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Abstract. As an important computer vision task, 3d human pose esti-
mation in a multi-camera, multi-person setting has received widespread
attention and many interesting applications have been derived from it.
Traditional approaches use a 3d pictorial structure model to handle this
task. However, these models suffer from high computation costs and re-
sult in low accuracy in joint detection. Recently, especially since the
introduction of Deep Neural Networks, one popular approach is to build
a pipeline that involves three separate steps: (1) 2d skeleton detection
in each camera view, (2) identification of matched 2d skeletons and (3)
estimation of the 3d poses. Many existing works operate by feeding the
2d images and camera parameters through the three modules in a cas-
cade fashion. However, all three operations can be highly correlated. For
example, the 3d generation results may affect the results of detection in
step 1, as does the matching algorithm in step 2. To address this phe-
nomenon, we propose a novel end-to-end training scheme that brings the
three separate modules into a single model. However, one outstanding
problem of doing so is that the matching algorithm in step 2 appears to
disjoint the pipeline. Therefore, we take our inspiration from the recent
success in Capsule Networks, in which its Dynamic Routing step is also
disjointed, but plays a crucial role in deciding how gradients are flowed
from the upper to the lower layers. Similarly, a dynamic matching mod-
ule in our work also decides the paths in which gradients flow from step
3 to step 1. Furthermore, as a large number of cameras are present, the
existing matching algorithm either fails to deliver a robust performance
or can be very inefficient. Thus, we additionally propose a novel match-
ing algorithm that can match 2d poses from multiple views efficiently.
The algorithm is robust and able to deal with situations of incomplete
and false 2d detection as well.

Keywords: 3d human pose estimation, end-to-end, multi-view multi-
person, dynamic matching

1 Introduction

3d human pose estimation is a fundamental problem in computer vision. It can
be applied to various applications such as human-computer interactions, aug-
mented reality and video surveillance. Due to the availability of increasingly
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sophisticated datasets, and more and more powerful deep learning models, re-
searchers have made significant progress in this area using deep convolutional
neural networks (CNNs). While 3d pose estimation research into a single hu-
man under monocular or multi-camera settings has made remarkable advances,
fewer works have studied 3d pose estimation of multiple humans, which is a
significantly more challenging problem to address. This is primarily due to the
occurrences of frequent and sometimes severe occlusions when multiple people
are involved. These difficulties have been further exacerbated by the lack of
labeling for identifying corresponding people under a multi-view setting.

Despite these difficulties, there are two main reasons why multi-view multi-
person 3d pose estimations will become mainstream research. First, models in-
volving multiple people are more generic in many real-world applications com-
pared to those for a single human, such as in supermarkets and factories. Sec-
ondly, using multi-cameras, the pose estimation can be made more robust than
using a monocular camera due to the multiplied information available from dif-
ferent views, such as when dealing with occlusions.

The methodology for multi-view multi-person 3d pose estimation in many
existing studies includes two steps. The first is to predict 2d poses in each view
individually using off-the-shelf 2d models [6, 22, 9]. The second is to aggregate
these 2d poses and generate their 3d counterpart. One typical idea is to use
the so-called 3d Pictorial Structures model (3DPS), which directly generates 3d
human poses by exploring an ample state space of all possible human key points
or human body parts in 3d space [20, 3]. However, this method lacks efficiency
due to the enormous state space needed for exploration.

In contrast to the above two-step models, a recent direction is to use a match-
ing algorithm that identifies matched 2d skeletons from multiple views before
the estimation for 3d poses [10]. If the matching algorithm is perfect, the sub-
sequent 3d pose estimation for multiple people can be regarded as multiple 3d
pose estimation for a single person. Thus the accuracy will be significantly im-
proved. However, the matching algorithm may make mistakes or even fail. Once
a reliable skeleton matching is established, we can then build an effective model
in which its pipeline consists of three separate steps: (1) detect 2d skeletons in
each camera view, (2) identify matched skeletons and (3) estimate the 3d pose.

An intuitive approach is, of course, to train each of these steps/modules in-
dependently. During testing, we can feed the 2d images and camera parameters
through these trained modules one by one. However, all of the three operations
are highly correlated in both directions of the pipeline. How individual poses
are extracted in step 1 will undoubtedly influence the 3d pose estimation result
in step 3. The reverse is also true: any adjustments that occur in the 3d esti-
mation in step 3 will ultimately affect the way in which the detection should
be carried out in step 1. Therefore, it is essential that the information can be
back-propagated in reverse order through step 3 to step 1.

At the same time, when the parameters of the detection module in step 1
are not trained properly, especially during the early stage of the training, the
matching algorithm in step 2 may fail to identify the matched skeletons and
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catastrophically impact the 3d estimation result in step 3. The traditional one-
directional pipeline approach will not improve the parameters of step 1 as each
module works independently while having an end-to-end training mechanism
allows the model to keep improving the parameters of each step as a result.

However, there is still one bottleneck when we carry out this design. The
matching algorithm in step 2 makes the pipeline discontinuous, i.e., it is not
a smooth function in which we can back-propagate the changes in parameters
freely. However, we can reconcile this with inspiration from Capsule Networks
[14, 26]. In CapsNet, the Dynamic Routing step decides how lower layer capsules
are fed to their immediate upper layer, either by agreement or expectation-
maximization (EM) clustering. In our work, the matching algorithm in step 2
acts in a very similar fashion to the Dynamic Routing. It also decides the feed-
forward paths in which information flows from step 1 to step 3, i.e., we apply
our matching algorithm to dynamically route/match the poses. This justification
and analogy makes our end-to-end approach highly appropriate and is the central
theme of our paper.

As one may appreciate, in this end-to-end training mechanism, the dynamic
matching step plays a pivotal role. Hence it is vital that we also improve upon the
existing works in this area. To this end, we additionally propose a novel matching
algorithm which can match multiple 2d poses from multiple views efficiently. The
algorithm is robust and can handle situations where there is incomplete and false
2d detection.

In summary, the main contributions of our work are stated below:

– We propose a novel end-to-end training scheme for multi-view multi-person
3d pose estimation. Different from training independent modules separately,
our model back-propagates the gradients from the last 3d estimation step
to the first 2d detection step, so as to significantly improve the efficiency,
robustness and accuracy on 3d pose estimation.

– We propose a multi-view 2d human pose dynamic matching algorithm. This
could dynamically match the corresponding 2d poses detected in multiple
views for each person involved. The approach does not require the exact
number of people in the scene and can handle cases where false detection
and severe occlusions exist.

– Experiments on the Shelf and Campus datasets demonstrate that our pro-
posed model outperforms the state-of-the-art methods with respect to both
efficiency and accuracy.

2 Related work

In this section, we review the literature related to the techniques of this paper.

2.1 Single-view 2d pose estimation

Single person pose estimation predicts 2d keypoints of the human body in one
RGB image. Many existing deep learning-based methods have achieved amazing
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results [22, 15, 7] since DeepPose [28] was proposed, which was the first method
to use deep neural networks for pose estimation.

For multi-person 2d pose estimation, current state-of-the-art solutions can
be divided into two categories. The first category is called the “top-down meth-
ods” [9, 12, 17]. It uses an object detection method to detect all the people in
the image and sends them separately to a single 2d pose detector to obtain their
corresponding 2d poses. In [17], the authors constructed a fully connected graph
from a set of detected joint candidates of each person in an image and resolved
the joint-to-person association and outlier detection by using integer linear pro-
gramming. [12] proposed a framework with three components for pose estimation
which can extract a high-quality single person region from an inaccurate bound-
ing box. In [9], a two-part network structure was proposed where GlobalNet
localizes the “simple” keypoints and the RefineNet deals with the “hard” key-
points. The second category, “bottom-up methods”, jointly labels part detection
candidates and associates them with individuals by a matching algorithm [23,
6, 16]. The authors in [6] mapped the relationship between keypoints into part
affinity fields (PAFs), then clustered detected keypoints into different 3d hu-
man poses. [23] interpreted the problem of distinguishing different people in an
image as an Integer Linear Programming problem and partitioned part detec-
tion candidates into identity clusters. On the basis of [23], the authors in [16]
used a stronger part detectors based on ResNet [13] and image-dependent pair-
wise scores, vastly improving the run time by using an incremental optimization
approach.

In our work, we choose the “top-down methods” for their higher accuracy.
We adopt the Cascaded Pyramid Network (CPN) [9] as the 2d pose estimator
backbone.

2.2 Multi-view 3d pose estimation

Instead of estimating with a single image, multi-view 3d pose estimation meth-
ods require image inputs from multiple views, which are believed to obtain better
3d pose estimation than using a monocular camera. Most previous efforts had
focused on single person estimation [19, 27]. Traditional methods [1, 4, 5] used
2d pose estimation captured by calibrated cameras to predict 3d poses by point
triangulation or 3DPS. Recent works have begun to adopt deep neural networks
in this area and have delivered significant achievements. For example, in [18],
a volumetric triangulation approach was proposed to project the feature maps
produced by 2d pose estimators into 3d volumes, which were then used to pre-
dict 3d poses. There are also self-supervised approaches that predict 3d poses
separately in different camera views and minimize the distance between pairwise
3d poses after rotating to the same view [21, 25, 8].

As for multi-view multi-person 3d pose estimation, 3DPS is the most widely
used approach [2, 3, 20]. It predicts 3d keypoints or 3d body parts by exploring
an ample state space and the candidates in the state space are generated by
the grid sampling. With the 2d priors given by the 2d detector, the 3d pose can
be generated through the maximum likelihood estimation. Recent work [10] has
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Fig. 1. The framework of our proposed model. First, the images I are input into the 2d
human keypoints detector backbone, which is based on CPN [9], to get the heatmaps h.
Next, we apply soft-argmax on h to get the corresponding 2d human poses y. Then, we
feed both h and y into the dynamic matching module which groups them by identities
and automatically determines the number of groups. After that, the heatmaps are sent
into a network to get the weight matrices. Last, each cluster is sent to a weight-sharing
3d pose estimator to get the final results Y .

proposed a model to combine person re-identification (re-id) [29, 30] and epipolar
geometry to match the pose, followed by the prediction of 3d poses using 3DPS.
The shortcoming of this approach is that the speed of the person re-id model is
relatively slow, which causes efficiency problems. On the contrary, our approach
is efficient on multi-view multi-person 3d pose estimation, which benefits from
our novel matching algorithm.

3 Method

In this section, we demonstrate our proposed end-to-end 3d pose estimation
model in detail. The scenario assumes there are synchronized video streams
from multiple cameras with known parameters, and all cameras capture the
same scene with one or more people in it from different views. The goal is to
estimate the 3d positions of the keypoints of these people. Note that the exact
number of people in the scene is not required.

The inputs of the model are cropped 2d human images from all cameras in
the same frame. The images, denoted by I, are cropped by using bounding boxes
from either available off-the-shelf 2d human bounding box detectors or ground
truths. I = {Icn|c = 1, 2, . . . , C, n = 1, 2, . . . , Nc} where Icn is the nth image in the
cth view, C is the number of views and Nc is the number of detected bounding
boxes in the cth view. The outputs, denoted by Y , are the 3d keypoints of all
detected people in the scene. The overview architecture of our model is illustrated
in Fig. 1.

In the following text, we will demonstrate the 2d pose estimator backbone,
dynamic matching algorithm and 3d pose estimation module respectively.
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3.1 2d pose estimator backbone

The 2d pose estimator backbone fp with trainable weights θp consists of Glob-
alNet and RefineNet. The GlobalNet predicts all keypoints while the RefineNet
justifies the “hard” keypoints. The backbone outputs the heatmaps:

hcn = fp (Icn; θp) , c = 1, 2, . . . , C, n = 1, 2, . . . , Nc. (1)

The next step is to estimate the 2d positions. To keep the gradient flow, we
use soft-argmax instead of argmax to the heatmaps across spatial axes:

gcn,j = eh
c
n,j/

(∫
q∈Ω

eh
c
n,j(q)

)
, (2)

where hcn,j denotes the heatmap of the jth keypoint of the nth detected per-
son in the cth view and Ω denotes the domain of the heatmap. Then the 2d
coordinates of the estimated joint ycn,j is the integration of all locations q in the
domain, weighted by their corresponding probabilities (we use ycn to denote the
2d coordinates of all keypoints of the nth detected person in the cth view):

ycn,j =

∫
q∈Ω

q ∗ gcn,j(q). (3)

3.2 Dynamic matching

A matching algorithm is to group 2d poses from different views with people’s
identities so as to connect the 2d pose detection and 3d pose estimation. It is a
challenging task due to several reasons. First of all, there are sizable errors in
the estimated 2d poses which can significantly influence the matching accuracy.
The second reason is that the number of people in the scene is unknown, which
means one cannot cluster these 2d poses to centers like what k-means does.
Furthermore, the matching itself is hard to be cycle-consistent. For example, 2d
poses y11 and y21 are matched, so do y11 and y31 , but y21 and y31 are not matched.

Different from previous methods which compute the matching score for 2d
poses, we propose a new matching algorithm that creates a 3d pose subspace
first and recursively finds matched 3d poses in this subspace. It resolves both
the efficiency and cycle-consistent problems simultaneously. This newly proposed
matching algorithm is illustrated in Fig. 2.

3d pose subspace construction To construct the 3d pose subspace, we first
enumerate all possible pairs of 2d poses from different views. For each pair of 2d
poses, we apply the traditional point triangulation to generate the corresponding
3d pose. All generated 3d poses compose a 3d pose subspace containing a small
quantity of correct 3d poses (i.e., matched 2d poses) and a large quantity of
incorrect 3d poses. For each pair of 2d keypoints ycn,j and ydm,j , c 6= d, we can
get the coefficient matrices for their corresponding homogeneous 3d vectors:

Acn,j =

[
ycn,j
1

]
× Pc, Adm,j =

[
ydm,j
1

]
× Pd, (4)
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Fig. 2. Overview of the our matching algorithm

where Pc and Pd are the projection matrices of cameras c and d respectively.
Thus, the 3d point Ỹ(cn,dm),j can be obtained by solving the following linear
system: [

Acn,j
Adm,j

]
·
[
Ỹ(cn,dm),j

1

]
= 0. (5)

We use Ỹ(cn,dm) to denote the calculated 3d pose given 2d poses ycn and ydm. The
number of 3d poses constructed is

T =

C∑
c=1

Nc

C∑
d=c+1

Nd. (6)

Bottom-up matching After the construction of 3d pose subspace, we now need
to pick out the correct 3d poses. The idea we distinguish the correct 3d poses
with incorrect ones is that, the correct 3d poses are almost always calculated by
2d poses belonging to the same person. For example, if a person is captured by
four cameras, we will detect four 2d poses which are used to construct six 3d
poses, and these 3d poses are almost always very similar to each other, i.e. their
distances are very small. Therefore, if the distance between a pair of 3d poses is
sufficiently small, their corresponding 2d poses are regarded as a match.

We use the euclidean distance as the measurement between pairwise 3d poses
Ỹ(cn,dm) and Ỹ(c′p,d′q):

E(Ỹ(cn,dm), Ỹ(c′p,d′q)) = ‖Ỹ(cn,dm) − Ỹ(c′p,d′q)‖F , (7)

where ‖·‖ is the Frobenius norm. Since we do not need to calculate the distance
between 3d poses coming from the same views (i.e. c = c′ and d = d′), the
number of distances calculated is

|D| =
C∑
c=1

C∑
d=c+1

(T −NcNd) ·NcNd/2. (8)
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where D denotes the set of distances between all possible pairwise 3d poses and
| · | here is the cardinality.

In order to efficiently obtain all matches, we propose a bottom-up matching
algorithm. Suppose the matching result is stored in a set S = {sk|k = 1, 2, . . . }
where sk is a subset which contains the indices of 2d poses belonging to the
same person. We initialize S as an empty set and update it by iterations. In
each iteration, we first find the minimal distance in D, denoted by Dmin which
relates to two 3d poses generated by four 2d poses (three if one of them is shared
by both pairs), say yc1n1

, yc2n2
, yd1m1

and yd2m2
, and their corresponding indices can be

denoted by a set of view-image pairs V = {(c1, n1), (c2, n2), (d1,m1), (d2,m2)}.
Next, we find a subset s∗k in S which contains any of the indices in V . If no
subset is found, we add an empty set s∗k = {} into S. This finding process is
referred as F (S, V ). Then we update s∗k by s∗k = s∗k ∪ V . Note that an index
will be dropped if s∗k has already contained another index from the same view.
After the update, Dmin will be removed from D. We repeat the above steps until
Dmin > ρ where ρ is a predefined threshold. The complete bottom-up matching
algorithm is presented in Algorithm 1.

Algorithm 1 Bottom-up matching algorithm

Input: D, ρ
Output: S

1: InitializeS ← ∅
2: Dmin ← min(D)
3: while Dmin < ρ do
4: {(c1, n1), (c2, n2), (d1,m1), (d2,m2)} ← Dmin

5: V ← {(c1, n1), (c2, n2), (d1,m1), (d2,m2)}
6: s∗k ← F (S, V ) ∪ V
7: D ← D \Dmin

8: Dmin ← min(D)

Through the matching algorithm we can get the resultant S = {s1, s2, . . . , sK}
where K is the estimated number of people in the scene. It is determined auto-
matically by the algorithm. According to the indices in sk we can select the 2d
poses and heatmaps of the kth person and group them together:

y(k), h(k) = G (y, h, sk) , k ∈ [1,K] , (9)

where y and h are the 2d poses and heatmaps for all people from all views, and
function G(·) does the operations of both selection and grouping. Each group
of 2d poses and heatmaps will be sent to the subsequent module for 3d pose
estimation.

This dynamic matching module plays a similar role as the dynamic routing
(especially the EM routing) in CapsNet. The difference between them is that the
dynamic routing integrates the features from lower capsules by using weighted
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Fig. 3. The structure of the weight matrix network

summation, while our dynamic matching clusters the 2d poses and corresponding
heatmaps without any value changes.

Note that the proposed dynamic matching requires at least three views of the
scene, which can be inferred form Eq. (8). When there are only two views, |D| in
Eq. (8) becomes 0, which invalidates the whole matching algorithm. Therefore,
for this special case of two views, we use auxiliary approaches such as the above
mentioned person re-id and epipolar geometry.

3.3 3d pose estimation

Given the grouped 2d poses and heatmaps of each person, we can reconstruct
their 3d poses in several ways. The point triangulation described previously is
one of them. However, we are now using the 2d keypoints from all views instead
of a pair of views, and the corresponding linear system becomes:

A
(k)
j ·

[
Y

(k)
j

1

]
= 0, (10)

where A
(k)
j is a matrix concatenating the homogeneous 3d vectors of all views

for the jthe keypoint of the kth person.
The point triangulation is an efficient 3d pose estimation algorithm with

strong theoretical supports but often produces imprecise 3d poses if there are
erroneous detection of 2d poses. The reason is that the coordinates of different
keypoints are computed separately. This phenomenon can occur quite frequently
at the beginning of training when the 2d pose detection module has not been
trained well enough, which in turn affects the improvements of the 2d detection.

To deal with the inaccuracy, inspired by [18], we add a learnable module fw
illustrated in Fig. 3 before the point triangulation, which accepts the heatmaps
as inputs:

w
(k)
j = fw

(
h
(k)
j ; θw

)
. (11)

The output w
(k)
j is a weight matrix which is in the same size of A

(k)
j . We add it

to Eq. (10) and have (
w

(k)
j ◦A

(k)
j

)
·
[
Y

(k)
j

1

]
= 0, (12)
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The original module in [18] predicts a scalar weight for each view denoting
how important the keypoints of a view will be. However, scalar weights cannot
reflect the details of importance. For example, if a detected keypoint is inaccurate
on the horizontal axis but very accurate on the vertical axis, scalar weights have
to balance their importance and there will be no difference of importance if we
switch the accuracy for both axes. Therefore, we propose to use a weight matrix
instead of a scalar weight to better learn the importance so that the accuracy of
point triangulation can be further improved.

3.4 Loss function

Our loss function contains two parts, the 2d reprojection loss and the 3d mean
square error (MSE) loss. The reason we add the 2d reprojection loss is that,
if we only use the 3d MSE loss, there would be infinite points that have the
same loss value but target at the 3d ground truth in different directions. The 2d
reprojection loss can indicate the correct direction by constraining projected 2d
poses from different views.

The 3d MSE loss between the estimated 3d pose and 3d ground truth is
defined as:

L3d
mse =

K∑
k=1

1

|Y (k)|
‖Y (k) − Y (k)

gt ‖2F . (13)

The 2d reprojection loss between the reprojected 2d pose from the computed 3d
pose and the detected 2d pose from backbone is defined as:

L2d
repj =

K∑
k=1

C∑
c=1

1

|y(k)c |
‖ỹ(k)c − y(k)c ‖2F , (14)

where

ỹ(k)c =

[
p1 ·

[
Yk
1

]
/p3 ·

[
Yk
1

]
, p2 ·

[
Yk
1

]
/p3 ·

[
Yk
1

]]
, (15)

and
Pc =

[
p1 p2 p3

]T
. (16)

Thus, the total loss of our model is defined as:

L = L3d
mse + αL2d

repj, (17)

where α is a weight coefficient.

4 Experiments

4.1 Datasets

We conduct experiments on two standard datasets for multi-view multi-person
3d human pose estimation.
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Shelf [2]: The Shelf dataset is one of the public 3d multi-person human pose
datasets in multi-view setting. It consists of 3200 frames from 5 synchronized
cameras along with the 2d pose annotations and 3d pose ground truth derived
by pose triangulation. There are 4 human subjects interacting with each other
in a small room. All 3200 frames are split into an evaluation set (frame 300-600)
and a training set (other frames).

Campus [2]: The Campus dataset contains three human subjects interacting
with each other in an outdoor environment. The scene is captured by three
calibrated cameras. The dataset consists of 2000 frames and is divided into an
evaluation set (frame 350-470, frame 650-750) and a training set (other frames).

For the evaluation protocol, we use the percentage of correctly estimated
parts (PCP@0.5) to measure the model performance, which is the most com-
monly adopted in this area [2, 10].

4.2 Implementation details

As for the data preprocessing, we crop the images with bounding boxes esti-
mated by an off-the-shelf 2d human detector, Yolo [24]. The 2d pose detection
backbone is the same as [9] with pretrained weights, which outputs heatmaps
and connects to a soft-argmax function to obtained the 2d poses. The dynamic
matching module is implemented according to Algorithm 1. The 3d pose esti-
mator consists of two convolutional layers and three fully-connected layers. The
weight coefficient α in the loss function is set to 2. We choose the Adam opti-
mizer with a learning rate of 10−6 which reduces by a decay factor of 10 in each
epoch. The training set and evaluation set are kept the same as described in the
datasets.

4.3 Ablation study

Our first experiment is to verify the effectiveness of different settings for our
model through the ablation study on the Shelf dataset.

End-to-end vs multi-step architecture Our model is end-to-end and can
predict the 3d poses from 2d human images as a whole. An alternative is to divide
the model into three consecutive steps which deal with the 2d pose detection,
matching and 3d pose estimation separately. We compare these two architectures
and the results are presented in Table 1.

From the table, we can see that the performance of our end-to-end model is
better than the multi-step model for all three people in the scene. The average
improvement is 0.72. This demonstrates that the end-to-end model is more ca-
pable of learning the features of human poses which refines the 2d pose detection
with gradients flowing back from the overall loss function.
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Table 1. The PCP@0.5 performance of the alternative multi-step model and our end-
to-end model on the Shelf dataset. They are using the same 2d pose detection backbone,
matching algorithm, 3d pose estimator and loss function.

Actor 1 Actor 2 Actor 3 Average

Multi-step 98.12 95.16 96.77 96.67
End-to-end (ours) 98.75 96.22 97.20 97.39

Matching method Given the 2d poses obtained from the 2d detection module,
we propose a novel matching algorithm to group the 2d poses and heatmaps
by identities. There are two existing matching methods in the literature, the
person re-id and epipolar geometry. The former finds matches by using the re-id
appearance matrix as confidence scores, while the latter uses epipolar geometry
affinity matrix as the confidence scores. The comparison between these three
matching methods is shown in Table 2.

Table 2. Comparison of matching methods including the person re-id, epipolar geom-
etry and our algorithm on the Shelf dataset over the PCP@0.5 and time cost. All three
methods use the same 2d pose detector and 3d pose estimator.

Actor 1 Actor 2 Actor 3 Average Time (s)

Person re-id 97.62 93.72 95.69 95.68 6.73
Epipolar geometry 97.28 91.76 91.27 93.44 0.64

Our method 98.75 96.22 97.20 97.39 0.96

The results show that our matching method achieves the best performance
among the three, with average improvements of 1.71 and 3.95. The time cost
of person re-id is the highest while that of epipolar geometry is the lowest. Our
matching method is slightly slower than epipolar geometry, but still much faster
than person re-id. This experiment demonstrates that our matching algorithm is
robust and efficient. The reason is that both person re-id and epipolar geometry
use 2d information, thus there may be cases where the poses of different people
result in a larger confidence score than those of the same person because of the
angle of camera views or imprecise 2d detection. On the contrary, our method
finds the matches in the 3d pose subspace directly, which leverages the infor-
mation inequality between the 2d and 3d spaces and makes our method more
robust and insensitive to imprecise or even incorrect 2d poses.

3d pose estimation method As described in the method section, we use
the point triangulation with a learnable weight matrix to estimate 3d poses.
Alternatives include the sole point triangulation or the original learnable trian-
gulation network [18]. We compare these two methods with ours and the result
is presented in Table 3.
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Table 3. Performance of our 3d pose reconstruction method compared with the point
triangulation and learnable triangulation on the Shelf dataset. They are implemented
with the same 2d pose detection backbone and dynamic matching.

Actor 1 Actor 2 Actor 3 Average

Point triangulation 98.05 91.17 92.78 94.00
Learnable triangulation 98.64 95.83 96.91 97.13

Our method 98.75 96.22 97.20 97.39

Table 4. Comparison of multi-view multi-person 3d pose estimation models on the
Shelf and Campus datasets under PCP@0.5. All results are obtained from the original
papers except for the (*) which only provides the average performance (in the paren-
theses) and its results on body parts presented here are from our own experiments
using the authors’ published code.

Shelf dataset Head Torso Upper Arms Lower Arms Upper Legs Lower Legs All parts Average

Belagiannis

et al. [2]

Actor 1 89.30 90.20 72.16 60.59 37.12 70.61 66.05
71.39Actor 2 72.10 92.80 80.11 44.20 46.30 71.80 64.97

Actor 3 94.66 96.35 91.00 89.00 45.80 94.50 83.16

Belagiannis

et al. [3]

Actor 1 96.29 100.00 82.24 66.67 43.17 86.07 75.26
77.51Actor 2 78.95 100.00 82.58 47.37 50.00 78.95 69.67

Actor 3 98.00 100.00 93.15 92.30 56.50 97.00 87.59

Ershadi-Nasab
et al. [11]

Actor 1 98.27 97.34 92.57 83.33 95.94 96.83 93.29
87.99Actor 2 63.05 94.61 78.33 33.38 95.30 93.45 75.85

Actor 3 98.15 94.12 94.43 89.82 97.41 96.34 94.83

Dong

et al. [10]*

Actor 1 88.17 100.00 99.82 99.28 99.82 100.00 98.60
96.76

(96.90)Actor 2 97.30 100.00 98.65 71.62 100.00 100.00 93.78
Actor 3 94.41 100.00 95.96 96.27 100.00 100.00 97.89

Our model
Actor 1 88.89 100.00 99.82 99.46 100.00 100.00 98.75

97.39Actor 2 100.00 100.00 100.00 81.08 100.00 100.00 96.22
Actor 3 90.06 100.00 95.65 95.96 95.96 99.38 97.20

Campus dataset Head Torso Upper Arms Lower Arms Upper Legs Lower Legs All parts Average

Belagiannis

et al. [2]

Actor 1 93.62 49.94 82.85 77.80 86.23 91.39 82.01
75.79Actor 2 97.40 41.13 90.36 39.65 73.87 89.02 72.43

Actor 3 81.26 69.67 77.58 61.84 83.44 70.27 73.72

Belagiannis

et al. [3]

Actor 1 96.55 93.10 96.55 86.21 93.10 96.55 93.45
84.49Actor 2 98.24 48.82 97.35 42.94 75.00 89.41 75.65

Actor 3 93.20 85.44 89.81 74.76 91.75 76.21 84.37

Ershadi-Nasab
et al. [11]

Actor 1 97.31 94.16 96.83 87.48 93.67 97.27 94.18
90.56Actor 2 98.73 95.41 94.12 78.98 98.94 95.34 92.89

Actor 3 95.36 84.37 93.16 70.34 88.36 81.38 84.62

Dong

et al. [10]*

Actor 1 100.00 100.00 97.96 89.80 100.00 100.00 97.55
95.85

(96.30)Actor 2 97.88 100.00 100.00 67.72 100.00 100.00 93.33
Actor 3 99.28 99.28 98.91 89.86 97.46 97.83 96.67

Our model
Actor 1 100.00 100.00 98.98 90.82 100.00 100.00 97.96

96.71Actor 2 99.47 100.00 100.00 74.34 100.00 100.00 94.81
Actor 3 100.00 100.00 99.64 90.58 97.10 97.46 97.39

We can see from the table that our method outperforms the other two meth-
ods by 3.39 and 0.26 respectively in average. This demonstrates that (1) the
3d poses estimated by point triangulation is not accurate enough, (2) adding
learnable scalar weights can significant improve the performance and (3) using
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a learnable weight matrix instead of the scalar weights can further improve the
model’s robustness.

4.4 Comparison with previous works

We compare our model with existing state-of-the-art models for multi-view
multi-person 3d pose estimation on both datasets. The models compared are:

– Belagiannis et al. [2], the first one applying the 3DPS to 3d pose estimation
for multiple humans.

– Belagiannis et al. [3], an improved version of their previous work.
– Ershadi-Nasab et al. [11], an extension of the 3DPS.
– Dong et al. [10], which uses person re-id and geometry methods to match 2d

poses.

For the Campus dataset, since the number of views is insufficient to generate
enough 3d pose candidates, we use person re-id and epipolar geometry as aux-
iliaries in our matching algorithm. The comparison results are shown in Table
4.

On both datasets our model surpasses the state-of-the-art methods in almost
all cases. The average performance of our model is 97.39 and 96.71 respectively
with improvements of 0.63 and 0.86 comparing with the second best model
(0.49 and 0.41 improvements if compared with the results from their paper).
It is noteworthy that, the performance of existing models on the lower arms
of Actor 2 in Shelf dataset is quite low, while ours achieves 81.08 with a huge
improvement of 9.46. We notice that there exists a large quantity of occlusions
in this case, which means our model can better handle occlusions than others in
a multi-person setting.

5 Conclusion

In this paper, we have proposed a novel end-to-end dynamic matching network
for multi-view multi-person 3d pose estimation. Different from previous studies,
the end-to-end scheme of our work enables the gradients to flow back from the
3d pose estimation module to the 2d pose detection backbone. A bottom-up
dynamic matching algorithm is proposed to group the 2d poses and heatmaps
by identities so as to connect the 2d pose detector and the 3d pose estimator.
The algorithm is efficient and robust and able to automatically determine the
number of people in the scene. The ablation study verified the effectiveness of
each part of our model and the experimental results on the Shelf and Campus
datasets demonstrate that our proposed model is superior to the state-of-the-art
models with respect to accuracy, robustness and efficiency.
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