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Abstract. Connectionist Temporal Classification (CTC) is a training
criterion designed for sequence labelling problems where the alignment
between the inputs and the target labels is unknown. One of the key
steps is to add a blank symbol to the target vocabulary. However, CTC
tends to output spiky distributions since it prefers to output blank sym-
bol most of the time. These spiky distributions show inferior alignments
and the non-blank symbols are not learned sufficiently. To remedy this,
we propose variational CTC (Var-CTC) to enhance the learning of non-
blank symbols. The proposed Var-CTC converts the output distribution
of vanilla CTC with hierarchy distribution. It first learns the approxi-
mated posterior distribution of blank to determine whether to output a
specific non-blank symbol or not. Then it learns the alignment between
non-blank symbols and input sequence. Experiments on scene text recog-
nition and offline handwritten text recognition show Var-CTC achieves
better alignments. Besides, with the enhanced learning of non-blank sym-
bols, the confidence scores of model outputs are more discriminative.
Compared with the vanilla CTC, the proposed Var-CTC can improve
the recall performance by a large margin when the models maintain the
same level of precision.

Keywords: Connectionist Temporal Classification, Scene text recogni-
tion, Handwritten text recognition

1 Introduction

Connectionist Temporal Classification (CTC) [4] is a training criterion designed
for sequence labelling problems where the alignments between the inputs and the
target labels are unknown. It has gained widespread traction from its successful
use in tasks such as speech recognition [5, 7, 24], text recognition [6, 30], sign
language recognition [2], video segmentation [13] and so on. It is proven to be
effective in sequence recognition tasks.

CTC works by adding an extra blank symbol to target vocabulary and max-
imizing the probabilities of all possible alignments. The added blank symbol
represents outputting either a specific non-blank symbol or not. With the added
blank symbol, the outputs over all timesteps are aligned to multiple paths, which
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consists of labels and blanks. The CTC-based training is then to sum up proba-
bilities of all the corresponding paths and maximize them. However, the distri-
bution of blank and non-blank symbols in the training data is unbalanced. This
is because: 1) blank is almost added into every training data to make paths; 2)
compared with the non-blank, the positions of blanks in paths are more flexible,
which leads to more blanks are added. The unbalanced distribution leads to the
model prefers output blank most of the time, which is known as the CTC spiky
distribution problem [4, 24, 28]. As shown in Fig. 1, the outputs of the charac-
ters in label sequence only exist in only a few timesteps. The spiky distributions
show inferior alignments [28]. The learning of non-blank symbols is not sufficient,
which is suppressed by the added blank.

In this paper, we try to enhance the learning of non-blank symbols by propos-
ing the variational CTC (Var-CTC). The Var-CTC approximates the posterior
distribution of blank using a learned inference network. It is fit with variational
inference [16] technique to improve the training bound. In the proposed Var-
CTC, the influence of the unbalanced distribution for non-blank symbols is re-
lieved. This is because the distributions of blank and non-blank symbols are not
belonging to the same one. Var-CTC first learns the approximated posterior dis-
tribution of blank to determine whether to output a label or not. Then it learns
to determine to output which label. This hierarchy output of Var-CTC is similar
to the classification branch in objection detection [26], where the first hierar-
chy determines the background and non-background category and the second
hierarchy determines the object category.

Besides, we find the confidence scores of the CTC model’s predictions in
text recognition are not discriminative enough. Confidence scores are important
for practical use, as we want the model’s predictions can achieve the desired
precision and recall at the same time. Having a reliable confidence score is crucial
for real world applications of OCR. As far as we know, the confidence score based
evaluation has never been compared. In this paper, we add the confidence score
based evaluation for model comparisons. We find the proposed Var-CTC can
improve the Precision-Recall performance significantly.

The main contributions of this paper can be summarized as follows: (1) Vari-
ational inference for CTC is first introduced, which converts output distribution
of vanilla CTC with hierarchy distribution; (2) The confidence scores of CTC
based models on text recognition are analyzed. We show why the confidence
score is not discriminative enough by case study and Precision-Recall curve; (3)
With the enhanced learning of non-blank symbols, the proposed Var-CTC can
improve the recall by a large margin while maintain the same level precision.

2 Related Work

CTC has been explored extensively in sequence recognition tasks, like text recog-
nition [6, 30], speech recognition [4, 5, 7] and so on. A relevant and recent work to
ours is the EnEs-CTC [20]. EnEs-CTC proposes a maximum conditional entropy
based regularization method to penalize spiky distributions. The penalization
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Fig. 1: (Better viewed in color). Visualization of the output distributions for
CTC (left) and Var-CTC (right). For Var-CTC, we visualize two distributions,
where the bottom one denotes P (classes|blank, img)∗P (blank|img) and the top
one denotes P (classes|img). The classes in this case represents the characters
in label sequence “MEADOWS”.

operation enables the model to explore more paths for the sequence alignments,
which improves the learning of the non-blank symbols. In contrast to them, our
work improves the learning of non-blank symbols by changing the output distri-
bution to hierarchy distribution. The hierarchy distribution relieves the influence
of the unbalance problem, which is more thoroughly.

For large scale speech recognition, [32] introduces and evaluates Sampled
CTC to speed up CTC training. Two sampling methods are proposed to sample
the blank outputs, which are heuristic. Once the blank is sampled, the other pa-
rameters can be optimized by minimizing cross entropy objective. Our proposed
Var-CTC can also sample the blank output. While the sampling procedure is
guided by the approximated posterior distribution, which is end-to-end learn-
able. GTC [12] tries to learn better alignment with an attention decoder as
a guidance for CTC training while this paper focuses on the underfitting for
non-blanks in vanilla CTC.

Besides, [3] modifies the CTC by fusing focal loss with it and thus makes
the model to attend to the low-frequent samples at training stage. The proposed
method tries to solve the class unbalance problem of Chinese optical character
recognition. Compared to them, our work try to solve the unbalance problem
between blank and non-blank symbols rather then unbalance among non-blank
symbols. For weakly-supervised action labelling in video, [13] introduces the
extended CTC framework to enforce the consistency of all possible paths with
frame to frame visual similarities. However, computing the visual similarities
between consecutive frames is expensive.

Meanwhile, CTC based model for scene text recognition has achieved relative
high recognition accuracy on several benchmark datasets. These models are often
evaluated by sequence accuracy [30, 20]. The confidence score is important but
never analyzed. In this paper, we add the confidence score based performance
as an evaluation criterion.

2.1 Methodology

Before proceeding, we define our mathematical notations. The input feature
sequence is represented as X = {x1, x2, x3, ..., xT }, where T is the sequence
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Fig. 2: The probabilistic graphical model of our proposed method. Dotted lines
represent the calculation of the approximate posterior distribution. X and Y
represent feature sequence and label sequence respectively.Ob represents whether
to output a label or not at each timestep. p(Oc|X) represents the categorical
distribution for elements in label sequence Y , which does not contain blank.

length, and xi is a vector representation in Rd. The target label sequence is
represented as Y = {y1, y2, ..., yTy}. T y represents the length of target label
sequence, which is no greater than T . The elements of label sequence come from
the target vocabulary A. The blank symbol is represented as “−”. The extended
vocabulary A∪{−} is represented as A∗. The model output is represented as O
and it contains blank output sequence Ob and non-blank output sequence Oc. o

t

represents the output at timestep t.

2.2 Connectionist Temporal Classification

Given feature sequence X and label sequence Y , CTC learns the alignment
without employing the frame level alignment information. The blank symbol
“−” is added to the target label vocabulary for two reasons. Firstly, it separates
the repeated label in the label sequence. Secondly, it is used as label for unlabeled
data. At every timestep, the softmax function normalizes the outputs to get the
distribution from xt to A∗.

The complete sequence of outputs is then used to define a distribution over
all possible alignments, where each possible alignment is named as a path π. The
path π is composed by labels in Y and blanks. Assuming the outputs at each
timestep to be independent of those at other timesteps, the probability of one
particular path π can be calculated as:

p(π|X) =

T∏
t=1

p(otπt |xt). (1)

where πt represents the label at the timestep t for path π. CTC then defines a
many-to-one mapping function F . The mapping function F maps the paths to
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the label sequence by first merging the consecutive same labels into one and then
discards the blanks. For example F (a,−, a, b,−) = F (a, a,−, a, b) = aab. The
probability of label Y can be calculated as an aggregation of the probabilities of
all possible CTC paths:

p(Y |X) =
∑

π∈F−1(Y )

p(π|X). (2)

For CTC based models, the CTC is usually applied on the top of bidirectional
recurrent neural networks (RNNs)[29] with Long Short Term Memory (LSTM)
cells [11]. The RNNs can be trained to maximize the following objective function:

L(Y ) = log p(Y |X). (3)

Unbalanced distribution between blank and non-blanks. Based on
the mapping function F , blanks are inserted to label sequence to make paths.
Blank can exist in almost every training data as long as the sequence length T is
greater than label length T y. Besides, the positions of blanks in paths are more
flexible compared to non-blank symbols, which makes the unbalanced problem
worse. The unbalanced distribution between blank and non-blank symbols leads
to the non-blank symbols are not aligned to the input feature sequence suffi-
ciently. This also means the model is underfitting the non-blanks.

2.3 Variational Connectionist Temporal Classification

As the unbalanced distribution between blank and non-blank symbols in CTC
is inevitable, computing the distributions of blank and non-blank symbols sepa-
rately may reduce the influence. So we propose to change the unified distribution
to hierarchy distribution. Specifically, we put forward the following objective:

L(Y ) = log p(Y |X) = log
∑
Ob

p(Ob|X)p(Y |Ob, X). (4)

The Eq 4 shows the model first determines the blank, then outputs the non-
blanks. The blank outputs determine the alignment paths between label and
input sequence, which is vital for the unsupervised alignments. Given the poste-
rior distribution of blank (p(Ob|X,Y )), the model should learn the alignment for
non-blanks better. Thus, we propose to approximate the posterior of blank in-
stead of learning the likelihood (p(Ob|X)). With the help of variational inference
optimization strategy, we try to optimize the evidence lower bound (ELBO)[16]
of L(Y ). In this paper, we define the ELBO as the Var-CTC loss. It is defined
as:

Lvar−ctc(Y ) = Eqψ(Ob|X,Y )[log p(Y |Ob, X)]−KL(qψ(Ob|X,Y )||pβ(Ob|X)).
(5)

It is composed of three different terms, likelihood p(Y |Ob, X), prior pβ(Ob|X)
and posterior qψ(Ob|X,Y ). These three terms can be parameterized by three
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different layers, like multilayer perceptrons (MLPs) and RNN. Fig. 2 shows the
schematic diagram of the Var-CTC based model. For parameter efficiency, we
utilize the MLP to represent the posterior and prior distributions in this paper.
These three terms are described below:

Likelihood. Given the approximate posterior for blanks, the likelihood ag-
gregates the probabilities of all possible paths. Different with the vanilla CTC,
at each timestep, the categorical distribution form xt to A∗ is calculated as:

p(ot|otb, xt) =

{
qψ(otb|xt, Y ), if ot =“–”,

p(otc|xt) · (1− qψ(otb|xt, Y )), otherwise,
(6)

where p(otc|xt) = softmax(xtWc) is the class distribution over all non-blank
symbols in the vocabulary. Wc ∈ Rd×|A| is the matrix parameter.

Once we get the output possibilities at each timestep, the function F maps
the paths to sequence output like CTC. During inference time when the label
sequence is not available, the prior term is used to replace posterior approximator
to output the blank distribution.

Prior. The prior pβ(Ob|X) is formulated as a sequence of Bernoulli distri-
butions. Given feature sequence, it computes the distribution of blank at all the
timesteps. For efficiency, we directly convert the feature at every timestep to
distributions with one feed-forward layer. It is computed as follows:

pβ(otb|xt;β) = σ(xtwp), (7)

where σ(·) is the sigmoid function with wp ∈ Rd being vector parameter.
Approximate posterior. The posterior distribution qψ(Ob|X,Y ) follows

the similar architecture as the prior. The main difference lies in the fact that
posterior approximator is aware of the label sequence Y , therefore outputting
more accurate distributions. In order to incorporate the label sequence, we embed
each symbol in vocabulary to a random initialized vector. These embeddings are
learned with other parameters in the network together. For a particular label
sequence, we get the label representation Ȳ by mean pooling operation on time
axis. The posterior is then computed as follows:

qψ(otb|xt, Y ;ψ) = σ((f(xt) ◦ Ȳ )wa), (8)

where function f is one feed-forward layer and it converts dimension of xt to
the same dimension of Ȳ . The ◦ denotes the Hadamard product. wa ∈ Rd is the
vector parameter.

Optimization. The loss function has two terms, which can be optimized
jointly. The first term in Eq 5 is motivated to get the target label based on
blank distribution. Optimizing this term can also help the approximate pos-
terior to obtain accurate blank output distribution. The second term is the
KL-divergence between the prior distribution and the approximated posterior
distribution, which is motivated to push the prior distribution towards the pos-
terior distribution. The values of qψ(Ob|X,Y ) can be directly utilized to compute
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p(Y |Ob, X) based on the forward-backward algorithm[4] and the mapping func-
tion F in vanilla CTC. Thus, the distributions qψ(Ob|X,Y ) and p(Y |Ob, X) in
the first term can be optimized based on the forward-backward algorithm like
the vanilla CTC loss. The second term is the KL divergence between two dis-
tributions. The gradients of the second term can also be calculated analytically.
So the loss can be optimized with any gradient based optimization algorithm.

TheOb can also be modeled as discrete values similar to the Sampled CTC[32].
It means their values are sampled binary values based on qψ. In this way, as Ob
is not differentiable with respect to qψ, the REINFORCE algorithm[33] can be
used to tackle this problem. One advantage of this modeling way is it can speed
up the training process since the forward-backward algorithm is not needed. The
disadvantage is that variance reduction technique for the REINFORCE based
optimization should be considered. We leave this line for future work.

Complexity Analysis. The time complexity of CTC and Var-CTC forward-
backward dynamic programming is O(T ). Compared to CTC, the mainly added
computation is the posterior distribution, which is also O(T ). Since the forward
and backward variable are kept for gradient computing, the space complexity of
CTC and Var-CTC is O(TT y).

3 Experimental Results

In our experiments, two tasks are employed to evaluate the effectiveness of
Var-CTC, including handwritten text recognition and scene text recognition.
Besides, we also try to directly maximize the marginal likelihood p(Y |X) =∑
Ob
p(Ob|X)p(Y |Ob, X) using only the prior and likelihood model following [8],

which enables us to understand the superiority of introducing an approximate
posterior. We call this objective as Mml-CTC.

3.1 Scene Text Recognition

Convolutional Recurrent Neural Network (CRNN) [30] is utilized as the feature
extraction network. We compare our method with CRNN-CTC [30] and CRNN-
EnEs-CTC[20] models. All models have the same feature extraction network.

Evaluation Metrics. There are two evaluation metrics in this experiment.
The first one is the sequence accuracy, which is in accordance with the experi-
ments setup of [30, 20]. Sequence accuracy means the percentage of test images
that are recognized totally correct.

The second one is the Precision-Recall curve. The confidence score is com-
puted based on the greedy decode method. Greedy decode is the widely used de-
code method in scene text recognition [30, 20]. It decodes the outputs by choosing
the most feasible path, which is the concatenation of the most probable labelling
for every timestep. The confidence score corresponding to this path is calculated
as:

p(π∗|x) =

T∏
i=1

max p(ot|xt). (9)
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Previous studies evaluate the model on benchmark datasets on the resized im-
ages. For example, both [30, 20] resize the test images to 100 x 32. Thus, we plot
the Precision-Recall curves based on the resized images.

Datasets. We train our models with the large scale synthetic dataset Synth90K
[14] and test on four real-world benchmark datasets following [30, 20]. Synth90K
contains 8 million training images and 1 million test images. All the images are
generated by a synthetic data engine using a 90k word dictionary. These four
real-world test datasets are ICDAR 2003 (IC03) [21], ICDAR 2013 (IC13) [17],
IIIT5kword (IIIT5K) [25] and Street View Text (SVT) [15]. IC03 test set con-
sists of 251 full scene images and 860 cropped image patches containing words.
IC13 extends IC03 and contains 1015 cropped word images from real scenes.
In the experiments, only words with alphanumeric characters and at least three
characters are considered. There are 860 and 857 test images are utilized for
IC03 and IC13 respectively. IIIT5k contains 3,000 cropped word images down-
loaded from Google Image Search. SVT contains 647 word images cropped from
249 street-view images. The images are collected from Google Street View.

In the experiment, we use the 8 million training images of Synth90K as the
training data and the 1 million test images as the validation data. The maximum
iteration step is 1,600,000, which is roughly 50 epochs. We validate the models
every 10K iterations on the validation set. The best models are picked based on
the sequence accuracy performance on the validation set.

Implementation Details. We use Tensorflow [1] to implement all the mod-
els. Our Tensorflow based implementation has two differences compared to the
implementation of [30]. The first one is the different padding way in the third and
fourth maximum pooling layers. We use the 0 x 0 padding in Tensorflow com-
pared to 0 x 1 padding in Pytorch1. The second difference is that we add dropout
[10] with probability 0.1 after convolutional layers except the first and the last
ones. Because we find dropout improves performances. In order to accelerate the
training process, all the images are resized to 100 x 32.

We take the outputs of the last BLSTM layer as feature sequence for the
input image. In Var-CTC, the dimension of label embedding is set to 50. In
order to prevent overfitting, we also add dropout with probability 0.5 for the
pooled label embedding. We use Adam [18] to train all the models with batch
size set to 256. The learning rate is fixed at 0.001 for the CTC and Mml-CTC
based models. For Var-CTC based model, we set the learning rate to 0.0005.

Comparison results. The sequence accuracy comparisons are shown in Ta-
ble 1. Compared to the CRNN-CTC model[30], our implementation shows clear
improvements on all the four datasets, which are 0.3%, 2.9%, 1.2% and 0.8%
respectively. The improvements mainly come from the added dropout operation
in our implementation. Compared to the CRNN-EnEs-CTC model, our imple-
mentation does not show advantage on sequence accuracy performance.

The comparison between CRNN-Mml-CTC and CRNN-CTC(ours) shows
that the CRNN-Mml-CTC model improves 1.9% and 0.2% on IIIT5K and SVT
respectively. And it also shows that CRNN-Mml-CTC brings down the sequence

1 Tensorflow does not support 0 x 1 padding for MaxPooling operation.
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Fig. 3: Precision-Recall curves on four real-world datasets. The red dotted line
is used to indicate the precision value equals to 98%.

accuracy with 0.7% and 0.2% on IC03 and IC13 respectively. While the CRNN-
Var-CTC achieves the best performance on IC03 dataset compared to the CTC
and Mml-CTC models, it has no advantage for the other three datasets. We
can conclude the proposed Mml-CTC objective is comparable with vanilla CTC
loss and the Var-CTC loss has slightly inferior performance when evaluating
sequence accuracy.

The Precision-Recall curves of the compared models on the four datasets
are shown in Fig. 3. The comparison results also show Mml-CTC and Var-CTC
have clear improvements compared to the vanilla CTC and Var-CTC gets the
best performances. These means the proposed Var-CTC and Mml-CTC perform

Table 1: Comparisons of SeqAcc on the
four real-world datasets.

Method IC03 IC13 IIIT5K SVT

CRNN-CTC[30] 89.4 86.7 78.2 80.8

CRNN-EnEs-CTC[20] 92.0 90.6 82.0 80.6

CRNN-CTC(ours) 89.7 89.6 79.4 81.6

CRNN-Mml-CTC 88.6 89.4 81.3 81.8

CRNN-Var-CTC 90.0 88.7 78.7 80.8

Table 2: Comparisons of recall perfor-
mances when all the models maintain
98% precision on the four real-world
datasets.

Method IC03 IC13 IIIT5K SVT

CRNN-CTC 58.0 78.5 30.2 34.3

CRNN-Mml-CTC 78.5 83.2 68.7 57.7

CRNN-Var-CTC 90.3 92.1 66.4 85.1
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better in average precision (AP). We also compare the recall performances when
the models maintain 98% precision. The comparison results are shown in Table 2.
Under the same condition, the Var-CTC can improve the recall with 31.7%,
13.6%, 36.2% and 50.8% respectively. In practical use, the proposed Var-CTC
can recall more samples compared the vanilla CTC.

Table 3: Comparisons with Attention based model.
Method SeqAcc AP Recall@Precision=98%

ASTER[31] 86.21 98.37 69.84

CTC 82.37 98.01 67.57

Mml-CTC 83.83 98.59 77.21

Var-CTC 81.65 98.64 81.92

Comparison with Attention based Method. We compare our proposed
methods with ASTER [31]. ASTER is an attention based model and its well-
trained models are public available. We take the same experiment setup of
ASTER. The only difference is that all our CTC based models only utilize
the ResNet based backbone, without the Spatial Transformer[15] based thin-
plate spline (TPS) transformation network. There are seven testing datasets in
ASTER. Due to limited space, we replace Precision-Recall curve with AP metric
and the comparison in Table 3 is based on collection of all the seven datasets.
The comparison results also show Var-CTC has the best AP or Precision-Recall
performance, especially the recall performance at a high precision level.

3.2 Offline Handwritten Text Recognition

To verify the generalization capability of our method, we further evaluate our
method on offline handwritten text recognition. Compared to scene text recog-
nition, offline handwritten text recognition problem is highly complicated and
challenging to solve. In the experiment, we follow the experiment setup of [34].

Datasets. The public handwritten datasets IAM [23] is used in this experi-
ment. IAM is a handwritten text dataset, with 647 writers. It is partitioned into
writer-independent training, validation and test partitions, where each partition
contains 46945, 7554 and 20306 correctly segmented words respectively.

Evaluation Metrics. Three metrics are used to evaluate the handwritten
text recognition model. The first two are the Character Error Rate (CER) and
the Word Error Rate (WER). CER is defined as the Levenstein distance be-
tween the predicted and real character sequence of the word. WER denotes the
percentage of words improperly recognized. For CER and WER, small values
indicate better performance. The last metric is the Precision-Recall curve. We
also use greedy decoding to decode the outputs. The confidence score of each
word is computed based on Eq 9.

Implementation Details. Different with the experiment in scene text recog-
nition, we use a 25-layer residual network [9] as convolutional feature extractor.
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As IAM is much smaller than Synth90K, we stop the training at 20k iterations.
The other setups are the same with scene text recognition task. We name the
feature extraction network as ResNet to distinguish the CRNN in scene text
recognition experiment.

Comparison results. The comparison results are shown in Table 4 and
Figure 4. We also compare our method with the state-of-the-art approaches [34].
For WER and CER metrics, the proposed Var-CTC has no advantage compared
to the vanilla CTC. However, for Precision-Recall curve metric, the proposed
Var-CTC and Mml-CTC show strong performances compared to vanilla CTC.

Table 4: Comparisons of WER and CER
on IAM.

Method WER CER

zhang2019sequence[34] 22.2 8.5

ResNet-CTC 23.8 9.53

ResNet-Mml-CTC 23.6 9.35

ResNet-Var-CTC 24.0 9.52

Fig. 4: Precision-Recall curve perfor-
mance comparisons on IAM.

3.3 Further Analysis

We first analyze the learning signals of non-blanks to check whether their learning
is enhanced. Then we analyze whether the enhanced learning lead to a better
alignment, especially for the non-blanks. We try to explain the reason for the
improved Precision-Recall curve performance. The badcase analysis and the label
embedding visualization for Var-CTC are also included in this part. At last, we
give the exact comparisons of the space and time for the proposed models. All
these analysises are based on scene text recognition task.

Gradient Signal Analysis. Fig. 5 shows one example about the evolu-
tion of gradient signals for non-blank symbols. The experiment is based on the
Synth5K[20] dataset. Synth5K is a small dataset with 5K training data sampled
randomly from Synth90K. Both the Var-CTC and CTC based models predict
correctly for the chosen case. We can observe four points from the comparisons.
Firstly, at the initial training stage, the gradient signals for Var-CTC are less
than the CTC model; Secondly, the gradient signals of the CTC model decay
much more quickly than the Var-CTC model; Thirdly, the gradients of CTC
model quickly focus to several isolated points; At last, in the middle (30 epochs)
and late (50 epochs) training periods, the gradients of Var-CTC are much greater
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Fig. 5: The evolution of gradient signals for non-blank symbols. The input image
is the first example in Fig. 6. The horizontal axis denotes the position in the
image and colors represent different labels.

than the CTC model. From the comparison, we can see the learning of non-blank
symbols in Var-CTC model is more stable and sufficient.

Alignment Analysis. We depict the output distributions of six examples
for CTC and Var-CTC based models in Fig. 6. The figure shows both the outputs
of the two models are spiky, where blank dominates the outputs. We also depict
the second hierarchy outputs for Var-CTC model. All the six examples show the
distribution of p(otc|xt) aligns to the corresponding non-blanks sufficiently, even
for the cases with irregular shapes. The alignment visualization can be explained
by the gradient signal visualization in Fig. 5, which is better learning signal leads
to better alignment.

Confidence Score Analysis. We can also find the reason why the con-
fidence score of the CTC model is not discriminative enough. The “SHARE”
example in Fig. 6 shows there are two successive timesteps that the CTC model
is aligned to the label “A”. At the first timestep, it outputs “A” with prob-
ability close to 1.0. While at the successive timestep the model outputs “A”
with probability close to 0.3 and blank with probability close to 0.7. It shows
there is ambiguity at the second timestep between “A” and blank. Although the
“SHARE” example is a clear and easy to recognize image visually, the confidence
score of it keeps close to some hard examples (for example, the third example
in Fig. 6). For the CTC model, the prediction confidence score of “SHARE” is
less than “KEEPERS”.

The “TRUSTPASS” example in Fig. 6 shows both the CTC and Var-CTC
are influenced by the image content after the second “S”. However, for this wrong
decision, the CTC model still outputs a high level confidence score at the last
timestep, which is close to probability 1.0. While the Var-CTC model is not sure
which character it looks like and output character with low confidence score. As
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Fig. 6: Outputs visualizations of six examples. P ∗ represents the second hierarchy
outputs (p(otc|xt) in Eq 6.

these cases show, the confidence score of the CTC model is not discriminative
enough. It is difficult to set the threshold in practical use. And the proposed
Var-CTC can relieve this problem with the improved confidence score.

Table 5: Error analysis for the IIIT5K datasets.
Method Replace Delete Insert

CRNN-CTC 49% 14% 37%

CRNN-Var-CTC 40% 19% 41%

Error Analysis. We roughly classify the prediction errors into three types
based on the sequence lengths of the labels and predictions. These three types
are “Replace”, “Delete” and “Insert”. “Replace” means element in the label se-
quence is replaced by other symbols in the prediction sequence. “Insert” means
the model predicts extra symbols compared to the label. We can see the blank
outputs contribute more to the “Delete” and “Insert” types as those two types
show segmentation error exists. The alignments between non-blank symbols and
image contribute more about the “Replace” type. Table 5 shows the error anal-
ysis on IIIT5K datasets. Compared with the CTC model, the ratio of the “Re-
place” error is declined for the Var-CTC model. This proves the alignments of
the non-blank symbols are improved. The statistics also shows the approximate
posterior of blank should be improved.

Label Embedding Visualization. We visualize the label embeddings learned
by Var-CTC in Fig 7. For better visualization, we do not show the embeddings of
26 letters in English alphabet. The learned embeddings nicely reflect the cluster-
ing structures among the characters (the “6”, “8” and “9” have similar shapes).
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It means the added label embedding has positive effect to the model learning,
which can explain the superiority of Var-CTC compared to Mml-CTC.

Fig. 7: Visualization of the label em-
beddings learned by Var-CTC using t-
SNE[22]. Only the 10 number characters
are shown.

Table 6: Comparisons of Parameters and
FLOPS.

Model #Parameters #FLOPS

CRNN-CTC 8,720,165 17,436,510

CRNN-Mml-CTC 8,720,165 17,436,511

CRNN-Var-CTC 8,747,765 17,491,816

Space and Time Comparisons. Table 6 lists the exact number of pa-
rameters and FLOPS for models in 3.1. All the MLPs in Fig.2 are one layer
in our implementation and they are used to transform features to the desired
dimensions. Mml-CTC has exactly the same number of parameters with CTC.
Compared to Mml-CTC, Var-CTC adds the approximated posterior. The ta-
ble shows Var-CTC adds extra 0.3% more parameters and 0.3% more FLOPS
compared to CTC, which is neglectable.

4 Conclusion

We proposed the variational CTC to improve CTC for enhancing the learning
of the non-blank symbols. The proposed Var-CTC first determines whether to
output a specific label or not and then learns the alignment of the non-blank
symbols with the input feature sequence. With the hierarchy output, the influ-
ence of imbalanced distribution between blank and non-blanks is relieved. With
the enhanced learning of non-blanks, our model can output more reliable con-
fidence scores, which is important in practical use. Experiments on scene text
recognition and offline handwritten text recognition tasks show the proposed
Var-CTC improves the Precision-Recall curve performances significantly. Under
the same condition, the Var-CTC can improve the recall performance with a
large margin on four five-world benchmark datasets. Qualitative analysis also
shows the effectiveness of the proposed method. As for future work, we plan to
try variational inference techniques such as [19, 27] to improve the approximate
posterior distributions.
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