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Abstract. Feature interactions across space and scales underpin mod-
ern visual recognition systems because they introduce beneficial visual
contexts. Conventionally, spatial contexts are passively hidden in the
CNN’s increasing receptive fields or actively encoded by non-local con-
volution. Yet, the non-local spatial interactions are not across scales, and
thus they fail to capture the non-local contexts of objects (or parts) re-
siding in different scales. To this end, we propose a fully active feature
interaction across both space and scales, called Feature Pyramid Trans-
former (FPT). It transforms any feature pyramid into another feature
pyramid of the same size but with richer contexts, by using three specially
designed transformers in self-level, top-down, and bottom-up interaction
fashion. FPT serves as a generic visual backbone with fair computational
overhead. We conduct extensive experiments in both instance-level (i.e.,
object detection and instance segmentation) and pixel-level segmentation
tasks, using various backbones and head networks, and observe consistent
improvement over all the baselines and the state-of-the-art methods1.

Keywords: Feature pyramid; Visual context; Transformer; Object de-
tection; Instance segmentation; Semantic segmentation

1 Introduction

Modern visual recognition systems stand in context. Thanks to the hierarchical
structure of Convolutional Neural Network (CNN), as illustrated in Fig. 1 (a),
contexts are encoded in the gradually larger receptive fields (the green dashed
rectangles) by pooling [14,19], stride [30] or dilated convolution [37]. Therefore,
the prediction from the last feature map is essentially based on the rich contexts
— even though there is only one “feature pixel” for a small object, e.g., mouse,
its recognition will be still possible, due to the perception of larger contexts, e.g.,
table and computer [11,29].

Scale also matters — the mouse recognition deserves more feature pixels, not
only the ones from the last feature map, which easily overlooks small objects. A

? Corresponding author.
1 Code is open-sourced at https://github.com/ZHANGDONG-NJUST
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Fig. 1. The evolution of feature interaction across space and scale in feature pyramid
for visual context. Transparent cubes: feature maps. Shaded predict: task-specific head
networks. The proposed Feature Pyramid Transformer is inspired by the evolution.

conventional solution is to pile an image pyramid for the same image [1], where
the higher/lower levels are images of lower/higher resolutions. Thus, objects of
different scales are recognized in their corresponding levels, e.g., mouse in lower
levels (high resolution) and table in higher levels (low resolution). However,
the image pyramid multiplies the time-consuming CNN forward pass as each
image requires a CNN for recognition. Fortunately, CNN offers an in-network
feature pyramid [39], i.e., lower/higher-level feature maps represent higher/lower-
resolution visual content without computational overhead [25,28]. As shown in
Fig. 1 (b), we can recognize objects of different scales by using feature maps of
different levels, i.e., small objects (computer) are recognized in lower-levels and
large objects (chair and desk) are recognized in higher-levels [16,22,24].

Sometimes the recognition — especially for pixel-level labeling such as seman-
tic segmentation — requires to combine the contexts from multiple scales [5,44].
For example in Fig. 1 (c), to label pixels in the frame area of the monitor, per-
haps the local context of the object itself from lower levels is enough; however,
for the pixels in the screen area, we need to exploit both of the local context and
the global context from higher levels, because the local appearance of monitor

screen is close to TV screen, and we should use scene context such as keyboard

and mouse to distinguish between the two types.

The spirit of the above non-local context is recently modeled in a more ex-
plicit and active fashion — as opposed to the above passive feature map pile
— by using the non-local convolution [34] and self-attention [33,3]. Such spatial
feature interaction is expected to capture the reciprocal co-occurring patterns
of multiple objects [41,16]. As shown in Fig. 1 (d), it is more likely that there is
a computer on the desk rather than on road, thus, the recognition of either is
helpful to the other.

The tale of context and scale should continue, and it is our key motivation.
In particular, we are inspired by the omission of the cross-scale interactions
(Fig. 1 (c)) in the non-local spatial interactions (Fig. 1 (d)). Moreover, we be-
lieve that the non-local interaction per se should happen in the corresponding
scales of the interacted objects (or parts), but not just in one uniform scale
as in existing methods [33,34,41]. Fig. 1 (e) illustrates the expected non-local
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Fig. 2. Overall structure of our proposed FPT network. Different texture pattern-
s indicate different feature transformers, and different color represents feature maps
with different scales. “Conv” denotes a 3 × 3 convolution with the output dimension
of 256. Without loss of generality, the top/bottom layer feature maps has no render-
ing/grounding transformer.

interactions across scales: the low-level mouse is interacting with the high-level
computer, which is interacting with desk at the same scale.

To this end, we propose a novel feature pyramid network called Feature
Pyramid Transformer (FPT) for visual recognition, such as instance-level
(i.e., object detection and instance segmentation) and pixel-level segmentation
tasks. In a nutshell, as illustrated in Fig. 2, the input of FPT is a feature pyramid,
and the output is a transformed one, where each level is a richer feature map
that encodes the non-local interactions across space and scales. Then, the feature
pyramid can be attached to any task-specific head network. As its name implies,
FPT’s interaction adopts the transformer-style [33,3]. It has the neat query,
key and value operation (cf. Section 3.1) that is shown effective in selecting
informative long-range interaction, which tailors our goal: non-local interaction
at proper scales. In addition, the computation overhead (cf. Section 4.1) can be
alleviated by using TPUs like any other transformer models [18].

Our technical contributions, as illustrated in the FPT breakdown in Fig. 2,
are the designs of three transformers: 1) Self-Transformer (ST). It is based on
the classic non-local interaction within the same level feature map [34], and the
output has the same scale as its input. 2) Grounding Transformer (GT). It
is in a top-down fashion, and the output has the same scale as the lower-level
feature map. Intuitively, we ground the “concept” of the higher-level feature
maps to the “pixels” of the lower-level ones. In particular, as it is unnecessary
to use the global information to segment objects, and the context within a lo-
cal region is empirically more informative, we also design a locality-constrained
GT for both efficiency and accuracy of semantic segmentation. 3) Rendering
Transformer (RT). It is in a bottom-up fashion, and the output has the same
scale as the higher-level feature map. Intuitively, we render the higher-level “con-
cept” with the visual attributes of the lower-level “pixels”. Note that this is a
local interaction as it is meaningless to render an “object” with the “pixels” of
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another distant one. The transformed feature maps of each level (the red, blue
and green) are re-arranged to its corresponding map size and then concatenated
with the original map, before feeding into the conv-layer that resize them to the
original “thickness”.

Extensive experiments show that FPT can greatly improve conventional de-
tection/segmentation pipelines by the following absolute gains: 1) 8.5% box-AP
for object detection and 6.0% mask-AP for instance segmentation over baseline
on the MS-COCO [23] test-dev ; 2) for semantic segmentation, 1.6% and 1.2%
mIoU on Cityscapes [7] and PASCAL VOC 2012 [9] test sets, respectively; 1.7%
and 2.0% mIoU on ADE20K [45] and LIP [12] validation sets, respectively.

2 Related Work

FPT is generic to apply in a wide range of computer vision tasks. This paper
focuses on two instance-level tasks: object detection, instance segmentation, and
one pixel-level task: semantic segmentation. Object detection aims to predict a
bounding box for each object and then assigns the bounding box a class label [29],
while instance segmentation is additionally required to predict a pixel-level mask
of the object [13]. Semantic segmentation aims to predict a class label to each
pixel of the image [26].

Feature pyramid. The in-network feature pyramid (i.e., the Bottom-up Fea-
ture Pyramid (BFP) [22]) is one of the most commonly used methods, and has
been shown useful for boosting object detection [25], instance segmentation [24]
and semantic segmentation [43]. Another popular method of constructing fea-
ture pyramid uses feature maps of the scale while processing the maps through
pyramidal pooling or dilated/atrous convolutions. For example, atrous spatial
pyramid pooling [5] and pyramid pooling module [14,44] leverages output feature
maps of the last convolution layer in the CNN backbone to build the four-level
feature pyramid, in which different levels have the same resolution but differ-
ent information granularities. Our approach is based on the existing BFP (for
the instance-level) and unscathed feature pyramid [27] (for the pixel-level). Our
contribution is the novel feature interaction approach.

Feature interaction. An intuitive approach to the cross-scale feature interac-
tion is gradually summing the multi-scale feature maps, such as Feature Pyramid
Network (FPN) [22] and Path Aggregation Network (PANet) [24]. In particular,
both FPN and PANet are based on BFP, where FPN adds a top-down path to
propagate semantic information into low-level feature maps, and PANet adds
a bottom-up path augmentation on the basis of FPN. Another approach is to
concatenate multi-scale feature maps along the channel dimension. The specific
examples for semantic segmentation are DeepLab [4] and pyramid scene parsing
network [44]. Besides, a more recent work proposed the ZigZagNet [20] which ex-
ploits the addition and convolution to enhance the cross-scale feature interaction.
Particularly, for the within-scale feature interaction, some recent works exploit-
ed non-local operation [34] and self-attention [33] to capture the co-occurrent
object features in the same scene. Their models were evaluated in a wide range
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of visual tasks [16,38,41,48]. However, we argue that the non-local interaction
performed in just one uniform scale feature map is not enough to represent the
contexts. In this work, we aim to conduct the non-local interaction per se in the
corresponding scales of the interacted objects (or parts).

3 Feature Pyramid Transformer

Given an input image, we can formally extract a feature pyramid, where the
fine-/coarse-grained feature maps are in low/high levels, respectively. Without
loss of generality, we express a low-level fine-grained feature map as Xf and a
high-level coarse-grained feature map as Xc. Feature Pyramid Transformer
(FPT) enables features to interact across space and scales. It specifically includes
three transformers: self-transformer (cf. Section 3.2), grounding transformer (cf.
Section 3.3) and rendering transformer (cf. Section 3.4). The transformed feature
pyramid is in the same size but with richer contexts than the original.

3.1 Non-Local Interaction Revisited

A typical non-local interaction [34] operates on queries(Q), keys(K) and values(V)
within a single feature map X, and the output is the transformed version X̃ with
the same scale as X. This non-local interaction is formulated as:

Input: qi,kj ,vj

Similarity: si,j = Fsim(qi,kj)

Weight: wi,j = Fnom(si,j)

Output: X̃i = Fmul(wi,j ,vj),

(1)

where qi = fq(Xi) ∈ Q is the ith query ; kj = fk(Xj) ∈ K and vj = fv(Xj) ∈ V
are the jth key/value pair; fq(·), fk(·) and fv(·) denote the query, key and
value transformer functions [3,33], respectively. Xi and Xj are the ith and jth

feature positions in X, respectively. Fsim is the similarity function (default as
dot product); Fnom is the normalizing function (default as softmax ); Fmul is the
weight aggregation function (default as matrix multiplication); and X̃i is the ith

feature position in the transformed feature map X̃.

3.2 Self-Transformer

Self-Transformer (ST) aims to capture the co-occurring object features on
one feature map. As illustrated in Fig. 3 (a), ST is a modified non-local interac-

tion [34] and the output feature map X̂ has the same scale as its input X. A main
difference with [33,34] is that we deploy the Mixture of Softmaxes (MoS) [35]
as the normalizing function Fmos, which turns out to be more effective than the
standard Softmax [41] on images. Specifically, we first divide qi and kj into N
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parts. Then, we calculate a similarity score sni,j for every pair, i.e., qi,n, kj,n,
using Fsim. The MoS-based normalizing function Fmos is as follows:

Fmos(sni,j) =

N∑
n=1

πn
exp(sni,j)∑
j exp(sni,j)

, (2)

where sni,j is the similarity score of the nth part. πn is the nth aggregating

weight that is equal to Softmax
(
wT

n k̄
)
, where wn is a learnable linear vector

for normalization and k̄ is the arithmetic mean of all positions of kj . Based on
Fmos, we then can reformulate Eq. 1 to elaborate our proposed ST as follows:

Input: qi,kj ,vj ,N
Similarity: sni,j = Fsim(qi,n,kj,n)

Weight: wi,j = Fmos(sni,j)

Output: X̂i = Fmul(wi,j ,vj),

(3)

where X̂i is the ith transformed feature position in X̂.

3.3 Grounding Transformer

Grounding Transformer (GT) can be categorized as a top-down non-local in-
teraction [34], which grounds the “concept” in the higher-level feature maps Xc

to the “pixels” in the lower-level feature maps Xf . The output X̂f has the same
scale as Xf . Generally, image features at different scales extract different seman-
tic or contextual information or both [39,43]. Moreover, it has been empirically
shown that the negative value of the euclidean distance Feud is more effective in
computing the similarity than dot product when the semantic information of two
feature maps is different [42]. So we prefer to use Feud as the similarity function,
which is expressed as:

Feud(qi,kj) = −||qi − kj ||2, (4)

where qi = fq(Xf
i ) and kj = fk(Xc

j); Xf
i is the ith feature position in Xf , and

Xc
j is the jth feature position in Xc. We then replace the similarity function in

Eq. 3 with Feud, and get the formulation of the proposed GT as follows:

Input: qi,kj ,vj ,N
Similarity: sni,j = Feud(qi,n,kj,n)

Weight: wi,j = Fmos(sni,j)

Output: X̂f
i = Fmul(wi,j ,vj),

(5)

where vj = fv(Xc
j); X̂f

i is the ith transformed feature position in X̂f . Based on
Eq. 5, each pair of qi and kj with a closer distance will be given a larger weight
as in [33,34]. Compared to the results of dot product, using Feud brings clear
improvements in the top-down interactions2.

2 More details are given in Section A of the supplementary.



Feature Pyramid Transformer 7

(c) Locality-constrained GT (d) Rendering  Transformer

Stride conv

𝐐

𝐕

𝐺𝐴𝑃(𝐊)

(a) Self-Transformer (b) Conventional 

Cross-scale Interaction

Fig. 3. Self-Transformer(ST), Conventional Cross-Scale Interaction in existing meth-
ods, Locality-constrained Grounding Transformer (GT), and Rendering Transformer.
The red grid in low-level is a query position; grids in high-level are the key and the
value positions (within a local square area in (b)); Q are the high-level feature maps,
K and V are the low-level feature maps. Grey square is the down-sampled V.

In feature pyramid, high-/low-level feature maps contain much global/local
image information. However, for semantic segmentation by cross-scale feature
interactions, it is unnecessary to use global information to segment two objects
in an image. The context within a local region around the query position is em-
pirically more informative. That is why the conventional cross-scale interaction
(e.g., summation and concatenation) is effective in existing segmentation meth-
ods [4,44]. As shown in Fig. 3 (b), they are essentially the implicit local style.
However, our default GT is the global interaction.

Locality-constrained Grounding Transformer. We therefore introduce a
locality-constrained version of GT called Locality-constrained GT (LGT) for se-
mantic segmentation, which is an explicit local feature interaction. As illustrated
in Fig. 3 (c), each qi (i.e., the red grid on the low-level feature map) interacts
with a portion of kj and vj (i.e., the blue grids on the high-level feature map)
within the local square area where the center coordinate is the same with qi and
the side length is square size. Particularly, for positions of kj and vj that exceed
the index, we use 0 value instead.

3.4 Rendering Transformer

Rendering Transformer (RT) works in a bottom-up fashion, aiming to render
the high-level “concept” by incorporating the visual attributes in the low-level
“pixels”. As illustrated in Fig. 3 (d), RT is a local interaction where the local is
due to the fact that it is meaningless to render an “object” with the features or
attributes from another distant one.

In our implementation, RT is not performed by pixel but the entire feature
maps. Specifically, the high-level feature map is defined as Q; the low-level fea-
ture map is defined as K and V. To highlight the rendering target, the interaction
between Q and K is conducted in a channel-wise attention manner [6]. K first
computes a weight w for Q through Global Average Pooling (GAP) [21]. Then,
the weighted Q (i.e., Qatt) goes through a 3× 3 convolution for refinement [36].
V goes through a 3× 3 convolution with stride to reduce the feature scale (the
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gray square in Fig. 3 (d)). Finally, the refined Qatt and the down-sampled V
(i.e., Vdow) are summed-up, and processed by another 3 × 3 convolution for
refinement. The proposed RT can be formulated as follows:

Input: Q,K,V

Weight: w = GAP(K)

Weight Query: Qatt = Fatt(Q,w)

Down-sampled Value: Vdow = Fsconv(V)

Output: X̂
c

= Fadd(Fconv(Qatt),Vdow),

(6)

where Fatt(·) is an outer product function; Fsconv(·) is a 3×3 stride convolution,
in particular, where stride = 1 if the scales of Q and V are equal; Fconv(·) is a
3× 3 convolution for refinement; Fadd(·) is the feature map summation function

with a 3× 3 convolution; and X̂
c

denotes the output feature map of RT.

3.5 Overall Architecture

We build specific FPT networks for tackling object detection [16,22], inatance
segmentation [13,24], and semantic segmentation [5,44]. Each FPT network is
composed of four components: a backbone for feature extraction; a feature pyra-
mid construction module; our proposed FPT for feature transformer; and a task-
specific head network. In the following, we detail the proposed architectures.

FPT for object detection and instance segmentation. We follow [22,24]
to deploy the ResNet as the backbone, and pre-train it on the ImageNet [8].
BFP [22] is used as the pyramid construction module. Then the proposed FPT
is applied to BFP, for which the number of divided parts of N is set to 2 for ST
and 4 for GT3. Then, the transformed feature maps (by FPT) are concatenated
with the original maps along the channel dimension. The concatenated maps go
through a 3 × 3 convolution to reduce the feature dimension into 256. On the
top of the output feature maps, we apply the head networks for handling specific
tasks, e.g., the Faster R-CNN [29] head for object detection and the Mask R-
CNN [13] head for instance segmentation. To enhance the feature generalization,
we apply the DropBlock [10] to each output feature map. We set the drop block
size as 5 and the feature keep probability as 0.9.

FPT for semantic segmentation. We use dilated ResNet-101 [37] as the
backbone (pre-trained on the ImageNet) following [5,40]. We then apply the
Unscathed Feature Pyramid (UFP) as the feature pyramid construction module,
which basically contains a pyramidal global convolutional network [27] with the
internal kernel size of 1, 7, 15 and 31, and each scale with the output dimension
of 256. Then, the proposed FPT (including LGT) is applied to UFP with the
same number of divided parts N as in the instance-level tasks. In particular, the
square size of LGT is set to 5. On the top of the transformed feature pyramid,
we apply the semantic segmentation head network, as in [5,41]. We also deploy
the DropBlock [10] on the output feature maps with the drop block size as 3 and
the feature keep probability as 0.9.

3 More details are given in Section B of the supplementary.
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4 Experiments

Our experiments were conducted on three interesting and challenging tasks: i.e.,
instance-level object detection and segmentation, and pixel-level semantic seg-
mentation. In each task, we evaluated our approach with careful ablation studies,
extensive comparisons to the state-of-the-arts and representative visualizations.

4.1 Instance-Level Recognition

Dataset. Experiments on object detection and instance segmentation were con-
ducted on MS-COCO 2017 [23] which has 80 classes and includes 115k, 5k and
20k images for training, validation and test, respectively.

Backbone. In the ablation study, ResNet-50 [15] was used as the backbone. To
compare to state-of-the-arts, we also employed ResNet-101 [15], Non-local Net-
work (NL-ResNet-101) [34], Global Context Network (GC-ResNet-101) [2] and
Attention Augmented Network (AA-ResNet-101) [17] as the backbone networks.

Setting. As in [22,24], the backbone network was pre-trained on the Ima-
geNet [8], then the whole network was fine-tuned on the training data while
freezing the backbone parameters. For fair comparisons, input images were re-
sized into 800 pixels/1, 000 pixels for the shorter/longer edge [20].

Training details. We adopted SGD training on 8 GPUs with the Synchronized
Batch Norm (SBN) [40]. Each mini-batch involved one image per GPU and 512
Region of Interest (ROI) per image. The positive-to-negative ratio was set to 1 :
3. The weight decay and momentum were set to 0.0001 and 0.9, respectively. For
object detection, the learning rate was 0.05 in the first 80k iterations, and 0.005
in the remaining 20k iterations. For instance segmentation, the learning rate was
0.05 for the first 120k iterations, and 0.005 in the remaining 40k iterations. An
end-to-end region proposal network was used to generate proposals, as in [34].

Comparison methods. We compared our FPT to the state-of-the-art cross-
scale feature pyramid interactions including FPN [22], Bottom-up Path Aggrega-
tion (BPA) in PANet [24], and Bi-direction Feature Interaction (BFI) in ZigZa-
gNet [20]. We also reported the experimental results of using the Augmented
Head (AH) [24] and Multi-scale Training (MT) [24], where the AH specifically
includes the adaptive feature pooling, fully-connected fusion, and heavier head.

Metrics. We evaluated the model performance using the standard Average Pre-
cision (AP), AP50, AP75, APS , APM and APL.

Ablation study. Our ablation study aims to (1) evaluate the performance of
three individual transformers (in our FPT) and combinations, for which the base
pyramid method BFP [22] is the baseline (in Table 1), and (2) investigate the
effects of SBN [40] and DropBlock [10] on our FPT (in Table 2).

Comparing to the baseline. Table 1 show that three transformers bring con-
sistent improvements over the baseline. For example, ST, GT and RT respective-
ly brings 0.4%, 3.5% and 3.1% improvements for the bounding box AP in object
detection. The improvements are higher as 0.7%, 4.0% and 3.2% for the mask
AP in instance segmentation. The gain by ST is not as much as the gains by the
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BFPSTGTRT AP AP50 AP75 APS APM APL ParamsGFLOPs

X 7 7 7 31.6 29.9 54.1 50.7 35.9 34.7 16.1 14.2 32.5 31.6 48.8 48.5 34.6 M 172.3

X X 7 7 32.0 30.6 54.9 51.4 36.9 35.5 16.5 15.1 34.0 32.1 49.1 49.7 55.0 M 248.2

X 7 X 7 35.1 33.9 55.2 52.4 38.1 37.7 17.4 16.9 36.3 33.3 50.3 51.7 63.9 M 265.1

X 7 7 X 34.7 33.1 55.5 52.0 37.5 37.7 17.0 15.3 36.6 34.9 52.0 52.1 39.8 M 187.9

X X X 7 35.7 34.6 55.7 54.1 38.3 37.9 18.0 17.4 36.5 34.0 52.1 50.5 82.5 M 322.9

X X 7 X 35.9 34.4 56.8 55.1 38.8 38.0 19.1 17.9 37.0 34.8 53.1 52.2 61.2 M 256.7

X 7 X X 36.9 35.1 56.6 54.5 38.2 38.5 18.8 17.7 37.7 35.3 54.3 53.2 69.6 M 281.6

X X X X 38.0 36.8 57.1 55.9 38.9 38.6 20.5 18.8 38.1 35.3 55.7 54.2 88.2 M 346.2

improvements ↑ 6.4↑ 6.9↑ 3.0↑ 5.2↑ 3.0↑ 3.9↑ 4.4↑ 4.6↑ 5.6↑ 3.7↑ 6.9↑ 5.7

Table 1. Ablation study on MS-COCO 2017 val set [23]. “BFP” is Bottom-up Feature
Pyramid [22]; “ST” is Self-Transformer; “GT” is Grounding Transformer; “RT” is
Rendering Transformer. Results on the left and right of the dashed are of bounding
box detection and instance segmentation.

FPT SBN DropBlock AP AP50 AP75 APS APM APL

X 7 7 37.2 35.9 56.0 54.3 37.7 36.9 19.0 17.2 37.7 34.8 53.1 51.3

X X 7 37.8 36.5 56.7 55.2 38.4 38.2 19.6 18.0 37.9 35.1 54.0 52.1

X 7 X 37.5 36.2 56.5 54.8 38.0 37.3 19.5 17.8 37.8 35.0 53.8 51.9

X X X 38.0 36.8 57.1 55.9 38.9 38.6 20.5 18.8 38.1 35.3 55.7 54.2

Table 2. Ablation study of SBN [40] and DropBlock [10] on the MS-COCO 2017 val
set [23]. Results on the left and right of dashed lines are respectively for bounding box
detection and instance segmentation.

other two transformers. An intuitive reason is that, compared to self-interaction
(i.e., ST), the cross-scale interactions (i.e., GT and RT) capture more diverse and
richer inter-object contexts to achieve better object recognition and detection
performances, which is consistent with the conclusion of instance-level recog-
nition works [46,47]. The middle blocks in Table 1 show that the combination
of transformers improves the performance over individuals in most of cases. In
particular, the full combination of ST, GT and RT results the best performance,
i.e., 38.0% bounding box AP (6.4% higher than BFP) on object detection and
36.8% mask AP (6.9% higher than BFP) on instance segmentation.

Effects of SBN and DropBlock. Table 2 shows that both SBN and DropBlock
improve the model performance. Their combination yields 0.8% AP improvement
for object detection, and 0.9% AP improvement for instance segmentation.

Model efficiency4. We reported the model Parameters (Params) and GFLOPs
with the Mask R-CNN [13]. Adding +ST/+GT/+RT to the baseline respec-
tively increase Params by 0.59×/0.85×/0.15× (with mask AP improvements of
0.7%/4.0%/3.2%). Correspondingly, GFLOPs are increased by 0.44×, 0.54× and
0.09×. Compared to related works [20,22,34], these are relatively fair overheads
on average.

4 More details are given in the Section C of the supplementary.
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Input FPN BPA BFI FPT (Ours) Ground Truth

86.7% 90.0% 88.1%

75.5%

92.3%

76.3% 78.7% 86.7%

88.3% 89.6% 88.9% 92.5%

Fig. 4. Visualization results in instance segmentation. The red rectangle highlights the
better predicted area of FPT. Samples are from MS-COCO 2017 validation set [23].
The value on each image represents the corresponding segmentation mIoU.

Comparing to the state-of-the-arts. Table 3 show that applying the cross-
scale interaction methods, e.g., FPN [22], BPA [24], BFI [20] and FPT, results
consistent improvements over the baseline [22]. In particular, our FPT achieves
the highest gains, i.e., 8.5% AP in object detection and 6.0% mask AP in in-
stance segmentation, with ResNet-101 [15]. Besides, the consistent improvements
are also achieved on the stronger NL-, GC- and AA- ResNet-101, and validate
that BFP+FPT can generalize well to stronger backbones, which make more
senses in the age of results5. Two bottom blocks in Table 3 show that adding
efficient training strategies such as AH, MT, and both (denoted as “[all]”) to
BFP+FPT yields performance boosts. For example, BFP+FPT [all] achieves a
higher bounding box AP and the same mask AP, compared to the best per-
formance of BFP+FPT (with stronger GC-ResNet-101). Besides, BFP+FPT
[all] achieves the average 1.5% AP in object detection and 2.1% mask AP in
instance segmentation (over BFP+BFI) using ResNet-101, which further ver-
ifies the robust plug-and-play ability of our FPT. The visualization results in
instance segmentation are given in Fig. 4. Compared to other feature interaction
methods, the results of FPT show more precise predictions for both small (e.g.,
bottle) and large objects (e.g., bicycle). Moreover, it shows the gracile parts in
the object (e.g., the horse legs) are also well predicted using our FPT.

4.2 Experiments on Pixel-Level Recognition

Dataset. Our pixel-level segmentation experiments were conducted on four
benchmarks: (1) Cityscapes [7] contains 19 classes, and includes 2, 975, 500 and
1, 525 images for training, validation and test, respectively; (2) ADE20K [45]
has 150 classes, and uses 20k, 2k, and 3k images for training, validation and
test, respectively; (3) LIP [12] contains 50, 462 images with 20 classes, and in-
cludes 30, 462, 10k and 10k images for training, validation and test, respectively;
(4) PASCAL VOC 2012 [9] contains 21 classes, and includes 1, 464, 1, 449 and
1, 456 images for training, validation and test, respectively.

5 More results are given in Section D of the supplementary.
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Methods Backbone AP AP50 AP75 APS APM APL

BFP [22]

ResNet-101 33.1 32.6 53.8 51.7 34.6 33.3 12.6 11.4 35.3 34.4 49.5 48.9

NL-ResNet-101 34.4 33.7 54.3 53.6 35.8 33.9 15.1 13.7 37.1 36.0 50.7 49.7

GC-ResNet-101 35.0 34.2 55.8 54.1 36.5 35.3 14.8 13.9 38.6 37.3 50.9 50.5

AA-ResNet-101 33.8 32.8 54.2 52.3 35.4 33.8 13.0 12.3 35.5 34.5 50.0 49.0

BFP+FPN [22] ResNet-101 36.2 35.7 59.1 58.0 39.0 37.8 18.2 15.5 39.0 38.1 52.4 49.2

BFP+BPA [24] ResNet-101 37.3 36.3 60.4 59.0 39.9 38.3 18.9 16.3 39.7 39.0 53.0 50.5

BFP+BFI [20] ResNet-101 39.5 - - - - - - - - - - -

BFP+FPT

ResNet-101 41.6 38.6 60.9 58.2 44.0 43.3 23.4 19.0 41.5 39.2 53.1 50.8

NL-ResNet-101 42.0 39.5 62.1 60.7 46.5 45.4 25.1 20.8 42.6 41.0 53.7 53.0

GC-ResNet-101 42.5 40.3 62.0 61.0 46.1 45.8 25.3 21.1 42.7 41.8 53.1 52.7

AA-ResNet-101 42.1 40.1 61.5 60.1 46.5 45.2 25.2 20.6 42.6 41.2 53.5 52.0

BFP+FPT [AH] ResNet-101 41.1 40.0 62.0 59.9 46.6 45.5 24.2 20.5 42.1 41.0 53.3 52.5

BFP+FPT [MT] ResNet-101 41.2 39.8 62.1 60.1 46.0 45.1 24.1 20.9 41.9 40.8 53.2 51.9

BFP+FPN [22] [all] ResNet-101 37.9 36.3 59.6 58.8 40.1 39.1 19.5 16.7 41.0 40.3 53.5 51.1

BFP+BPA [24] [all] ResNet-101 39.0 37.7 60.8 59.4 41.7 40.1 20.2 18.5 41.5 40.1 54.1 52.4

BFP+BFI [20] [all] ResNet-101 40.1 38.2 61.2 60.0 42.6 42.4 21.9 19.6 42.4 40.8 54.3 52.5

BFP+FPT [all] ResNet-101 42.6 40.3 62.4 61.1 46.9 45.9 24.9 21.3 43.0 41.2 54.5 53.3

Table 3. Experimental results on MS-COCO 2017 test-dev [23]. “AH” is Augmented
Head, and “MT” is Multi-scale Training [24]; “all” means that both the AH and MT
are used. Results on the left and right of the dashed are of bounding box detection and
instance segmentation. “-” means that there is no reported result in its paper.

Backbone. We used dilated ResNet-101 [37] as the backbone as in [41].

Setting. We first pre-trained the backbone network on the ImageNet [8], then
fine-tuned the whole network on the training data while fixing the parameters
of backbone as in [40]. Before input, we cropped the image into 969 × 969 for
Cityscapes, 573× 573 for LIP, and 521× 521 for PASCAL VOC 2012. Because
images in ADE20K are of various sizes, we cropped the shorter-edge images to
an uniform size {269, 369, 469, 569} as that in [38].

Training details. We followed [38] to use the learning rate scheduling lr =
baselr×(1− iter

totaliter
)power. On Cityscapes, LIP and PASCAL VOC 2012, the base

learning rate was 0.01, and the power is 0.9. The weight decay and momentum
were set to 0.0005 and 0.9, respectively. On ADE20K, the base learning rate
was 0.02 and the power was 0.9. The weight decay and momentum were 0.0001
and 0.9, respectively. We trained models on 8 GPUs with SBN [40]. The model
was trained for 120 epochs on Cityscapes and ADE20K, 50 on LIP, and 80 on
PASCAL VOC 2012. For data augmentation, the training images were flipped
left-right and randomly scaled between a half and twice as in [41].

Comparison methods. Our FPT was applied to the feature pyramids con-
structed by three methods: UFP [27], PPM [14,44] and ASPP [5]. Based on
each of these methods, we compared our FPT to the state-of-the-art pixel-level
feature pyramid interaction method, i.e., Object Context Network (OCNet) [38].

Metrics. We used the standard mean Intersection of Union (mIoU) as a uniform
metric. We showed the results of ablation study by reporting the mIoU of training
set (i.e., Tra.mIoU) and validation set (i.e., Val.mIoU) on the Cityscapes.
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Methods Tra.mIoU Val.mIoU Params GFLOPs

UFP [27] 86.0 79.1 71.3 M 916.1

UFP+ST [27] 86.9 80.7 91.2 M 948.4

UFP+LGT [27] 86.5 80.3 102.8 M 1008.3

UFP+RT [27] 86.3 80.1 77.4 M 929.3

UFP+LGT+ST [27] 87.2 80.9 121.3 M 1052.6

UFP+RT+ST [27] 87.0 80.8 96.2 M 985.2

UFP+LGT+RT [27] 86.6 80.4 107.0 M 1014.8

UFP+LGT+ST+RT [27] 87.4 81.7 127.2 M 1063.9

the improvement ↑ 1.4 ↑ 2.6

Table 4. Ablation study on the Cityscapes validation set [7]. “LGT” is Locality-
constrained Grounding Transformer; “RT” is Rendering Transformer; “ST” is Self-
Transformer. “+” means building the method on the top of UFP.

Methods Backbone Cityscapes ADE20K LIP PASCAL VOC 2012

baseline ResNet-101 65.3 40.9 42.7 62.2

CFNet [41] ResNet-101 80.6 44.9 54.6 84.2

AFNB [48] ResNet-101 81.3 45.2 - -

HRNet [31] HRNetV2-W48 81.6 44.7 55.9 84.5

OCNet [38] ResNet-101 81.7 45.5 54.7 84.3

GSCNN [32] Wide-ResNet-101 82.8 - 55.2 -

PPM [44]+OC [38] ResNet-101 79.9 43.7 53.0 82.9

ASPP [5]+OC [38] ResNet-101 80.0 44.1 53.3 82.7

UFP [27]+OC [38] ResNet-101 80.6 44.7 54.5 83.2

PPM [44]+FPT ResNet-101 80.4(↑ 0.5) 44.8(↑ 1.1) 54.2(↑ 1.2) 83.2(↑ 0.3)

ASPP [5]+FPT ResNet-101 80.7(↑ 0.7) 45.2(↑ 1.1) 54.4(↑ 1.1) 83.1(↑ 0.4)

UFP [27]+FPT ResNet-101 82.2(↑ 1.6)45.9(↑ 1.2)56.2(↑ 1.7) 85.0(↑ 1.8)

Table 5. Comparisons with state-of-the-art on test sets of Cityscapes [7] and PASCAL
VOC 2012 [9], validation sets of ADE20K [45] and LIP [12]. Results in this table refer
to mIoU; “-” means that there is no reported result in its paper. The best and second
best models under each setting are marked with corresponding formats.

Ablation study. Results are given in Table 4. Applying our transformers (i.e.,
+ST, +LGT and +RT) to UFP respectively achieves the improvements of
0.9%, 0.5% and 0.3% Tr.mIoU, and the more impressive 1.6%, 1.2% and 1.0%
Val.mIoU. Moreover, any component combinations of our transformers yields
concretely better results than individual ones. Our best model achieves 1.4%
and 2.6% improvements (over UFP) for Tr.mIoU and Val.mIoU, respectively.

Model efficiency. In Table 4, we reported the model Params and GFLOPs.
It is clear that using our transformers increases a fair computational overhead.
For example, +ST, +LGT and +RT respectively add Params 0.28×, 0.44× and
0.09×, and increase GFLOPs by 0.04×, 0.10× and 0.01×, compared to UFP.

Comparing to the state-of-the-arts. From Table 5, we can observe that
our FPT can achieve a new state-of-the-art performance over all the previous
methods based on ResNet-101. It obtains improvements as 1.6%, 1.2%, 1.7%
and 1.8% mIoU on Cityscapes [7], ADE20K [45], LIP [12] and PASCAL VOC
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Input OCNetBaseline Ground TruthFPT (Ours)

73.1% 86.5% 90.4%

77.1% 86.7% 92.6%

73.3% 87.0% 93.5%

Fig. 5. Visualization results. Samples are from the validation set of PASCAL VOC
2012 [9]. The value on each image represents the corresponding segmentation mIoU.

2012 [9], respectively. Besides, compared to OCNet, FPT obtains gain by 0.9%,
1.1%, 1.3% and 0.8% mIoU in these four datasets on average. In Fig. 5, we
provide the qualitative results6. Compared to the baseline [27] and OCNet [38],
results of FPT show more precise segmentation for smaller and thinner objects,
e.g., the guardrail, person’s leg and bird. Moreover, FPT can also achieve more
integrated segmentation on some larger objects, e.g., the horse, person and sofa.

5 Conclusion

We proposed an efficient feature interaction approach called FPT, composed
of three carefully-designed transformers to respectively encode the explicit self-
level, top-down and bottom-up information in the feature pyramid. Our FPT
does not change the size of the feature pyramid, and is thus generic and easy
to plug-and-play with modern deep networks. Our extensive quantitative and
qualitative results on three challenging visual recognition tasks showed that FPT
achieves consistent improvements over the baselines and the state-of-the-arts,
validating its high effectiveness and strong application capability.
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