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1 Networks architecture

The convolutions used in g and h are based on PointNet++ [3] in our imple-
mentation. Each convolution layer takes as inputs the point cloud r ∈ Rn×3 on

which the convolution are performed and the features φ
(`)
i ∈ Rc′ , i = 1, . . . , n,

coming from the previous layer `. Note that these features are simply the point
coordinates r at the input of g and the estimated flow f̃ at the input of h. For
each point ri, the indices N (ri) of the m = 32 nearest neighbors to ri in r are
then computed to obtain m features at point ri, each one satisfying(
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j ∈ N (ri). These features are passed through a MLP : Rc′+3 → Rc′′ consisting of
a series of fully connected layer, instance normalisation layer with affine correction
[4], and leaky ReLu with a negative slope of 0.1, repeated 3 times in the same
order. Finally, the new feature at point ri is obtained after passing through a
final max pooling layer:
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where the max is computed independently for each of the c′′ channels. These
computations are repeated for each point ri of the point cloud using the same
MLP. The networks g and h share the same architecture, which is given in Table
1. Note nevertheless that the weights are not shared between g and h.

2 Datasets

The datasets FT3Ds and KITTIs are prepared3 as in [1]. No occluded point
remains in the processed point clouds: one can always find a point qj in q such
that qj = pi +fi at full sampling rate N . However, in practice, most of the points

3 Code available at https://github.com/laoreja/HPLFlowNet.

https://github.com/laoreja/HPLFlowNet
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Table 1. Architecture of g and h where layer 4(∗) is linear and used in h only.

Layer ` 1 2 3 4(∗)

MLP size 32 - 32 - 32 64 - 64 - 64 128 - 128 - 128 3

pi do not have a direct matching in q as both point clouds are randomly and
independently sub-sampled to keep only n� N points. This simulates different
sampling of the scene. Nevertheless, no object appears or disappears because
of occlusions between t and t + 1. FT3Ds contains 19, 640 training examples,
from which we keep 2, 000 aside for validation, and 3, 824 test examples. KITTIs
contains 200 examples for which 142 are used for test, as in [1]. We do not use the
remaining KITTI examples. The ground points in KITTIs are removed using a
threshold on the height. All points whose depth is larger than 35 m are removed
in both datasets.

The datasets FT3Do and KITTIo are the prepared4 by [2]. In FT3Do, masks
where the flow is non valid, e.g., due to occlusions, are provided in used in the
training loss, like in [2]. These masks are also used to compute the scores only
on valid points at test time for all methods. However, the points where the
corresponding flow is non-valid are present at the input of all networks. No mask
is provided for KITTIo. FT3Do contains 19, 999 training examples, from which
we keep 2, 000 aside for validation, and 2, 003 test examples.5 KITTIo contains
150 test examples. The ground points in KITTIo are removed by [2]. All points
whose depth is larger than 35 m are removed in both datasets.

3 Performance metrics

We use the following four metrics adopted in [1], [2], [5]:

– EPEi = ‖(fest)i − fi‖2: end point error, averaged over all i;

– AS: percentage of points such that EPEi < 0.05 or EPEi/ ‖fi‖2 < 0.05;

– AR: percentage of points such that EPEi < 0.1 or EPEi/ ‖fi‖2 < 0.1

– Out.: percentage of points such that EPEi > 0.3 or EPEi/ ‖fi‖2 > 0.1.

The above metrics are computed as follows. The point clouds p, q are obtained
by selecting n random points out of the N provided points in the datasets. The
flow is estimated and compared to the ground truth flow f on these n selected
points. The scores are averaged over the whole validation/test set.

4 Datasets available at https://github.com/xingyul/flownet3d.
5 We removed 8 examples with all points marked as occluded (7 in the training set

and 4 in the test set). One example which contains a non valid value in the training
dataset is also removed.

https://github.com/xingyul/flownet3d


FLOT: Scene Flow by Optimal Transport 3

Table 2. Performance of FLOT measured at the output of the OT module, i.e., before
refinement by h, on FT3Do. We report the average scores and their standard deviations
between parentheses.

Dataset K EPE AS AR Out.

FT3Do

FLOT0 0.3539 (0.0028) 6.98 (0.11) 22.05 (0.28) 88.76 (0.14)

1 0.3412 (0.0042) 7.55 (0.17) 23.50 (0.40) 88.02 (0.22)

3 0.3426 (0.0028) 7.38 (0.04) 23.09 (0.05) 88.21 (0.03)

5 0.3440 (0.0021) 7.32 (0.05) 22.94 (0.16) 88.34 (0.09)

4 Additional experimental results

4.1 Study of FLOT

We report in Table 2 the performance of FLOT obtained at the output of the OT
module on FT3Do. The corresponding performance with refinement are available
in the core of the paper. As on FT3Ds, we remark that the refinement permits
to improve the EPE by around 2, confirming its utility in presence of occlusions.

4.2 Computation time in the OT module

At n = 2048, the computation time6 in the OT module is 1.4, 2.0 and 2.2 ms for
FLOT0, FLOT K = 1, FLOT K = 3, respectively. At n = 8192, the computation
time in the OT module is 13.1, 16.0, 17.9 ms for FLOT0, FLOT K = 1, FLOT
K = 3, respectively. This represents at most 8% of the total computation time
which is itself at most of 27.8 ms at n = 2048 and 346 ms at n = 8192. Most
of the time, at least 67% at n = 2048 and 86% at n = 8192, is spent in the
feature extractor g. This shows that the OT module is responsible for just a
small fraction of the total computation time.

Note that the time spent in the OT module is independent of the type of
convolution used. Replacing our implementation of PointNet++ with a faster
one or choosing a faster convolution will directly improve the computation time
spend in g and h. Our implementation of the OT module can also be made faster
by avoiding to compute densely the cost matrix C by restricting the computation
to points that are less than dmax meters apart, as these points never contribute
to T.
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