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Abstract. Structure extraction from document images has been a long-
standing research topic due to its high impact on a wide range of prac-
tical applications. In this paper, we share our findings on employing a
hierarchical semantic segmentation network for this task of structure
extraction. We propose a prior based deep hierarchical CNN network
architecture that enables document structure extraction using very high
resolution(1800 × 1000) images. We divide the document image into
overlapping horizontal strips such that the network segments a strip and
uses its prediction mask as prior for predicting the segmentation of the
subsequent strip. We perform experiments establishing the effectiveness
of our strip based network architecture through ablation methods and
comparison with low-resolution variations. Further, to demonstrate our
network’s capabilities, we train it on only one type of documents (Forms)
and achieve state-of-the-art results over other general document datasets.
We introduce our new human-annotated forms dataset and show that our
method significantly outperforms different segmentation baselines on this
dataset in extracting hierarchical structures.Our method is currently be-
ing used in Adobe’s AEM Forms for automated conversion of paper and
PDF forms to modern HTML based forms.

Keywords: Documents structure extraction, Hierarchical Semantic Seg-
mentation, High Resolution Semantic Segmentation

1 Introduction

Semantic structure extraction for documents has been explored in various works
[16,17,47,49]. The task is important for applications such as document retrieval,
information extraction, and categorization of content. Document structure ex-
traction is also a key step for digitizing documents to make them reflowable (au-
tomatically adapt to different screen sizes), which is useful in web-based services
[1,13,22,36]. Organizations in domains such as govt services, finance, adminis-
tration, and healthcare have many documents that they want to digitize. These
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Fig. 1: (Left): Part of an example form that illustrates elements and structures
at different levels of hierarchy. (Right): An illustrative dense form and lower
elements segmentation mask predicted by our model. The TextRuns are marked
in green and Widgets in yellow.

industries which have been using paper or flat PDF documents would want to
re-flow them into digitised version [36] (such as an HTML) so that they can
be used on many devices with different form factors[1,13]. A large part of these
documents are forms used to capture data. Forms are complex types of docu-
ments because, unlike regular documents, their semantic structure is dense and
not dominated by big blobs3 of structural elements like paragraphs, images.

To make paper or flat-pdf documents reflowable3, we need to extract its se-
mantic structure at multiple levels of hierarchy. PDFs contain only low-level
elementary structures such as text, lines. PDFs do not contain any metadata
about other higher-order structures, and therefore, there is a need to retrieve
such constructs. Much of previous work looks at regular documents comprising
of coarse structural elements that span a large area in the document image,
e.g., paragraphs, figures, lists, tables [49,41,30]. But, such studies leave out doc-
uments having the most complicated structures, i.e., forms. Forms have dense
and intricate semantic structures, as shown in Fig 1(right). In many forms, the
structure is induced due to the presence of large empty areas, like in Fig 2b.
They also have a deeper hierarchy in structure as compared to other documents,
as shown in Fig 1 (left). We build our method focusing on the hardest cases,
i.e., form documents and show that this method generalizes well and establishes
new-state-of-art across different document datasets.

To extract the hierarchical form structure, we identify several composite
structures like TextBlocks, Text Fields, Choice Fields, Choice Groups that com-
prise of basic entities like TextRuns and Widgets as illustrated in Fig 1 (left).
We define a TextRun as a group of words present in a single line and Widgets
as empty spaces provided to fill information in forms. A TextBlock is a logical
block of self-contained text comprising of one or more TextRuns; a Text Field
comprises of a group of one or more Widgets and a caption TextBlock describing
the content to be filled in the field. Choice Fields are Boolean fields used for

3 Please refer to supplementary for more visualisations
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(a) Fragment of a form having large
empty spaces

(b) Semantic structure induced around these
empty spaces

Fig. 2: Fragment of a form document

acquiring optional information. A Choice Group is a collection of such Choice
Fields and an optional Choice Group Title, which is a TextBlock that describes
instructions regarding filling the Choice Fields. Fig 1 (left) illustrates different
semantic structures present in a form document at different hierarchical levels.

We started with fully CNN (FCNNs) based segmentation network since they
have been shown to perform well on natural images. However, we found that
they perform poorly on form documents as shown in Experiments section. Even
FCNNs [17,47,49] focusing on document structure extraction perform well at
only extracting coarse structures in documents. They do not perform well at
extracting closely spaced structures in form images. Since they process the entire
image in a single forward pass, due to memory constraints, they downscale the
original image before providing it as input to their model. Moreover, down-
scaling of input makes it difficult to disambiguate closely spaced structures,
especially in dense regions and leads to merging of different structures. These
gaps in current solutions became the motivation behind our current research. In
this work, we propose a method to extract the lower-level elements like TextRuns
and Widgets along with higher-order structures like Fields, ChoiceGroups, Lists,
and Tables. Our key contributions can be summarised as:

– We propose a prior and sub-strips based segmentation mechanism to train
a document segmentation model on very high resolution (1800 × 1000) im-
ages. Further, our network architecture does not require pre-training with
Imagenet [8] or other large image datasets.

– We perform hierarchical semantic segmentation and show it leads to better
structure extraction for forms. We also compare different variants of our
approach to highlight the importance of shared hierarchical features.

– We propose bi-directional 1d dilated conv blocks to capture axis parallel
dependency in documents and show it is better than equivalent 2d dilated
conv blocks.

– We introduce a new human-annotated Forms Image dataset, which contains
bounding boxes of a complete hierarchy of semantic classes and all the struc-
tures present in the images.

– We compare our method with semantic segmentation baselines, including
DeeplabV3+ (state of the art for semantic segmentation), which uses Ima-
genet pre-training, outperforming them significantly.
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Fig. 3: HighRes model predicts a single choice group correctly. Two strips cut
across group causing NoPrior model to split it since it did not have prior from
previous strip. We train our model to predict crisp masks through convex hull.

Our strip based segmentation helps to mitigate the memory limitation on
GPU while training a neural network on high-resolution images. However, strip-
based segmentation without prior can potentially fail to predict continuous se-
mantic structures that span across multiple strips (Fig 3). Hence we introduce
a prior based strip segmentation, where each image strip’s prediction is cached
on the GPU and provided as prior concatenated with the input while predicting
the segmentation mask of the subsequent strip. Structures that typically span
a large area of a form or document like tables and lists could be processed at a
lower resolution, but they significantly benefit from the 1D dilated conv network.
The hierarchical 1D dilated conv network was introduced to train multi-level hi-
erarchy segmentation together in a single network, so that it learns to predict
consistent segmentation masks across these hierarchies [4,27].

Our method is currently being used in Adobe AEM Forms as Automated
Form Conversion Service4 enabling digitisation to modern HTML based forms.

2 Related Work

Document structure analysis started as heuristic-based methods [15,9,14,46]
based on handcrafted features [24] for extracting paragraphs and graphics. Most
of the recent deep-learning based approaches are based on fully-convolution neu-
ral network (FCN)[49,17,47,6] and avoid any heuristic-based approaches. These
FCN’s are trained to generate semantic segmentation [29] for the rasterized
version of the document. FCNs have also been used to locate and recognize
handwritten annotations in old documents [23]. [48] proposed a joint text detec-
tion and recognition model. They used a region proposal network which detects
the beginnings of text lines, a line following model predicts a sequence of short
bounding boxes along the text-line, which is then used to extract and recognize
the text. We employ our high resolution segmentation network to extract and
disambiguate closely spaced textruns and textblocks from form images.

Table detection has been the key focus of some works like [16,17,26,2,37].
In [16], table region candidates were chosen based on some loose rules which

4 https://docs.adobe.com/content/help/en/aem-forms-automated-conversion-
service/using/introduction.html
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were later filtered using a CNN. In [17], an FCN was proposed, having a multi-
scale architecture which had two branches where one was dedicated to table
segmentation while the other was used to find contours. After that, an addi-
tional CRF(Conditional Random Field) was used to refine the segmentation
output further. We propose a multi-branch architecture to segment hierarchical
structures that overlap in same region in a form. For tables, we compare our
model with [17] on marmot dataset, one of the largest publicly available table
evaluation dataset [10]. While there are other works [34,41] that perform table
decomposition into rows and columns (which our model is capable of doing),
we discuss table detection only in the scope of this paper. Other works like [45]
introduced a large dataset of 5.5 million document labels focusing on detecting
bounding boxes for figures using an Overfeat [42] network, trained over image
embedding generated using ResNet-101.

It is evident that FCN based segmentation approaches have led to great ad-
vancement in document structure extraction. However, a few approaches have
also tried other network architectures and input modalities such as text. [21,28]
are some of the multi-modal approaches proposed to extract named entities from
invoices. Other network architectures such as Graph Neural Networks (GNNs)
have been explored in [39,35] for detecting tables in invoice documents and pars-
ing table structure, respectively. In a related domain of document classification
also, CNN based methods have been explored in recent times. [43] used them
for document verification. Moreover, [50] proposed HAN to create sentence and
document embedding in a hierarchical fashion using a multi-level attention mech-
anism. Document classification has also been explored using multi-modal models
[3] by extracting visual and textual features from MobileNet[19] and FastText
[5] respectively. These features are later on concatenated to learn a better clas-
sification model.

In domains such as biomedical imaging and remote sensing, semantic segmen-
tation in high resolution has been explored. [53] uses past slice’s mask along the
z-axis as prior for the entire 2d cross-section and marks out the entire ROI. They
convert prior masks into features by a separate net, which are used in decoding.
In our approach, each strip prior is partially filled, and only the beginning of ROI
is known. Also, we use the mask as prior with the image, which reduces model
parameters. Similarly some works use tiles with context mask [20], but without
prior [40,54]. However for documents, width length slices are required because
most context is spread horizontally & tile-wise context passing would make it
harder to understand context spread across the width. [33,25,38] do iterative
refinement of segmentation with different strategies. However, our method does
iterative prediction instead of refinement for getting HighRes masks.

Multi-modal Semantic segmentation has been proposed in [49] to extract
figures, tables, lists, and several other types of document structures. A text
embedding map for the entire page of the document image gets concatenated
with the visual feature volume in a spatially coherent manner such that there is
a pixel to text correspondence. We use their approach as one of our baselines on
forms. We do not compare with object detection methods like [18] since we found
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they often merge close structures in dense documents and rather chose better
segmentation baseline - DeepLabV3+ [7], which is the current state-of-the-art
in semantic segmentation.

3 Methodology

In this section, we discuss our proposed model to extract various structures from
documents like widgets, fields, textblocks, choice-groups etc. For documents,
especially in the case of forms, the semantic structure extends extensively in
both vertical and horizontal directions. For many structures such as widgets
and fields, it may even extend to empty spaces in the input image requiring the
model to predict objects in parts where there is no explicit visual signal. Also, the
higher-level structures are composed of lower-level elements and it is necessary
to make fine grained predictions at different levels. This leads to our motivation
to use a hierarchical dilated 1D conv based semantic segmenter to capture long-
range relationships and predict multiple masks at different hierarchies that are
mutually consistent. Finally, to address the issue of dense text documents and
forms, we modify the network input mechanism by enabling a tile stitching
behavior in our network while performing segmentation to train it at higher
resolutions.

3.1 Network Pipeline

We convert the RGB input image into grayscale and resize the grayscale image
having height and width (IH × IW ) to (H × w) such that IW scales to w and
IH gets scaled by the same ratio, i.e., w/IW . The resulting image is further
cropped or padded with zeros to a size of h × w. h is kept larger than H to
accommodate elongated document images. We divide the input image into over-
lapping horizontal strips. Let Sh be strip height, Oh be overlap height between
consecutive strips, SegNet is our segmentation network, and SegMsk denote
segmentation mask. Following this notation, Algorithm 1 describes our method
where the network predicts the segmentation mask of different strips in succes-
sion. Each strip’s mask prediction uses the predicted mask for the previous strip
as prior. We copy logits corresponding to all classes from segmentation output
masks to prior mask having many channels with each channel dedicated to one
class.

As stated earlier, we use a dilated 1D conv architecture to predict precise and
uniform segmentation masks. Our network broadly comprises of three compo-
nents, Image Encoder (IE), Context Encoder (CE), and Output Decoder (DE).
We concatenate a prior mask to each image strip and feed it into the Image En-
coder (IE) to generate features at multiple granular levels. The final features of
IE, are then processed through a dilated 1D conv based Context Encoder (CE),
which generates features capturing contextual dependencies. All these sets of
features from CE and IE is then passed to Output Decoder (DE) to generate
segmentation masks for different semantic structure levels. We would now ex-
plain each of these modules in greater detail.
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Algorithm 1: Stripwise, prior based image segmentation
1 Input: Image (Img) of size h× w, strip height(Sh) and overlap height in-between

strips(Oh)
2 Output: Segmentation mask (OutMsk) of size h× w

// Initialize SegMsk, PriorMsk and StripCount
3 for x← 0 to w, y ← 0 to Sh do
4 SegMsk[y, x] ← 0,
5 PriorMsk[y, x] ← 0,

6 end
7 StripCount ← 1 + (h− Sh)/(Sh −Oh)

// Now process strips one by one
8 for step← 0 to StripCount do

// Concat SegMsk with PriorMsk
9 for x← 0 to w, y ← 0 to Sh do

10 InpImg[y, x] ← Img[(Sh −Oh) ∗ step + y, x] || PriorMsk[y, x]
11 end

// Predict the segmentation mask and propagate the gradients
12 SegMsk ← SegNet(InpImg)

// Copy overlapping area of the segmentation mask into prior mask
13 for x← 0 to w, y ← 0 to Oh do
14 PriorMsk[y, x] ← SegMsk[Sh −Oh + y, x]
15 end

// Calculate the vertical offset for output
16 y start ← (Sh −Oh) ∗ step
17 vh ← Sh

18 if step < StripCount− 1 then
19 vh ← Sh −Oh

20 end
// Collect prediction in OutMsk

21 for x← 0 to w, y ← 0 to vh do
22 OutMsk[y start + y, x] ← SegMsk[y, x]
23 end

24 end

3.2 Network Architecture

Image Encoder Fig 4 depicts the architecture of Image Encoder (IE) that
comprises of multiple convolution layers, max-pooling layers. As shown in the
figure, the first conv layer has 3 × 3 kernel with a 64 channel output. The pa-
rameters of the remaining layers are highlighted using the same notation. Each
convolution layer has a stride of 1 unless specified, the third conv layer in Image
Encoder has a stride of 2 and is denoted by ”1/2” in the figure. Similarly, all
the max-pooling layers have a stride of 2 by default. The output of these con-
volutions is passed on to the Context Encoder. We extract several intermediate
features (detail1, detail2, detail3, detail4) from the Image Encoder that act as
skip connections [31] and are used by the decoder.

Context Encoder The context encoder (CE) is composed of four bidirectional
1D dilated conv blocks (BDB). Each BDB contains a vertical dilated block fol-
lowed by a horizontal dilated block. The dilated blocks consist of four dilated
conv layers [51] that work in parallel on the same feature volume at different
dilation rates, as seen in Fig 4. The BDB processes the feature volume in vertical
direction, and subsequently, its outputs are processed in a horizontal direction.
Each BDB’s output is fed to the next BDB, and final output is fed to a CNN
decoder to predict the segmentation mask at all levels of the hierarchy.

Output Decoder The network consists of a single decoder that has multi-
ple heads for generating segmentation maps for different levels in hierarchy. It
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Fig. 4: Detailed overview of our network architecture.

up-samples it by passing it through a transposed convolution layer [32]. The up-
sampled features are subsequently passed through another conv layer. Finally,
these features are concatenated with another feature volume detail4, obtained
from Image Encoder. The decoder branch repeats the sequence of such opera-
tions multiple times, as shown in Fig 4. Each convolution in the decoder branch
has a stride of 1, and each transpose conv, depicted as convT in Fig 4, has
a stride of 2 by default. The different segmentation heads on the penultimate
layer of the decoder are used to predict segmentation masks for different spa-
tially overlapping classes like widget and fields. The first segmentation head
predicts the lowest level of the semantic structure (TextRun and Widget), and
the other segmentation heads output prediction corresponding to higher levels
of hierarchy. Such a network design helps in segregating the classes according to
hierarchy since the container groups, and their constituent classes are predicted
in separate masks.

4 Experiments

4.1 Datasets

Forms Dataset: We used our rich hierarchical Forms Dataset5 comprising of
52,490 human annotated Form images. These forms are from diverse domains
such as automobile, insurance, finance, medical, government (court, military, ad-
ministration). We employed annotators to annotate the form images to mark the
bounding box of different structures in the form image and also asked them to
mark the constituent elements that comes lower in the hierarchy for each struc-
ture. We split the dataset into 48,256 images for training and 3,234 images for
validation. We used a separate set of 1,300 test images for the final evaluation
of our model with the baselines and to perform ablation studies.

5 A part of the dataset will be made available at https://github.com/flamingo-
eccv/flamingo-data
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Marmot Dataset: We evaluate and compare our model trained on Forms
Dataset on the Marmot Dataset [10]. This dataset is one of the largest pub-
licly available Table evaluation dataset. It contains 2000 document images corre-
sponding to an approximately equal number of English and Chinese documents.
RVL-CDIP: The dataset comprises of 400k greyscale images divided into 16
different classes. We select 518 images(mostly scanned) from invoice class anno-
tated with table regions as done by [39] to evaluate and compare our framework
on table detection.
ICDAR 2013: We also evaluate our approach on the table decomposition task
on ICDAR 2013 dataset[11] where the goal is to decompose tabular regions into
rows and columns. It comprises of two sets of pdfs - US and EU split. We extract
the images from the pdfs with the corresponding ground truth for tables. We
evaluate our model trained a) only on ICDAR datset and b) additional forms
data, outperforming state of the art in both settings.

4.2 Implementation Details

We set w = 1000, h = 1800, Sh = 600, Oh = 200 for the SegNet model defined
in Section 3. We slice the high resolution input image into 4 overlapping horizon-
tal strips. All the convolution and deconvolution layers have ReLU activation.
We train our model at a batch size of 32 on 8 Tesla V100 GPUs in parallel.
We use AdaDeltaOptimizer [52] to train the parameters of our model with an
exponentially decaying learning rate using 1× 10−1 as the starting learning rate
and a decay factor of 0.1. Please refer to Fig 4 for specific configuration details
of different network layers. To enable the network to predict concise masks, we
use convex hull [12] to determine segmentation masks.

4.3 Results

Model Evaluation and Ablation Studies
On Forms dataset, we train our high resolution model for predicting TextRuns,
Widgets, TextBlocks, ChoiceGroup Titles, ChoiceFields, TextFields and Choice
Groups such that its decoder predicts structures at various levels of hierarchy.
The first hierarchy comprises of TextRuns and Widgets, the second comprises of
TextBlocks and ChoiceGroup Titles, the third hierarchy comprises of TextFields
and ChoiceFields while the fourth comprises of Choice Groups only. We add
another class - Border, surrounding each structure and make the network predict
this class to enable it to disambiguate different objects and generalise better.
We refer to this network configuration as Highresnet. We perform ablations es-
tablishing gains from our high resolution segmentation network by comparing it
with : 1) Lowresnet - a low resolution variation of Highresnet that takes input
image at 792 resolution and predicts hierarchical segmentation masks for the
entire image in a single forward pass; 2) NoPriorNet - A Highresnet variation
where we divide the input image into horizontal strips with no overlap between
consecutive strips. In this variant, the segmentation mask predicted for a strip is
not given as prior for the subsequent strip prediction; 3) 2D-DilatedNet - where
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Table 1: Mean IoU of different ablation methods for several hierarchical form
structures.

Structure → Text Widget Text ChoiceGroup Text Choice Choice
Model ↓ Run Block Title Field Field Group

Lowresnet (ours) 89.31 82.17 88.49 69.03 81.93 65.85 72.61
NoPriorNet (ours) 91.46 84.79 89.88 78.89 86.19 79.42 80.14

2D-DilatedNet (ours) 91.63 85.91 89.71 79.1 87.34 81.95 81.11
Highresnet (ours) 92.7 87.32 90.55 80.87 88.87 84.05 83.01

Table 2: Precision-Recall numbers for the different hierarchical form structures
on the different ablation models computed with an IoU threshold of 0.7.

Model → Lowresnet NoPriorNet 2D-DilatedNet Highresnet

Structure ↓ P R F1 P R F1 P R F1 P R F1

TextRun 72.8 55.0 62.6 79.1 66.9 72.5 80.0 66.7 72.7 80.2 67.3 73.2
Widget 52.8 51.8 52.3 69.2 70.6 69.9 71.0 71.5 71.2 75.0 75.4 75.2

TextBlock 51.0 45.6 48.2 69.6 71.6 70.6 68.6 70.4 69.5 71.2 72.5 71.9
Text Field 43.1 53.4 47.7 66.7 78.0 71.9 69.9 79.7 74.5 73.4 82.5 77.7

ChoiceGroup Title 48.2 41.0 44.3 83.2 81.8 82.5 82.0 80.8 81.4 85.0 84.9 84.9
Choice Field 28.3 33.3 30.6 69.8 74.9 72.2 71.7 76.6 74.1 77.7 81.5 79.6
ChoiceGroup 26.5 33.1 29.4 32.5 43.8 37.3 34.4 43.6 38.5 37.8 44.5 40.9

the horizontal(vertical) 1d dilated conv layers in our network’s context encoder
are replaced with 2d dilated conv layers with exactly same dilation rates and
kernel parameters (each 1 × 9 or 9 × 1 kernel is replaced with 3 × 3 kernel).
We use pixel mean Intersection over Union (MIoU) to evaluate different models.
We summarise MIoU of different ablations in Table 1. We also estimate object
level recall and precision (Table 2) and compare with ablation methods. For this,
we consider a predicted structure as correct match if the IoU of its predicted
mask is above a threshold (0.7) with an expected structure mask. Object-level
extraction plays a crucial role in deciding the quality of final re-flow
conversion. We, therefore, report these numbers to assess the perfor-
mance of final structure extraction.

Compare Highresnet with Lowresnet: It can be seen that by extracting
hierarchical structure in high resolution, Highresnet is able to improve the MIoU
scores significantly over all classes. Similar trend is observed for object level per-
formance (Table 2 and Table 3).
Compare Highresnet with NoPriorNet: Adding predicted segmentation
mask as prior while making prediction for subsequent strip in a page improves
the MIoU scores. Further these improvements in MIoU leads to a significant and
even better improvement in object extraction performance(table 2 and 3).
Compare Highresnet with 2D − DilatedNet: It can be seen that using 1d
dilated convs performs slightly better than 2d dilated convs(having same number
of parameters) in terms of MIoU. However such improvements result in profound
impact on object level performance.



Hierarchical Document Structure Extraction in High Resolution 11

Table 3: Mean IoU comparison between our Lowresnet model and its variant.
Lowresnet-1 to Lowresnet-4 are trained specifically for a single hierarchy only
while LowresnetMD comprises of shared encoder but separate decoders for dif-
ferent hierarchies in a single model.

Structure → Text Widget Text ChoiceGroup Text Choice Choice
Model ↓ Run Block Title Field Field Group

Lowresnet-1 (ours) 87.75 80.11 – – – – –
Lowresnet-2 (ours) – – 87.42 63.95 – – –
Lowresnet-3 (ours) – – – – 80.8 63.07 –
Lowresnet-4 (ours) – – – – – – 70.55

LowresnetMD (ours) 86.42 78.96 86.87 65.67 79.28 62.79 69.37
Lowresnet (ours) 89.31 82.17 88.49 69.03 81.93 65.85 72.61

Ablation on importance of detecting hierarchies simultaneously:
To analyse the importance of segmenting different hierarchical structures to-
gether, we consider different variants of our Lowresnet where we train 4 different
models, one for each hierarchy separately: Lowresnet-1 for textruns and widgets,
Lowresnet-2 for textblocks and choice group title, Lowresnet-3 for text fields and
choice fields, and Lowresnet-4 for choice groups. For these variants we scale down
the number of filters in each convolution layer by 2 so that the number of param-
eters in each variant is scaled down by 4. Since there are 4 such variants, together
combined they have same number of parameters as our Lowresnet model. As can
be seen in table 3, the Lowresnet model has significantly better MIoU for all the
structures compared with models trained for individual hierarchy levels. This
shows that predicting hierarchical structures simultaneously results in better hi-
erarchical features that benefit structures across the hierarchies (for instance,
choice group title, choice field and choice group are inter-dependent). We fur-
ther investigate this through training a variant LowresnetMD which comprises
of the same encoder as in Lowresnet but comprises of four different decoders
corresponding to each hierarchy level. The encoder features are shared between
different decoders in LowresnetMD. Each decoder has same architecture and pa-
rameters as in the decoder of Lowresnet. It can be seen in table 3 that predicting
hierarchical structures together at the last layer in Lowresnet is beneficial com-
pared to having separate decoders in LowresnetMD, even though the latter has
more number of trainable parameters. This is because the shared hierarchical
features upto the last layer helps in predicting different structures better as com-
pared to having independent features for different hierarchies through separate
decoders.

Comparison with Baselines We consider two baselines - DeepLabV3+ [7]
(DLV3+), which is the state of the art for semantic segmentation tasks on natu-
ral images and Multimodal FCNN (MFCN) [49] designed for extracting several
complex structures in documents. The baseline segmentation models segment
the input image into a flattened hierarchy. To address this, we process output of
penultimate layer of the baseline models through 4 separate FC layers to obtain
hierarchical masks using data schema similar to Highresnet. We train baselines on
RGB images at a resolution of 792× 792 following an aspect ratio preserving re-
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Fig. 5: Left: Visualisations showing segmentation masks predicted by DLV3+(top
row), MFCN(middle row), and our method Highresnet(bottom row) for a sam-
ple form image. Right: Visualisation of List and Table Segmentation masks on
our model and baselines respectively: For each of the two images, MFCN, DLV3+
and Lowresnet-TL predictions are shown in top right, bottom left and bottom
right subparts.

Table 4: Mean IoU comparison between the baseline methods and our model on
different form structures.

Structure → Text Widget Text ChoiceGroup Text Choice Choice
Model ↓ Run Block Title Field Field Group

DLV3+ NoImagenet 80.05 71.2 79.61 18.69 66.91 33.59 39.61
DLV3+ Imagenet 81.63 77.73 83.44 48.09 76.26 50.12 56.11

MFCN 77.81 47.58 71.33 29.76 39.55 28.1 35.43
Lowresnet (ours) 89.31 82.17 88.49 69.03 81.93 65.85 72.61
Highresnet (ours) 92.7 87.32 90.55 80.87 88.87 84.05 83.01

size. For DLV3+, we train both with and without imagenet pre-trained weights
for the Resnet-101 backbone variants. For MFCN, loss for different classes is
scaled according to pixel area covered by elements of each class (calculated over
the dataset) as described in their work. Table 4 compares the MIoU of our ap-
proach with baselines while table 5 compares the object level F1 score. As can
be seen, our model Highresnet significantly outperforms both baselines on all
form structures. In particular, DLV3+ without imagenet pre-training performs
poorly on segmenting different form structures. The pre-trained version performs
much better but our Highresnet significantly outperforms it without requiring
imagenet pre-training with large improvements in MIoU scores.

Fig 5(Left) illustrates segmentation masks predicted by different baseline
methods, and our model on a sample form image6. Baseline methods merge

6 Please refer to supplementary for more visualisations
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Table 5: Comparison of precision-recall for the different hierarchical form struc-
tures between baseline and our method computed with an IoU threshold of 0.7.
*CG Title - ChoiceGroup Title, **CG - ChoiceGroup

Model → DLV3+ DLV3+ MFCN LowRes HighRes
NoImagenet Imagenet Net (ours) Net (ours)

Structure ↓ P R F1 P R F1 P R F1 P R F1 P R F1

TextRun 57.4 35.1 43.5 63.0 38.1 47.5 58.7 45.9 51.5 72.8 55.0 62.6 80.2 67.3 73.2
Widget 37.0 32.7 34.7 58.7 53.4 55.9 14.3 26.6 18.6 52.8 51.8 52.3 75.0 75.4 75.2

TextBlock 52.3 47.5 49.8 57.3 53.3 55.2 17.4 22.3 19.5 51.0 45.6 48.2 71.2 72.5 71.9
TextField 15.6 14.5 15.0 29.6 23.8 26.4 4.2 27.6 7.4 43.1 53.4 47.7 73.4 82.5 77.7
CG Title* 46.3 11.2 18.1 59.9 41.3 48.9 10.6 20.8 14.1 48.2 41.0 44.3 85.0 84.9 84.9

ChoiceField 22.0 14.8 17.7 31.8 23.5 27.0 8.9 19.5 12.2 28.3 33.3 30.6 77.7 81.5 79.6
CG** 4.5 6.8 5.4 14.2 19.4 16.4 1.3 6.0 2.2 26.5 33.1 29.4 37.8 44.5 40.9

Table 6: Comparison of MIoU, object level precision, recall, F1 scores of our
method with the baselines for Table and List on Forms Dataset.

Model → DLV3+ DLV3+ MFCN Lowresnet-TL
Metric ↓ NoImagenet Imagenet

Table List Table List Table List Table List

MIoU 69.9 55.7 77.9 65.1 48.1 22.1 79.83 63.60
P 20.6 17.4 35.2 29.8 4.09 1.49 55.71 55.55
R 50.0 26.5 60.4 38.4 59.375 23.67 77.20 52.29
F1 29.2 21.0 44.4 33.6 7.66 2.81 62.89 53.73

different elements and hierarchical structures such as TextBlocks and Fields.
In contrast, our model predicts crisp segmentation masks while extracting all
such structures. For choice group, the baseline methods predict incomplete seg-
mentation mask while our model captures long-range dependencies among its
constituent elements and predict the complete mask.

Evaluation on Other Higher Order Constructs In this section, we discuss
the performance of our model at extracting other higher order structures like
Lists and Tables. These structures are relatively more evident and span large
regions in a page reducing the need to disambiguate them in high resolution.
Consequently, we train a separate low resolution ( 792 × 792 ) version of our
proposed network similar to Lowresnet which we refer to as Lowresnet-TL to
predict these structures. In order to compare the performance of this network,
we also train networks for the two baselines for extracting Tables and Lists
simultaneously. Table 6 compares the MIoU of our method with the baseline
models and the Fig 5 (Right) illustrates the network outputs for the task of
Table and List segmentation. It can be seen that Lowresnet-TL significantly
outperforms both the baselines, specifically it outperforms imagenet pre-trained
DLV3+ while itself not requiring imagenet pre-training.

We also compare precision-recall of Table predictions of Lowresnet-TL on
Marmot Dataset with previous best method – Multi-Scale Multi-Task FCN
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Table 7: Comparison of Table Detection precision-recall numbers on Marmot
and RVL-CDIP Datasets and Table Decomposition on ICDAR2013 Dataset

Method (IoU)
Marmot English Marmot Chinese RVL-CDIP ICDAR2013

P R F1 P R F1 P R F1 P R F1

MSMT-FCN (0.8) 75.3 70.0 72.5 77.0 76.1 76.5 – – – – – –
MSMT-FCN (0.9) 47.0 45.0 45.9 49.3 49.1 49.1 – – – – – –
Lowresnet-TL(0.8) 75.2 72.2 73.7 71.7 77.4 74.4 – – – – – –
Lowresnet-TL(0.9) 61.2 64.6 62.8 62.3 70.5 66.1 – – – – – –

GNN-Net[39](0.5) – – – – – – 25.2 39.6 30.8 – – –
Lowresnet-TL (0.5) – – – – – – 43.6 65.4 52.3 – – –

Baseline [44](0.5) – – – – – – – – – 93.4 93.4 93.4
Lowresnet-TL(0.5) – – – – – – – – – 93.9 94.3 94.1
+FormsData(0.5) – – – – – – – – – 94.7 95.7 95.2

(MSMT-FCN ) [17] in Table 7. It can be seen that Lowresnet-TL performs simi-
lar to MSMT-FCN for an IoU threshold of 0.8. However, Lowresnet-TL performs
significantly better than MSMT-FCN for higher IoU threshold of 0.9 indicating
our architecture is able to predict crisper predictions. On RVL-CDIP, our model
outperforms GNN-Net [39] which is state of the art for table detection on this
dataset. We also evaluate our method for task of table decomposition into rows
an columns on ICDAR 2013 dataset and compare it against [44]. The numbers
reported are average of precision, recall and F1 obtained for rows and columns
as done by [44]. We train our model in two settings - one using ICDAR2013
data only(using same train-test split) and secondly by adding our forms data
(105 tables). We apply post processing on network outputs where we filter row
predictions based on area threshold and extend row mask horizontally to obtain
completed row predictions and apply similar transformation for columns. As can
be seen our method outperforms [44](table 7).

5 Conclusion

We propose a novel neural network training mechanism to extract document
structure on very high resolution. We observe that higher resolution segmenta-
tion is beneficial for extracting structure, particularly on forms since they posses
highly dense regions. We show that a single network hierarchical segmentation
approach leads to better results on structure extraction task. In addition, we
also show that 1D dilated conv based model captures long range contextual de-
pendencies while segmenting different hierarchical constructs. Various ablation
studies show the effectiveness of our high resolution segmentation approach and
network architecture design. We compare our method with different semantic
segmentation baselines outperforming them significantly on our Forms Dataset
for several structures such as TextBlocks, Fields, Choice Groups etc. Addition-
ally, our model trained on Forms Dataset outperforms prior art for table detec-
tion on Marmot and ICDAR 2013 dataset.
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