore, Figure 4 shows the generated heatmaps when we apply different



ECCV 2020 DA4AD: Supplementary Material 3

Fig. 1: The illustration of the hardware synchronized camera images and LiDAR
scans. By leveraging accurate timestamp synchronization, and rolling shutter
and vehicle motion compensation, we achieve precise alignment between LiDAR
point cloud projections and image pixels.

Seq. Date Time
Training Testing Mapping

Description
Dist. Fram. Dist. Fram. Dist. Fram.

1 Sep. 18, 2019 14:34:21-16:10:21 - - - - 48.96 13607 Only for Mapping

2 Sep. 24, 2019 12:49:36-15:08:37 37.99 2229 10.95 6862 - - Early Autumn

3 Oct. 14, 2019 14:26:19-15:58:19 25.30 1364 5.447 2269 - - Early Autumn

4 Oct. 21, 2019 16:22:20-18:02:20 25.32 1521 10.95 6464 - - Late Autumn, Dusk

5 Oct. 25, 2019 10:48:21-12:33:21 25.17 1369 5.449 3199 - - Late Autumn

6 Nov. 30, 2019 11:29:08-13:22:08 25.40 1480 4.723 2178 - - Winter

7 Dec. 16, 2019 12:34:35-14:06:35 25.26 1168 10.91 4847 - - Foggy lens, Snowy

8 Dec. 25, 2019 15:36:58-17:12:58 25.25 1254 10.95 4676 - - Winter, Dusk

Table 1: Data collection time, date and their usage for training, mapping and
testing purposes.

loss functions. As we can see, if we use the absolute loss only, the heatmaps
highlight the areas that are suitable for the localization task, but a large portion
of the background and dynamic objects also gain high response which is not
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Fig. 2: The data collection route in northwest Beijing. The dataset is divided
into two non-overlapping regions A and B for training and testing, respectively.

our desire. By using all the three loss functions, we achieve the heatmaps that
are clean and effectively suppress the influence of the background and dynamic
objects.

Method N/A
(%)

Horizontal Longitudinal Lateral Yaw

RMS/Max(m) 0.1/0.2/0.3(%) RMS/Max(m) RMS/Max(m) RMS/Max(◦) 0.1/0.3/0.6(%)

A.L. 98.8 0.066/1.599 82.4/95.0/99.2 0.055/1.598 0.024/1.110 0.058/2.428 87.4/99.4/99.9
A.L.+C.L. 99.9 0.064/2.022 85.2/96.0/99.5 0.050/1.967 0.028/1.186 0.054/1.088 90.4/99.8/99.9
A.L.+C.L.+S.L. 100.0 0.058/2.617 86.3/96.8/99.5 0.048/2.512 0.023/1.541 0.054/3.208 89.4/99.6/99.9

Table 2: Comparison using different loss functions. We denote the absolute, con-
centration and similarity loss as “A.L.”, “C.L.” and “S.L.”, respectively. Overall,
we achieve the best performance when we use all the three loss functions together.

Keypoints During the mapping stage, a set of keypoints are selected for
different resolutions in the pyramid in the AKS module. In this section, we
analyze the impact of the number of keypoints on performance. Specifically, we
present the performance when using (128, 256, 512), (64, 128, 256), (32, 64,
128), (16, 32, 64), and (8, 16, 32) keypoints for different resolutions in Table 3.
It is seen that the performance improves steadily as we increase the number
of keypoints. After comprehensive consideration, we choose (32, 64, 128) as the
default setting.

4 More Results

To help us further understand the performance comparison with other methods,
we split the testing trials into groups under different circumstances as shown in
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Fig. 3: Sample images from our newly collected dataset. These illustrate the
different urban scenarios with varying lighting conditions, seasonal changes, and
difficult circumstances, that make it a challenging dataset for the evaluation of
a vision-based localization system.
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A.L. A.L.+ C.L. A.L.+ C.L. .+ S.L. Image

Fig. 4: Comparison of the generated heatmaps when applying different loss func-
tions. We achieve the cleanest heatmaps that suppress the noise caused by the
background and dynamic objects when we use all the three proposed loss func-
tions.
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Keypoints N/A
(%)

Horizontal Longitudinal Lateral Yaw

RMS/Max(m) 0.1/0.2/0.3(%) RMS/Max(m) RMS/Max(m) RMS/Max(◦) 0.1/0.3/0.6(%)

(128, 256, 512) 100.0 0.053/2.014 87.6/97.1/99.5 0.044/1.655 0.020/1.292 0.051/1.558 89.1/99.7/99.9
(64, 128, 256) 100.0 0.055/1.748 87.1/97.0/99.6 0.045/1.736 0.021/1.465 0.052/1.917 89.9/99.7/99.9
(32, 64, 128) 100.0 0.058/2.617 86.3/96.8/99.5 0.048/2.512 0.023/1.541 0.054/3.208 89.4/99.6/99.9
(16, 32, 64) 99.9 0.063/2.751 84.2/96.3/99.2 0.052/2.635 0.024/1.966 0.057/2.393 87.4/99.5/99.8
(8, 16, 32) 99.7 0.092/9.847 81.4/94.2/97.7 0.074/7.674 0.039/7.855 0.076/3.385 82.6/98.0/99.0

Table 3: Comparison using different keypoints. Note that increasing the number
of keypoints gives better performance. (32, 64, 128) is chosen as the default
setting for our system.

Table 4. As our map is built in Sep., the performance of our system is comparable
in all cases, for example, autumn, winter or foggy lens, except for difficult light-
ing conditions (dusk) which are well-known difficult problems for image based
methods. But we can still achieve reasonably good performance at dusk.

We made some modifications to the original implementation of the HF-Net
[3] method. In this section, we further analyze the contribution of each of them
as shown in Table 5. “HFNet[3] (S)” is the original HF-Net implementation
using PnP + RANSAC with single camera. For the “HFNet” method, we only
extend the original implementation to leverage multi-camera input through a
local bundle adjustment. Next, for “HFNet+”, we furnish it with the predicted
poses instead of using the embedded global features in it. Finally, “HFNet++”
is the method that estimates 3 DoF poses with all the three modifications.
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Method N/A
(%)

Horizontal Longitudinal Lateral Yaw

RMS/Max(m) 0.1/0.2/0.3(%) RMS/Max(m) RMS/Max(m) RMS/Max(◦) 0.1/0.3/0.6(%)
E

a
rl

y
A

u
tu

m
n

Struct-based (S) 88.0 0.224/1.407 26.6/53.6/74.8 0.203/1.388 0.065/1.312 0.152/2.129 37.8/92.0/99.3
HFNet[3] (S) 87.5 0.224/6.494 34.6/60.7/76.1 0.192/4.714 0.082/6.407 0.080/15.65 78.2/97.8/99.8
HFNet++(S) 97.7 0.212/6.049 32.1/59.2/77.0 0.182/2.138 0.078/6.004 0.082/16.03 75.2/98.0/99.8
HFNet++SIFT(S) 74.4 0.211/8.181 37.8/64.9/80.6 0.168/7.349 0.093/8.154 0.089/17.42 81.0/97.3/99.2
HFNet++ 99.2 0.139/6.049 47.0/80.3/94.2 0.124/2.736 0.039/6.004 0.062/16.03 87.9/99.5/99.8
HFNet++SIFT 84.3 0.194/8.281 35.2/72.8/85.4 0.156/7.349 0.079/7.046 0.072/13.97 87.0/98.0/99.2

Ours (S) 93.9 0.104/2.012 68.3/88.9/94.1 0.087/1.431 0.042/1.787 0.063/1.685 83.4/97.6/99.7
Ours 100.0 0.048/2.617 95.2/98.9/99.4 0.036/2.512 0.024/1.541 0.055/3.208 91.2/99.4/99.8

LiDAR [5] 100.0 0.049/0.166 95.6/100.0/100.0 0.034/0.161 0.028/0.153 0.061/0.599 83.8/99.9/100.0

L
a
te

A
u
tu

m
n

Struct-based (S) 98.3 0.248/1.528 16.5/44.2/70.0 0.222/1.363 0.075/0.971 0.137/1.141 46.7/88.8/99.5
HFNet[3] (S) 73.8 0.203/2.970 36.2/64.9/78.6 0.180/2.772 0.068/1.097 0.070/0.969 78.6/98.9/99.9
HFNet++(S) 96.7 0.208/1.832 29.8/59.4/76.5 0.185/1.660 0.068/1.190 0.075/0.880 74.1/99.1/100.0
HFNet++SIFT(S) 51.4 0.310/5.184 16.0/42.2/59.9 0.258/4.089 0.118/3.347 0.100/5.369 70.0/95.6/99.4
HFNet++ 98.3 0.145/10.18 54.1/77.4/84.6 0.134/9.342 0.033/4.033 0.052/1.222 89.3/99.6/99.9
HFNet++SIFT 58.4 0.283/6.463 23.9/49.0/65.5 0.230/6.334 0.113/3.347 0.108/14.68 71.3/96.3/99.0

Ours (S) 96.9 0.138/1.625 59.7/78.9/88.4 0.117/1.623 0.050/1.406 0.078/1.334 77.0/96.1/99.2
Ours 100.0 0.043/1.648 93.9/99.2/99.7 0.034/1.157 0.020/1.418 0.054/1.441 88.0/99.7/99.9

LiDAR [5] 100.0 0.050/0.180 96.9/100.0/100.0 0.037/0.172 0.026/0.179 0.059/0.327 83.4/100.0/100.0

W
in

te
r

Struct-based (S) 94.8 0.255/2.046 19.5/49.5/68.7 0.232/1.350 0.074/1.800 0.136/1.532 44.8/90.5/99.7
HFNet[3] (S) 48.7 0.227/4.382 43.4/69.4/81.9 0.166/4.211 0.116/3.411 0.118/7.564 73.4/94.6/97.7
HFNet++(S) 76.9 0.193/3.289 36.8/67.5/82.5 0.164/2.341 0.077/3.233 0.085/6.944 72.3/97.4/99.6
HFNet++SIFT(S) 9.5 0.402/3.626 23.3/47.7/62.2 0.258/2.053 0.235/3.536 0.347/10.28 63.4/87.2/93.1
HFNet++ 95.1 0.176/10.74 45.6/75.7/89.0 0.150/10.71 0.064/5.549 0.091/15.08 77.2/97.2/99.6
HFNet++SIFT 14.8 0.391/6.424 21.4/49.6/65.5 0.243/6.410 0.238/3.796 0.356/10.28 54.7/82.7/90.2

Ours (S) 96.9 0.083/2.187 79.3/93.4/96.7 0.067/2.184 0.035/1.738 0.061/1.575 84.3/98.2/99.3
Ours 99.9 0.041/1.158 97.6/99.6/99.8 0.028/1.147 0.024/0.321 0.043/0.643 96.4/99.8/100.0

LiDAR [5] 100.0 0.053/0.220 93.6/100.0/100.0 0.037/0.202 0.030/0.145 0.081/0.401 67.0/100.0/100.0

D
u
sk

Struct-based (S) 93.9 0.226/2.669 21.7/55.1/75.8 0.200/0.170 0.0709/2.388 0.153/4.218 45.7/91.0/98.6
HFNet[3] (S) 61.0 0.254/13.09 25.1/53.3/71.3 0.231/13.07 0.069/3.150 0.069/7.035 80.3/98.5/99.8
HFNet++(S) 87.4 0.232/4.080 23.7/52.3/72.6 0.206/2.057 0.071/4.079 0.072/9.317 77.3/98.8/100.0
HFNet++SIFT(S) 34.6 0.339/5.995 16.0/37.6/57.9 0.268/2.601 0.152/5.646 0.130/7.730 64.8/94.4/98.1
HFNet++ 97.2 0.183/3.669 34.4/62.9/83.8 0.171/3.610 0.039/1.373 0.061/1.878 85.1/99.1/99.9
HFNet++SIFT 41.9 0.293/5.995 26.9/45.9/63.9 0.237/2.415 0.123/5.646 0.113/7.730 70.1/95.5/98.4

Ours (S) 95.5 0.175/2.875 40.4/68.3/86.2 0.162/2.871 0.046/1.259 0.072/1.657 79.7/97.6/99.4
Ours 100.0 0.123/0.696 42.4/84.8/98.8 0.118/0.648 0.021/0.640 0.052/0.987 91.2/99.5/99.9

LiDAR [5] 100.0 0.056/0.333 90.0/99.7/100.0 0.044/0.252 0.026/0.262 0.080/0.559 68.4/99.9/100.0

F
o
g
g
y

L
en

s,
S
n
ow

y Struct-based (S) 80.7 0.282/2.592 15.4/43.9/65.0 0.241/1.509 0.103/2.533 0.185/2.677 35.9/84.6/97.4
HFNet[3] (S) 6.4 1.365/322.6 23.7/43.3/55.8 1.301/322.5 0.173/8.844 0.135/3.437 57.7/93.6/98.4
HFNet++(S) 16.6 0.254/2.103 27.3/54.5/70.2 0.217/1.277 0.099/1.727 0.096/0.787 64.8/96.0/99.8
HFNet++SIFT(S) - - - - - - -
HFNet++ 68.4 0.333/13.62 39.2/63.5/74.9 0.245/13.54 0.169/6.380 0.173/25.22 57.5/91.1/97.0
HFNet++SIFT 7.5 0.293/5.913 36.4/63.6/75.8 0.146/4.149 0.214/5.434 0.343/6.934 35.3/75.2/86.5

Ours (S) 94.5 0.118/3.119 58.6/87.3/94.4 0.103/3.074 0.041/1.110 0.074/1.421 77.5/97.7/99.6
Ours 100.0 0.047/0.659 94.2/99.4/99.8 0.035/0.649 0.024/0.606 0.062/0.920 80.0/99.9/100.0

LiDAR [5] 100.0 0.067/1.831 88.5/97.7/99.1 0.046/1.446 0.039/1.184 0.082/1.608 71.1/98.8/99.7

Table 4: Comparison under different circumstances. The performance of our
system is comparable in all cases, for example, autumn, winter or foggy lens,
except for difficult lighting conditions (dusk). We can still achieve reasonably
good performance at dusk.

Method
N/A
(%)

Horizontal Longitudinal Lateral Yaw

RMS/Max(m) 0.1/0.2/0.3(%) RMS/Max(m) RMS/Max(m) RMS/Max(◦) 0.1/0.3/0.6(%)

HFNet[3] (S) 61.4 0.243/322.6 34.3/61.4/76.3 0.211/322.5 0.081/8.844 0.081/15.65 77.8/97.8/99.6

HFNet 79.2 0.374/541.1 43.5/71.9/85.4 0.320/528.7 0.118/133.1 0.156/179.5 78.7/97.5/99.2

HFNet+ 93.3 0.176/14.02 45.8/74.3/87.0 0.153/13.96 0.055/6.556 0.075/25.27 83.3/98.2/99.5

HFNet++ 93.2 0.176/13.62 45.4/73.9/87.0 0.152/13.54 0.056/6.380 0.077/25.22 82.6/98.2/99.5

Table 5: Comparison with different HF-Net modifications. Note that our modi-
fications to its original implementation improve the performance significantly.


