
Deep Graph Matching via Blackbox
Differentiation of Combinatorial Solvers

Michal Roĺınek1, Paul Swoboda2, Dominik Zietlow1,
Anselm Paulus1, Vı́t Musil3, and Georg Martius1

1 Max Planck Institute for Intelligent Systems, Tübingen, Germany
2 Max Planck Institute for Informatics, Saarbrücken, Germany

3 Università degli Studi di Firenze, Italy
github.com/martius-lab/blackbox-deep-graph-matching

michal.rolinek@tue.mpg.de

Abstract. Building on recent progress at the intersection of combinato-
rial optimization and deep learning, we propose an end-to-end trainable
architecture for deep graph matching that contains unmodified combi-
natorial solvers. Using the presence of heavily optimized combinatorial
solvers together with some improvements in architecture design, we ad-
vance state-of-the-art on deep graph matching benchmarks for keypoint
correspondence. In addition, we highlight the conceptual advantages of
incorporating solvers into deep learning architectures, such as the pos-
sibility of post-processing with a strong multi-graph matching solver or
the indifference to changes in the training setting. Finally, we propose
two new challenging experimental setups.

Keywords: deep graph matching, keypoint correspondence, combina-
torial optimization

1 Introduction

Fig. 1: Example keypoint
matchings of the proposed
architecture on SPair-71k.

Matching discrete structures is a recurring
theme in numerous branches of computer sci-
ence. Aside from extensive analysis of its the-
oretical and algorithmic aspects [9, 26], there
is also a wide range of applications. Com-
puter vision, in particular, is abundant of tasks
with a matching flavor; optical flow [4, 49, 50],
person re-identification [25, 45], stereo match-
ing [12, 36], pose estimation [11, 25], object
tracking [39, 57], to name just a few. Matching
problems are also relevant in a variety of scien-
tific disciplines including biology [28], language
processing [40], bioinformatics [19], correspon-
dence problems in computer graphics [43] or so-
cial network analysis [35].

github.com/martius-lab/blackbox-deep-graph-matching

2 M. Roĺınek et al.

Particularly, in the domain of computer vision, the matching problem has
two parts: extraction of local features from raw images and resolving con-
flicting evidence e.g. multiple long-term occlusions in a tracking context. Each
of these parts can be addressed efficiently in separation, namely by deep net-
works on the one side and by specialized purely combinatorial algorithms on
the other. The latter requires a clean abstract formulation of the combinatorial
problem. Complications arise if concessions on either side harm performance.
Deep networks on their own have a limited capability of combinatorial general-
ization [6] and purely combinatorial approaches typically rely on fixed features
that are often suboptimal in practice. To address this, many hybrid approaches
have been proposed.

In case of deep graph matching some approaches rely on finding suitable dif-
ferentiable relaxations [60, 62], while others benefit from a tailored architecture
design [23, 27, 59, 64]. What all these approaches have in common is that they
compromise on the combinatorial side in the sense that the resulting “combina-
torial block” would not be competitive in a purely combinatorial setup.

In this work, we present a novel type of end-to-end architecture for semantic
keypoint matching that does not make any concessions on the combi-
natorial side while maintaining strong feature extraction. We build on recent
progress at the intersection of combinatorial optimization and deep learning [56]
that allows to seamlessly embed blackbox implementations of a wide range of
combinatorial algorithms into deep networks in a mathematically sound fash-
ion. As a result, we can leverage heavily optimized graph matching solvers [52, 53]
based on dual block coordinate ascent for Lagrange decompositions.

Since the combinatorial aspect is handled by an expert algorithm, we can fo-
cus on the rest of the architecture design: building representative graph matching
instances from visual and geometric information. In that regard, we leverage the
recent findings [23] that large performance improvement can be obtained by
correctly incorporating relative keypoint locations via SplineCNN [22].

Additionally, we observe that correct matching decisions are often simplified
by leveraging global information such as viewpoint, rigidity of the object or
scale (see also Fig. 1). With this in mind, we propose a natural global feature
attention mechanism that allows to adjust the weighting of different node
and edge features based on a global feature vector.

Finally, the proposed architecture allows a stronger post-processing step. In
particular, we use a multi-graph matching solver [52] during evaluation to jointly
resolve multiple graph matching instances in a consistent fashion.

On the experimental side, we achieve state-of-the-art results on standard
keypoint matching datasets Pascal VOC (with Berkeley annotations [8, 20]) and
Willow ObjectClass [14]. Motivated by lack of challenging standardised bench-
marks, we additionally propose two new experimental setups. The first one is the
evaluation on SPair-71k [38] a high-quality dataset that was recently released
in the context of dense image matching. As the second one, we suggest to drop
the common practice of keypoint pre-filtering and as a result force the future
methods to address the presence of keypoints without a match.

Deep Graph Matching with Combinatorial Solvers 3

The contributions presented in this paper can be summarized as follows.

1. We present a novel and conceptually simple end-to-end trainable archi-
tecture that seamlessly incorporates a state-of-the-art combinatorial graph
matching solver. In addition, improvements are attained on the feature ex-
traction side by processing global image information.

2. We introduce two new experimental setups and suggest them as future
benchmarks.

3. We perform an extensive evaluation on existing benchmarks as well as on
the newly proposed ones. Our approach reaches higher matching accuracy
than previous methods, particularly in more challenging scenarios.

4. We exhibit further advantages of incorporating a combinatorial solver:
(i) possible post-processing with a multi-graph matching solver,
(ii) an effortless transition to more challenging scenarios with unmatchable

keypoints.

2 Related Work

Combinatorial Optimization Meets Deep Learning The research on this
intersection is driven by two main paradigms.

The first one attempts to improve combinatorial optimization algorithms
with deep learning methods. Such examples include the use of reinforcement
learning for increased performance of branch-and-bound decisions [5, 25, 30] as
well as of heuristic greedy algorithms for NP-Hard graph problems [7, 17, 29, 32].

The other mindset aims at enhancing the expressivity of neural nets by turn-
ing combinatorial algorithms into differentiable building blocks. The work on
differentiable quadratic programming [3] served as a catalyzer and progress was
achieved even in more discrete settings [21, 37, 58]. In a recent culmination of
these efforts [56], a “differentiable wrapper” was proposed for blackbox implemen-
tations of algorithms minimizing a linear discrete objective, effectively allowing
free flow of progress from combinatorial optimization to deep learning.

Combinatorial Graph Matching This problem, also known as the quadratic
assignment problem [33] in the combinatorial optimization literature, is famous
for being one of the practically most difficult NP-complete problems. There exist
instances with less than 100 nodes that can be extremely challenging to solve
with existing approaches [10]. Nevertheless, in computer vision efficient algo-
rithmic approaches have been proposed that can routinely solve sparse instances
with hundreds of nodes. Among those, solvers based on Lagrangian decomposi-
tion [53, 54, 65] have been shown to perform especially well, being able to quickly
produce high quality solutions with small gaps to the optimum. Lagrange decom-
position solvers split the graph matching problem into many small subproblems
linked together via Lagrange multipliers. These multipliers are iteratively up-
dated in order to reach agreement among the individual subproblems, typically
with subgradient based techniques [48] or dual block coordinate ascent [51].

4 M. Roĺınek et al.

Fig. 2: Differentiation of a piecewise constant loss resulting from incorporating a
graph matching solver. A two-dimensional section of the loss landscape is shown
(left) along with two differentiable interpolations of increasing strengths (middle
and right).

Graph matching solvers have a rich history of applications in computer vision.
A non-exhaustive list includes uses for finding correspondences of landmarks be-
tween various objects in several semantic object classes [54, 55, 66], for estimating
sparse correspondences in wide-displacement optical flow [2, 54], for establishing
associations in multiple object tracking [13], for object categorization [18], and
for matching cell nuclei in biological image analysis [28].

Peer Methods Wider interest in deep graph matching was ignited by [62]
where a fully differentiable graph matching solver based on spectral methods
was introduced. While differentiable relaxation of quadratic graph matching has
reappeared [60], most methods [27, 59, 61] rely on the Sinkhorn iterative nor-
malization [1, 47] for the linear assignment problem or even on a single row
normalization [23]. Another common feature is the use of various graph neural
networks [6, 34, 44] sometimes also in a cross-graph fashion [59] for refining the
node embeddings provided by the backbone architecture. There has also been
a discussion regarding suitable loss functions [59, 61, 62]. Recently, nontrivial
progress has been achieved by extracting more signal from the available geomet-
ric information [23, 64].

3 Methods

3.1 Differentiability of Combinatorial Solvers

When incorporating a combinatorial solver into a neural network, differentia-
bility constitutes the principal difficulty. Such solvers take continuous inputs
(vertex and edge costs in our case) and return a discrete output (an indicator
vector of the optimal matching). This mapping is piecewise constant because a
small change of the costs typically does not affect the optimal matching. There-
fore, the gradient exists almost everywhere but is equal to zero. This prohibits
any gradient-based optimization.

Deep Graph Matching with Combinatorial Solvers 5

A recent method proposed in [56] offers a mathematically-backed solution to
overcome these obstacles. It introduces an efficient “implicit interpolation” of
the solver’s mapping while still treating the solver as a blackbox. In end effect,
the intact solver is executed on the forward pass and as it turns out, only one
other call to the solver is sufficient to provide meaningful gradient information
during the backward pass.

Specifically, the method of [56] applies to solvers that solve an optimization
problem of the form

w ∈ RN 7→ y(w) ∈ Y ⊂ RN such that y(w) = arg min
y∈Y

w · y, (1)

where w is the continuous input and Y is any discrete set. This general formu-
lation covers large classes of combinatorial algorithms that include the shortest
path problem, the traveling salesman problem and many others. As will be shown
in the subsequent sections, graph matching is also included in this definition.

If L denotes the final loss of the network, the suggested gradient of the
piecewise constant mapping w 7→ L

(
y(w)

)
takes the form

dL
(
y(w)

)
dy

:=
y(wλ)− y(w)

λ
, (2)

in which wλ is a certain modification of the input w depending on the gradient
of L at y(w). This is in fact the exact gradient of a piecewise linear interpolation
of L

(
y(w)

)
in which a hyperparameter λ > 0 controls the interpolation range as

Fig. 2 suggests.
It is worth pointing out that the framework does not require any explicit

description of the set Y (such as via linear constraints). For further details and
mathematical guarantees, see [56].

3.2 Graph Matching

The aim of graph matching is to find an assignment between vertices of two
graphs that minimizes the sum of local and geometric costs.

Let G1 = (V1, E1) and G2 = (V2, E2) be two directed graphs. We denote by
v ∈ {0, 1}|V1||V2| the indicator vector of matched vertices, that is vi,j = 1 if a
vertex i ∈ V1 is matched with j ∈ V2 and vi,j = 0 otherwise. Analogously, we set
e ∈ {0, 1}|E1||E2| as the indicator vector of matched edges. Obviously, the vector
e is fully determined by the vector v. Further, we denote by Adm(G1, G2) the
set of all pairs (v, e) that encode a valid matching between G1 and G2.

Given two cost vectors cv ∈ R|V1||V2| and ce ∈ R|E1||E2|, we formulate the
graph matching optimization problem as

GM(cv, ce) = arg min
(v,e)∈Adm(G1,G2)

{cv · v + ce · e} . (3)

It is immediate that GM fits the definition of the solver given in (1). If L =
L(v, e) is the loss function, the mapping

(cv, ce) 7→ L
(
GM(cv, ce)

)
(4)

6 M. Roĺınek et al.

Algorithm 1 Forward and Backward Pass

function ForwardPass(cv, ce)
(v, e) := GraphMatching(cv, ce)

// Run the solver
save (v, e) and (cv, ce)

// Needed for backward pass
return (v, e)

function BackwardPass(∇L(v, e), λ)
load (v, e) and (cv, ce)
(cvλ, c

e
λ) := (cv, ce) + λ∇L(v, e)

// Calculate modified costs
(vλ, eλ) := GraphMatching(cvλ, c

e
λ)

// One more call to the solver
return 1

λ

(
vλ − v, eλ − e

)

is the piecewise constant function for which the scheme of [56] suggests

∇
(
L
(
GM(cv, ce)

))
:=

1

λ

[
GM(cvλ, c

e
λ)−GM(cv, ce)

]
, (5)

where the vectors cvλ and ceλ stand for

cvλ = cv + λ∇vL
(
GM(cv, ce)

)
and ceλ = ce + λ∇eL

(
GM(cv, ce)

)
, (6)

where ∇L = (∇vL,∇eL). The implementation is listed in Alg. 1.
In our experiments, we use the Hamming distance between the proposed

matching and the ground truth matching of vertices as a loss. In this case, L
does not depend on e and, consequently, ceλ = ce.

1

2

1
1

2

2

1

2

1
1

2

2

Fig. 3: Cycle consistency in multi-
graph matching. The partial matching
induced by light and dark green edges
prohibits including the dashed edges.

A more sophisticated variant of
graph matching involves more than two
graphs. The aim of multi-graph match-
ing is to find a matching for every pair
of graphs such that these matchings
are consistent in a global fashion (i.e.
satisfy so-called cycle consistency, see
Fig. 3) and minimize the global cost.
Although the framework of [56] is also
applicable to multi-graph matching, we
will only use it for post-processing.

3.3 Cost Margin

One disadvantage of using Hamming distance as a loss function is that it reaches
its minimum value zero even if the ground truth matching has only fraction-
ally lower cost than competing matchings. This increases sensitivity to distribu-
tion shifts and potentially harms generalization. The issue was already observed
in [42], where the method [56] was also applied. We adopt the solution proposed
in [42], namely the cost margin. In particular, during training we increase the
unary costs that correspond to the ground truth matching by α > 0, i.e.

←→
cv i,j =

{
cvi,j + α if v∗i,j = 1

cvi,j if v∗i,j = 0
for i ∈ V1 and j ∈ V2, (7)

where v∗ denotes the ground truth matching indicator vector. In all experiments,
we use α = 1.0.

Deep Graph Matching with Combinatorial Solvers 7

3.4 Solvers

Graph matching. We employ a dual block coordinate ascent solver [53] based
on a Lagrange decomposition of the original problem. In every iteration, a dual
lower bound is monotonically increased and the resulting dual costs are used to
round primal solutions using a minimum cost flow solver. We choose this solver
for its state-of-the-art performance and also because it has a highly optimized
publicly available implementation.

Multi-graph matching. We employ the solver from [52] that builds upon [53] and
extends it to include additional constraints arising from cycle consistency. Primal
solutions are rounded using a special form of permutation synchronization [41]
allowing for partial matchings.

3.5 Architecture Design

Our end-to-end trainable architecture for keypoint matching consists of three
stages. We call it BlackBox differentiation of Graph Matching solvers (BB-GM).

1. Extraction of visual features A standard CNN architecture extracts a feature
vector for each of the keypoints in the image. Additionally, a global feature
vector is extracted.

2. Geometry-aware feature refinement Keypoints are converted to a graph struc-
ture with spatial information. Then a graph neural network architecture is
applied.

3. Construction of combinatorial instance Vertex and edge similarities are com-
puted using the graph features and the global features. This determines a
graph matching instance that is passed to the solver.

The resulting matching v is compared to the ground truth matching v∗ and
their Hamming distance L(v) = v · (1− v∗) + v∗ · (1− v) is the loss function to
optimize.

While the first and the second stage (Fig. 4) are rather standard design
blocks, the third one (Fig. 5) constitutes the principal novelty. More detailed
descriptions follow.

Fig. 4: Extraction of features for a single image. Keypoint locations and VGG
features are processed by a SplineCNN and a global feature vector is produced.

8 M. Roĺınek et al.

Fig. 5: Construction of combinatorial instance for keypoint matching.

Visual Feature Extraction We closely follow previous work [23, 59, 62]
and also compute the outputs of the relu4 2 and relu5 1 operations of the
VGG16 [46] network pre-trained on ImageNet [16]. The spatially corresponding
feature vector for each keypoint is recovered via bi-linear interpolation.

An image-wide global feature vector is extracted by max-pooling the output
of the final VGG16 layer, see Fig. 4. Both the keypoint feature vectors and the
global feature vectors are normalized with respect to the L2 norm.

Geometric Feature Refinement The graph is created as a Delaunay trian-
gulation [15] of the keypoint locations. Each edge consists of a pair of directed
edges pointing in opposite directions. We deploy SplineCNN [22], an architecture
that proved successful in point-cloud processing. Its inputs are the VGG vertex
features and spatial edge attributes defined as normalized relative coordinates
of the associated vertices (called anisotropic in [23, 24]). We use two layers of
SplineCNN with max aggregations. The outputs are additively composed with
the original VGG node features to produce the refined node features. For sub-
sequent computation, we set the edge features as the differences of the refined
node features. For illustration, see Fig. 4.

Matching Instance Construction Both source and target image are passed
through the two described procedures. Their global features are concatenated to
one global feature vector g. A standard way to prepare a matching instance (the
unary costs cv) is to compute the inner product similarity (or affinity) of the
vertex features cvi,j = fvs (i) ·fvt (j), where fvs (i) is the feature vector of the vertex
i in the source graph and fvt (j) is the feature vector of the vertex j in the target
graph, possibly with a learnable vector or a matrix of coefficient as in [59].

In our case, the vector of “similarity coefficients” is produced as a weighted
inner product

cvi,j =
∑
k

fvs (i)k ak f
v
t (j)k, (8)

Deep Graph Matching with Combinatorial Solvers 9

where a is produced by a one-layer NN from the global feature vector g. This
allows for a gating-like behavior; the individual coordinates of the feature vectors
may play a different role depending on the global feature vector g. It is intended
to enable integrating various global semantic aspects such as rigidity of the
object or the viewpoint perspective. Higher order cost terms ce are calculated in
the same vein using edge features instead of vertex features with an analogous
learnable affinity layer. For an overview, see Fig. 5.

4 Experiments

We evaluate our method on the standard datasets for keypoint matching Pas-
cal VOC with Berkeley annotations [8, 20] and Willow ObjectClass [14]. Addi-
tionally, we propose a harder setup for Pascal VOC that avoids keypoint filtering
as a preprocessing step. Finally, we report our performance on a recently pub-
lished dataset SPair-71k [38]. Even though this dataset was designed for a slightly
different community, its high quality makes it very suitable also in this context.
The two new experimental setups aim to address the lack of difficult benchmarks
in this line of work.

In some cases, we report our own evaluation of DGMC [23], the strongest
competing method, which we denote by DGMC∗. We used the publicly available
implementation [24].

Runtime All experiments were run on a single Tesla-V100 GPU. Due to the
efficient C++ implementation of the solver [51], the computational bottleneck of
the entire architecture is evaluating the VGG backbone. Around 30 image pairs
were processed every second.

Hyperparameters In all experiments, we use the exact same set of hyperpa-
rameters. Only the number of training steps is dataset-dependent. The optimizer
in use is Adam [31] with an initial learning rate of 2× 10−3 which is halved four
times in regular intervals. Learning rate for finetuning the VGG weights is mul-
tiplied with 10−2. We process batches of 8 image pairs and the hyperparameter
λ from (2) is consistently set to 80.0. For remaining implementation details, the
full code base will be made available.

Image Pair Sampling and Keypoint Filtering The standard benchmark
datasets provide images with annotated keypoints but do not define pairings of
images or which keypoints should be kept for the matching instance. While it
is the designer’s choice how this is handled during training it is imperative that
only one pair-sampling and keypoint filtering procedure is used at test time.
Otherwise, the change in the distribution of test pairs and the corresponding in-
stances may have unintended effects on the evaluation metric (as we demonstrate
below), and therefore hinder fair comparisons.

We briefly describe two previously used methods for creating evaluation data,
discuss their impact, and propose a third one.

10 M. Roĺınek et al.

(a) Intersection filtering (∴ ∩ ∴). Only
the keypoints visible in both images are
used (green), others are ignored (yellow,
red).

(b) Inclusion filtering (∴ ⊂ ∴). For any
source image (left), only the targets
(right) containing all the source key-
points are used.

Fig. 6: Keypoint filtering strategies. The image pair in (a) would not occur under
inclusion filtering (b) because the different perspectives lead to incomparable sets
of keypoints. Intersection filtering is unaffected by viewpoints.

Table 1: Impact of filtering strategies on test accuracy (%) for DGMC [23] on
Pascal VOC. Classes with drastic differences are highlighted.

Filter Mean

∴ ∩ ∴ 50.4 67.6 70.7 70.5 87.2 85.2 82.5 74.3 46.2 69.4 69.9 73.9 73.8 65.4 51.6 98.0 73.2 69.6 94.3 89.6 73.2± 0.5

∴ ⊂ ∴ 45.5 66.6 54.5 67.8 87.2 86.4 85.6 73.2 38.5 67.3 86.9 64.9 78.9 60.3 61.5 96.8 68.7 93.5 93.6 85.0 73.1± 0.4

Keypoint intersection (∴ ∩ ∴) Only the keypoints present in both source and
target image are preserved for the matching task. In other words, all outliers are
discarded. Clearly, any pair of images can be processed this way, see Fig. 6a.

Keypoint inclusion (∴ ⊂ ∴) Target image keypoints have to include all the source
image keypoints. The target keypoints that are not present in the source image
are then disregarded. The source image may still contain outliers. Examples in
which both target and source images contain outliers such as in Fig. 6b, will not
be present.

When keypoint inclusion filtering is used on evaluation, some image pairs
are discarded, which introduces some biases. In particular, pairs of images seen
from different viewpoints become underrepresented, as such pairs often have
uncomparable sets of visible keypoints, see Fig. 6. Another effect is a bias towards
a higher number of keypoints in a matching instance which makes the matching
task more difficult. While the effect on mean accuracy is not strong, Tab. 1 shows
large differences in individual classes.

Another unsatisfactory aspect of both methods is that label information is
required at evaluation time, rendering the setting quite unrealistic. For this rea-
son, we propose to evaluate without any keypoint removal.

Unfiltered keypoints (∴ ∪ ∴) For a given pair of images, the keypoints are used
without any filtering. Matching instances may contain a different number of
source and target vertices, as well as outliers in both images. This is the most
general setup.

Deep Graph Matching with Combinatorial Solvers 11

Table 2: Keypoint matching accuracy (%) on Pascal VOC using standard inter-
section filtering (∴ ∩ ∴). For GMN [62] we report the improved results from [59]
denoted as GMN-PL. DGMC* is [23] reproduced using ∴ ∩ ∴. For DGMC* and
BB-GM we report the mean over 5 restarts.

Method Mean

GMN-PL 31.1 46.2 58.2 45.9 70.6 76.5 61.2 61.7 35.5 53.7 58.9 57.5 56.9 49.3 34.1 77.5 57.1 53.6 83.2 88.6 57.9

PCA-GM [59] 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 66.5 63.6 61.3 58.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8

NGM+ [60] 50.8 64.5 59.5 57.6 79.4 76.9 74.4 69.9 41.5 62.3 68.5 62.2 62.4 64.7 47.8 78.7 66.0 63.3 81.4 89.6 66.1

GLMNet [27] 52.0 67.3 63.2 57.4 80.3 74.6 70.0 72.6 38.9 66.3 77.3 65.7 67.9 64.2 44.8 86.3 69.0 61.9 79.3 91.3 67.5

CIE1-H [61] 51.2 69.2 70.1 55.0 82.8 72.8 69.0 74.2 39.6 68.8 71.8 70.0 71.8 66.8 44.8 85.2 69.9 65.4 85.2 92.4 68.9

DGMC∗ [23] 50.4 67.6 70.7 70.5 87.2 85.2 82.5 74.3 46.2 69.4 69.9 73.9 73.8 65.4 51.6 98.0 73.2 69.6 94.3 89.6 73.2± 0.5

BB-GM 61.5 75.0 78.1 80.0 87.4 93.0 89.1 80.2 58.1 77.6 76.5 79.3 78.6 78.8 66.7 97.4 76.4 77.5 97.7 94.4 80.1± 0.6

Table 3: F1 score (%) for Pascal VOC keypoint matching without filtering
(∴ ∪ ∴). As a reference we report an ablation of our method where the solver
is forced to match all source keypoints, denoted as BB-GM-Max. BB-GM-Multi
refers to using the multi-graph matching solver with cycle consistency [52] with
sets of 5 images at evaluation. The reported statistics are over 10 restarts. The
last row displays the percentage of unmatched keypoints in the test-set pairs.

Method Mean

BB-GM-Max 35.5 68.6 46.7 36.1 85.4 58.1 25.6 51.7 27.3 51.0 46.0 46.7 48.9 58.9 29.6 93.6 42.6 35.3 70.7 79.5 51.9± 1.0

BB-GM 42.7 70.9 57.5 46.6 85.8 64.1 51.0 63.8 42.4 63.7 47.9 61.5 63.4 69.0 46.1 94.2 57.4 39.0 78.0 82.7 61.4± 0.5

BB-GM-Multi 43.4 70.5 61.9 46.8 84.9 65.3 54.2 66.9 44.9 67.5 50.8 66.8 63.3 71.0 46.1 96.1 56.5 41.3 73.4 83.4 62.8± 0.5

Unmatched (%) 22.7 4.9 30.6 29.1 2.7 23.8 40.8 26.4 17.3 25.1 21.2 27.4 26.8 16.6 22.1 6.7 36.7 27.5 31.7 14.0 22.7

4.1 Pascal VOC

The Pascal VOC [20] dataset with Berkeley annotations [8] contains images
with bounding boxes surrounding objects of 20 classes. We follow the standard
data preparation procedure of [59]. Each object is cropped to its bounding box
and scaled to 256 × 256 px. The resulting images contain up to 23 annotated
keypoints, depending on the object category.

The results under the most common experimental conditions (∴ ∩ ∴) are re-
ported in Tab. 2 and we can see that BB-GM outperforms competing approaches.

All keypoints We propose, see Sec. 4, to preserve all keypoints (∴ ∪ ∴). Match-
ing accuracy is no longer a good evaluation metric as it ignores false positives.
Instead, we report F1-Score, the harmonic mean of precision and recall.

Since the underlying solver used by our method also works for partial match-
ings, our architecture is applicable out of the box. Competing architectures rely
on either the Sinkhorn normalization or a softmax and as such, they are hard-
wired to produce maximal matchings and do not offer a simple adjustment to
the unfiltered setup. To simulate the negative impact of maximal matchings we
provide an ablation of BB-GM where we modify the solver to output maximal
matchings. This is denoted by BB-GM-Max.

12 M. Roĺınek et al.

In addition, we report the scores obtained by running the multi-graph match-
ing solver [52] as post-processing. Instead of sampling pairs of images, we sample
sets of 5 images and recover from the architecture the costs of the

(
5
2

)
= 10

matching instances. The multi-graph matching solver then searches for globally
optimal set of consistent matchings. The results are provided in Tab. 3.

Note that sampling sets of 5 images instead of image pairs does not interfere
with the statistics of the test set. The results are therefore comparable.

4.2 Willow ObjectClass

The Willow ObjectClass dataset contains a total of 256 images from 5 categories.
Each category is represented by at least 40 images, all of them with consistent
orientation. Each image is annotated with the same 10 distinctive category-
specific keypoints, which means there is no difference between the described
keypoint filtering methods. Following standard procedure, we crop the images
to the bounding boxes of the objects and rescale to 256× 256 px.

Multiple training strategies have been used in prior work. Some authors de-
cide to train only on the relatively small Willow dataset, or pretrain on Pas-
cal VOC and fine-tune on Willow afterward [59]. Another approach is to pre-
train on Pascal VOC and evaluate on Willow without fine-tuning, to test the
transfer-ability [60]. We report results for all different variants, following the
standard procedure of using 20 images per class when training on Willow and
excluding the classes car and motorbike from Pascal VOC when pre-training, as
these images overlap with the Willow dataset. We also evaluated the strongest
competing approach DGMC [23] under all settings.

The results are shown in Tab. 4. While our method achieves good perfor-
mance, we are reluctant to claim superiority over prior work. The small dataset
size, the multitude of training setups, and high standard deviations all prevent
statistically significant comparisons.

4.3 SPair-71k

We also report performance on SPair-71k [38], a dataset recently published in
the context of dense image matching. It contains 70, 958 image pairs prepared
from Pascal VOC 2012 and Pascal 3D+. It has several advantages over the
Pascal VOC dataset, namely higher image quality, richer keypoint annotations,
difficulty annotation of image-pairs, as well as the removal of the ambiguous and
poorly annotated sofas and dining tables.

Again, we evaluated DGMC [23] as the strongest competitor of our method.
The results are reported in Tab. 5 and Tab. 6. We consistently improve upon
the baseline, particularly on pairs of images seen from very different viewpoints.
This highlights the ability of our method to resolve instances with conflicting
evidence. Some example matchings are presented in Fig. 1 and Fig. 7.

Deep Graph Matching with Combinatorial Solvers 13

Table 4: Keypoint matching accuracy (%) on Willow ObjectClass. The columns
Pt and Wt indicate training on Pascal VOC and Willow, respectively. Com-
parisons should be made only within the same training setting. For HARG-
SSVM [14] we report the comparable figures from [59]. Twenty restarts were
carried out.

Method Pt Wt face motorbike car duck bottle

HARG-SSVM [59] x X 91.2 44.4 58.4 55.2 66.6

GMN-PL [59, 62]
X x 98.1 65.0 72.9 74.3 70.5
X X 99.3 71.4 74.3 82.8 76.7

PCA-GM [59]
X x 100.0 69.8 78.6 82.4 95.1
X X 100.0 76.7 84.0 93.5 96.9

CIE [61]
X x 99.9 71.5 75.4 73.2 97.6
X X 100.0 90.0 82.2 81.2 97.6

NGM [60] x X 99.2 82.1 84.1 77.4 93.5

GLMNet [27] X X 100.0 89.7 93.6 85.4 93.4

DGMC* [23]
X x 98.6± 1.1 69.8± 5.0 84.6± 5.2 76.8± 4.3 90.7± 2.4
x X 100.0± 0.0 98.5± 1.5 98.3± 1.2 90.2± 3.6 98.1± 0.9
X X 100.0± 0.0 98.8± 1.6 96.5± 1.6 93.2± 3.8 99.9± 0.3

BB-GM
X x 100.0± 0.0 95.8± 1.4 89.1± 1.7 89.8± 1.7 97.9± 0.7
x X 100.0± 0.0 99.2± 0.4 96.9± 0.6 89.0± 1.0 98.8± 0.6
X X 100.0± 0.0 98.9± 0.5 95.7± 1.5 93.1± 1.5 99.1± 0.4

Table 5: Keypoint matching accuracy (%) on SPair-71k grouped by levels of
difficulty in the viewpoint of the matching-pair. Statistics is over 5 restarts.

Method
Viewpoint difficulty

All
easy medium hard

DGMC* 79.4± 0.2 65.2± 0.2 61.3± 0.5 72.2± 0.2
BB-GM 84.8± 0.1 73.1± 0.2 70.6± 0.9 78.9± 0.4

4.4 Ablations Studies

To isolate the impact of single components of our architecture, we conduct var-
ious ablation studies as detailed in the supplementary material. The results on
Pascal VOC are summarized in Tab. S1.

5 Conclusion

We have demonstrated that deep learning architectures that integrate combina-
torial graph matching solvers perform well on deep graph matching benchmarks.

Opportunities for future work now fall into multiple categories. For one, it
should be tested whether such architectures can be useful outside the designated

14 M. Roĺınek et al.

Table 6: Keypoint matching accuracy (%) on SPair-71k for all classes.

Method Mean

DGMC* 54.8 44.8 80.3 70.9 65.5 90.1 78.5 66.7 66.4 73.2 66.2 66.5 65.7 59.1 98.7 68.5 84.9 98.0 72.2± 0.2

BB-GM 66.9 57.7 85.8 78.5 66.9 95.4 86.1 74.6 68.3 78.9 73.0 67.5 79.3 73.0 99.1 74.8 95.0 98.6 78.9± 0.4

playground for deep graph matching methods. If more progress is needed, two
major directions lend themselves: (i) improving the neural network architecture
even further so that input costs to the matching problem become more dis-
criminative and (ii) employing better solvers that improve in terms of obtained
solution quality and ability to handle a more complicated and expressive cost
structure (e.g. hypergraph matching solvers).

Finally, the potential of building architectures around solvers for other com-
puter vision related combinatorial problems such as multicut or max-cut can
be explored.

Fig. 7: Example matchings from the SPair-71k dataset.

Bibliography

[1] Adams, R.P., Zemel, R.S.: Ranking via sinkhorn propagation (2011)
[2] Alhaija, H.A., Sellent, A., Kondermann, D., Rother, C.: Graphflow–6d large

displacement scene flow via graph matching. In: German Conference on
Pattern Recognition. pp. 285–296. Springer (2015)

[3] Amos, B., Kolter, J.Z.: Optnet: Differentiable optimization as a layer in
neural networks. In: International Conference on Machine Learning. pp.
136–145. ICML’17 (2017)

[4] Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A
database and evaluation methodology for optical flow. International Journal
of Computer Vision 92(1), 1–31 (2011)

[5] Balcan, M., Dick, T., Sandholm, T., Vitercik, E.: Learning to branch. In: In-
ternational Conference on Machine Learning. pp. 353–362. ICML’18 (2018)

[6] Battaglia, P., Hamrick, J.B.C., Bapst, V., Sanchez, A., Zambaldi, V., Ma-
linowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gul-
cehre, C., Song, F., Ballard, A., Gilmer, J., Dahl, G.E., Vaswani, A., Allen,
K., Nash, C., Langston, V.J., Dyer, C., Heess, N., Wierstra, D., Kohli, P.,
Botvinick, M., Vinyals, O., Li, Y., Pascanu, R.: Relational inductive biases,
deep learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018)

[7] Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial
optimization with reinforcement learning. In: International Conference on
Learning Representations, Workshop Track. ICLR’17 (2017)

[8] Bourdev, L., Malik, J.: Poselets: Body part detectors trained using 3d hu-
man pose annotations. In: IEEE International Conference on Computer
Vision. pp. 1365–1372. ICCV’09 (2009)

[9] Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society
for Industrial and Applied Mathematics, USA (2009)

[10] Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB–a quadratic assignment
problem library. Journal of Global optimization 10(4), 391–403 (1997)

[11] Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose es-
timation using part affinity fields. In: IEEE Conference on Computer Vision
and Pattern Recognition. CVPR’17 (2017)

[12] Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: IEEE
Conference on Computer Vision and Pattern Recognition. pp. 5410–5418.
CVPR’18 (2018)

[13] Chen, H.T., Lin, H.H., Liu, T.L.: Multi-object tracking using dynamical
graph matching. In: Proceedings of the 2001 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition. CVPR 2001. vol. 2,
pp. II–II. IEEE (2001)

[14] Cho, M., Alahari, K., Ponce, J.: Learning graphs to match. In: IEEE Inter-
national Conference on Computer Vision. ICCV’13 (2013)

[15] Delaunay, B.: Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matem-
aticheskii i Estestvennyka Nauk 7, 793–800 (1934)

16 M. Roĺınek et al.

[16] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A
large-scale hierarchical image database. In: IEEE Conference on Computer
Vision and Pattern Recognition. pp. 248–255. CVPR’09 (2009)

[17] Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.M.:
Learning heuristics for the tsp by policy gradient. In: Intl. Conf. on Inte-
gration of Constraint Programming, Artificial Intelligence, and Operations
Research. pp. 170–181. Springer (2018)

[18] Duchenne, O., Joulin, A., Ponce, J.: A graph-matching kernel for object
categorization. In: 2011 International Conference on Computer Vision. pp.
1792–1799. IEEE (2011)

[19] Elmsallati, A., Clark, C., Kalita, J.: Global alignment of protein-protein
interaction networks: A survey. IEEE/ACM Trans. Comput. Biol. Bioinfor-
matics 13(4), 689–705 (2016)

[20] Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The
pascal visual object classes (voc) challenge. International Journal of Com-
puter Vision 88(2), 303–338 (2010)

[21] Ferber, A., Wilder, B., Dilkina, B., Tambe, M.: Mipaal: Mixed integer pro-
gram as a layer. arXiv preprint arXiv:1907.05912 (2019)

[22] Fey, M., Eric Lenssen, J., Weichert, F., Müller, H.: Splinecnn: Fast geometric
deep learning with continuous b-spline kernels. In: IEEE Conference on
Computer Vision and Pattern Recognition. pp. 869–877. CVPR’18 (2018)

[23] Fey, M., Lenssen, J.E., Morris, C., Masci, J., Kriege, N.M.: Deep graph
matching consensus. In: International Conference on Learning Representa-
tions. ICLR’20 (2020)

[24] Fey, M., Lenssen, J.E., Morris, C., Masci, J., Kriege, N.M.:
Deep graph matching consensus. https://github.com/rusty1s/

deep-graph-matching-consensus (2020), commit: be1c4c
[25] Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinato-

rial optimization with graph convolutional neural networks. In: Advances in
Neural Information Processing Systems. pp. 15554–15566. NIPS’19 (2019)

[26] Grohe, M., Rattan, G., Woeginger, G.J.: Graph Similarity and Approximate
Isomorphism. In: 43rd International Symposium on Mathematical Founda-
tions of Computer Science (MFCS 2018). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 117, pp. 20:1–20:16 (2018)

[27] Jiang, B., Sun, P., Tang, J., Luo, B.: Glmnet: Graph learning-matching
networks for feature matching. arXiv preprint arXiv:1911.07681 (2019)

[28] Kainmueller, D., Jug, F., Rother, C., Myers, G.: Active graph matching
for automatic joint segmentation and annotation of c. elegans. In: Medical
Image Computing and Computer-Assisted Intervention. pp. 81–88. MIC-
CAI’14 (2014)

[29] Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial
optimization algorithms over graphs. In: Advances in Neural Information
Processing Systems. pp. 6348–6358. NIPS’17 (2017)

[30] Khalil, E.B., Bodic, P.L., Song, L., Nemhauser, G., Dilkina, B.: Learning to
branch in mixed integer programming. In: AAAI Conference on Artificial
Intelligence. pp. 724–731. AAAI’16 (2016)

https://github.com/rusty1s/deep-graph-matching-consensus
https://github.com/rusty1s/deep-graph-matching-consensus

Deep Graph Matching with Combinatorial Solvers 17

[31] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In:
International Conference on Learning Representations. ICLR’14 (2014)

[32] Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing prob-
lems! In: International Conference on Learning Representations. ICLR’19
(2019)

[33] Lawler, E.L.: The quadratic assignment problem. Management science 9(4),
586–599 (1963)

[34] Li, Y., Zemel, R., Brockschmidt, M., Tarlow, D.: Gated graph sequence
neural networks. In: International Conference on Learning Representations.
ICLR’16 (2016)

[35] Liu, L., Cheung, W.K., Li, X., Liao, L.: Aligning users across social networks
using network embedding. In: International Joint Conference on Artificial
Intelligence. pp. 1774–1780. IJCAI’16 (2016)

[36] Luo, W., Schwing, A.G., Urtasun, R.: Efficient deep learning for stereo
matching. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion. pp. 5695–5703. CVPR’16 (2016)

[37] Mandi, J., Demirovic, E., Stuckey, P.J., Guns, T.: Smart predict-and-
optimize for hard combinatorial optimization problems. arXiv preprint
arXiv:1911.10092 (2019)

[38] Min, J., Lee, J., Ponce, J., Cho, M.: SPair-71k: A Large-scale Benchmark
for Semantic Correspondance. arXiv preprint arXiv:1908.10543 (2019)

[39] Nam, H., Han, B.: Learning multi-domain convolutional neural networks
for visual tracking. arXiv preprint arXiv:1510.07945 (2015)

[40] Niculae, V., Martins, A., Blondel, M., Cardie, C.: SparseMAP: Differen-
tiable sparse structured inference. In: International Conference on Machine
Learning. pp. 3799–3808. ICML’18 (2018)

[41] Pachauri, D., Kondor, R., Singh, V.: Solving the multi-way matching prob-
lem by permutation synchronization. In: Advances in Neural Information
Processing Systems. pp. 1860–1868. NIPS’13 (2013)

[42] Roĺınek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., Mar-
tius, G.: Optimizing ranking-based metrics with blackbox differentiation.
In: Conference on Computer Vision and Pattern Recognition. pp. 7620-
7630. CVPR’20 (2020)

[43] Sahillioğlu, Y.: Recent advances in shape correspondence. The Visual Com-
puter pp. 1–17 (2019)

[44] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The
graph neural network model. Trans. Neur. Netw. 20(1), 61–80 (2009)

[45] Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for
face recognition and clustering. In: IEEE Conference on Computer Vision
and Pattern Recognition. pp. 815–823. CVPR’15 (2015)

[46] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

[47] Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly
stochastic matrices. Pacific Journal of Mathematics 21 (05 1967)

[48] Storvik, G., Dahl, G.: Lagrangian-based methods for finding map solu-
tions for mrf models. IEEE Transactions on Image Processing 9(3), 469–479
(2000)

18 M. Roĺınek et al.

[49] Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices
in optical flow estimation and the principles behind them. International
Journal of Computer Vision 106(2), 115–137 (2014)

[50] Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In: IEEE Conference on Computer
Vision and Pattern Recognition. CVPR’18 (June 2018)

[51] Swoboda, P., Kuske, J., Savchynskyy, B.: A dual ascent framework for la-
grangean decomposition of combinatorial problems. In: IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1596–1606. CVPR’17
(2017)

[52] Swoboda, P., Mokarian, A., Theobalt, C., Bernard, F., et al.: A convex
relaxation for multi-graph matching. In: IEEE Conference on Computer
Vision and Pattern Recognition. pp. 11156–11165. CVPR’19 (2019)

[53] Swoboda, P., Rother, C., Alhaija, H.A., Kainmüller, D., Savchynskyy, B.:
A study of lagrangean decompositions and dual ascent solvers for graph
matching. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion. pp. 7062–7071. CVPR’16 (2016)

[54] Torresani, L., Kolmogorov, V., Rother, C.: A dual decomposition approach
to feature correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 35(2),
259–271 (2013)

[55] Ufer, N., Ommer, B.: Deep semantic feature matching. In: IEEE Conference
on Computer Vision and Pattern Recognition. pp. 6914–6923. CVPR’17
(2017)

[56] Vlastelica, M., Paulus, A., Musil, V., Martius, G., Roĺınek, M.: Differen-
tiation of blackbox combinatorial solvers. In: International Conference on
Learning Representations. ICLR’20 (2020)

[57] Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convo-
lutional networks. In: IEEE International Conference on Computer Vision.
pp. 3119–3127. ICCV’15 (2015)

[58] Wang, P.W., Donti, P., Wilder, B., Kolter, Z.: Satnet: Bridging deep learn-
ing and logical reasoning using a differentiable satisfiability solver. In: In-
ternational Conference on Machine Learning. pp. 6545–6554 (2019)

[59] Wang, R., Yan, J., Yang, X.: Learning combinatorial embedding networks
for deep graph matching. In: IEEE International Conference on Computer
Vision. pp. 3056–3065. ICCV’19 (2019)

[60] Wang, R., Yan, J., Yang, X.: Neural graph matching network: Learning
lawler’s quadratic assignment problem with extension to hypergraph and
multiple-graph matching. arXiv preprint arXiv:1911.11308 (2019)

[61] Yu, T., Wang, R., Yan, J., Li, B.: Learning deep graph matching with
channel-independent embedding and hungarian attention. In: International
Conference on Learning Representations. ICLR’20 (2020)

[62] Zanfir, A., Sminchisescu, C.: Deep learning of graph matching. In: Con-
ference on Computer Vision and Pattern Recognition. pp. 2684–2693.
CVPR’18 (2018)

[63] Zhang, Y., Hare, J., Prügel-Bennett, A.: Learning representations of sets
through optimized permutations. arXiv preprint arXiv:1812.03928 (2018)

Deep Graph Matching with Combinatorial Solvers 19

[64] Zhang, Z., Lee, W.S.: Deep graphical feature learning for the feature
matching problem. In: IEEE International Conference on Computer Vision.
ICCV’19 (2019)

[65] Zhang, Z., Shi, Q., McAuley, J., Wei, W., Zhang, Y., van den Hengel,
A.: Pairwise matching through max-weight bipartite belief propagation. In:
IEEE Conference on Computer Vision and Pattern Recognition. CVPR’16
(2016)

[66] Zhou, F., la Torre, F.D.: Factorized graph matching. In: IEEE Conference on
Computer Vision and Pattern Recognition. pp. 127–134. CVPR’12 (2012)

	Deep Graph Matching via Blackbox Differentiation of Combinatorial Solvers

