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Abstract. Existing connectivity-oriented performance measures rank
road delineation algorithms inconsistently, which makes it difficult to
decide which one is best for a given application. We show that these
inconsistencies stem from design flaws that make the metrics insensitive
to whole classes of errors. This insensitivity is undesirable in metrics
intended for capturing overall general quality of road reconstructions.
In particular, the scores do not reflect the time needed for a human to
fix the errors, because each one has to be fixed individually. To provide
more reliable evaluation, we design three new metrics that are sensitive
to all classes of errors. This sensitivity makes them more consistent even
though they use very different approaches to comparing ground-truth
and reconstructed road networks. We use both synthetic and real data
to demonstrate this and advocate the use of these corrected metrics as
a tool to gauge future progress.

1 Introduction

Reconstruction of road networks from aerial images is an old computer vision
problem. It has been tackled almost since the inception of the field in the
1970’s [4,28,26,13]. Yet, it is still open and is addressed by many recent pa-
pers [23,22,9,21,19,5,25,10,6,24,33]. One pitfall however, is that the metrics used
to gauge performance often prove to be inconsistent. It is not unusual for a
method to perform well according to one popular metric and poorly according
to another. Trusting to one single metric can therefore be misleading and can
hamper progress.

This situation arises from the fact that assessing the quality of a road graph
is hard. The quality assessment should not only depend on the spatial accuracy
of the reconstructed road centerline but also on the topology of the network
these centerlines form. The first is relatively easy to quantify while the second
is much more difficult and there is no generally accepted way of doing it. This
is because comparing the predicted topology to the ground truth one amounts
to solving a complex graph-matching problem for which no efficient algorithm
exists. Current topology-aware metrics are therefore hand-crafted to perform a
simplified comparison, with some constraints of the full graph-matching problem
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relaxed. They fall into three main categories: the metrics that compare the junc-
tions, or road intersections, in the two graphs, ones that compare the lengths of
the paths connecting random pairs of junctions, and ones that match small sub-
graphs. Unfortunately, as we will show, all these metrics correlate poorly with
the number of topological discrepancies—missed road branches, unwarranted or
missing connections—between the two graphs. This makes it hard to use them
to reason about the number of mistakes present in a reconstruction and the cost
of fixing them.

In this paper, we show that these inconsistencies arise from design flaws in
currently popular metrics and propose ways to fix them. We incorporate these
fixes into three topologically-aware metrics that capture a large range of errors
and balance their contributions in the final score. We show that this makes
them more consistent both with each other and with the number of topological
discrepancies. Our contributions are therefore:
– An in-depth analysis of existing metrics that exposes their lack of sensitivity

to certain types of errors and the resulting lack of consistency when using
them to compare different algorithms.

– Three new measures free from this problem and that we advocate for future
algorithm evaluation.

We make the code for computing our measures publically available. In the re-
mainder of the paper, we first describe existing metrics and their shortcomings.
We then introduce our new metrics and test them on synthetic and real data.

2 Existing Metrics

Road networks are often represented by graphs whose nodes have a double func-
tion. They serve as control points that enable modeling potentially curvy road
segments and represent road intersections, and end points. Let us assume we are
given a predicted graph and a ground truth graph, whose similarity we want to
assess. Comparing these two networks that are similar, but not identical, is non-
trivial. Doing this in a graph-theoretic way can be viewed as an NP-complete
graph matching problem [30]. In this section, we review strategies commonly
used to circumvent this problem.

One such approach is to first project the graphs to point clouds, by represent-
ing graph edges as sequences of closely spaced points, and then to evaluate the
spatial overlap of these point clouds. Chamfer and Hausdorff measures may be
employed to evaluate the sum and maximum of distances from each point in one
set to its closest point in the second set. However, Chamfer and Hausdorff do not
measure connectivity and are not sensitive to connectivity-oriented errors, like
small gaps in roads, or predicting two closely spaced roads in place of a single
real road. Such errors are common in road network reconstructions from aerial
images, and that is why these metrics are typically not used to evaluate them.

Task-specific measures are used in some problems involving predicting graphs
from images, but they do not generalize to the case of road networks. The DIA-
DEM score [15], used for comparing reconstructions of neuronal morphologies,

https://www.epfl.ch/labs/cvlab/
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relies on the assumption that both graphs have tree-like topologies. The Rand
index [2,14], used for comparing segmentations of neuronal cells in microscopy
images, compares the presence or absence of connections between pixel pairs
in the prediction and annotation. In road lane reconstruction [3,16,17,20], the
evaluation involves comparing the number of predicted lanes to the number of
the annotated ones. These comparisons are not well suited for city-scale road
networks, which form a single connected component with thousands of loops.

In this paper, we focus specifically on metrics for evaluating connectivity
of road networks reconstructed from aerial images. Several metrics have been
developed for this purpose, and they can be classified into four main cate-
gories, depending on whether they are pixel-based, junction-based, path-based,
or subgraph-based. We now review these four classes of existing metrics and
argue that they all ignore particular type of errors.

2.1 Pixel-Based Metrics

Road delineation can be understood as foreground/background segmentation
problem. The quality of the segmentation can be evaluated in terms of the

precision P = |TP|
|PP| and recall R = |TP|

|AP| , where PP is the set of pixels pre-

dicted to be foreground, AP is the set of pixel labeled as foreground, and
TP = PP ∩ AP. When a single number is preferred, either the intersection-
over-union IoU = TP

PP∪AP , or the f1-score F1 = 2/( 1
P + 1

R ) is used.

Correctness/Completeness/Quality (CCQ). To account for the fact that the
position of the pixels estimated to be foreground might be slightly off, the defi-
nitions of precision and recall were relaxed in [32,29] to allow small shifts in pixel
location. correctness is the relaxed precision, completeness the relaxed recall, and
quality is the equivalent of intersection over union.

Discussion. CCQ is adequate to gauge segmentation quality but does not cap-
ture connectivity of the predicted road maps. This makes it insensitive to topo-
logical errors, for example, road breaks smaller than the allowed shift between the
annotation and the prediction. We demonstrate this insensitivity experimentally
in section 4.1. The indifference of the pixel-based metrics to connectivity vari-
ations inspired the creation of the path- and junction-based metrics, described
below.

2.2 Path-Based Metrics

The idea behind path-based metrics is that if two graphs are similar, so should
paths connecting any pair of their nodes via a sequence of edges. Edges that
appear in one graph and not in the other result in measurably different paths.
There are two main ways to measure such differences.

Too Long / Too Short (TLTS). In [31], it was proposed to compare the length
of the shortest path between randomly-chosen but corresponding pairs of nodes
in the predicted and ground-truth networks. Here, and in the metrics that we
describe below, the correspondences are found simply by randomly selecting a
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point in one graph and taking its closest point from the other graph. A path in
the predicted graph is classified as correct if its length is within 5% of that of the
path in the ground-truth graph, and as too-long, or too-short otherwise. A path
is marked infeasible if its end points are not connected in the other network. The
percentage of correct paths is used to assess the quality of a delineation and the
other percentages serve to characterize the errors.
Average Path Length Similarity (APLS). The alternative to counting too long/short
paths is aggregating path differences. This has been proposed first for evaluat-
ing road network reconstructions from GPS tracks [18,1] and, more recently,
for image-based reconstructions [12], in the form of the Average Path Length
Similarity score

1− 1

|P|
∑

(pgt,pest)∈P

min

{
1,
|l(pgt)− l(pest)|

l(pgt)

}
, (1)

where pgt is a ground-truth path, pest the corresponding predicted one and l(.)
denotes the path length. The set P is obtained by sampling pairs of points in
one graph, retrieving the corresponding pairs in the other graph, and computing
the shortest paths between them.

Discussion. TLTS and APLS are better at capturing topological differences
than pixel-based scores, but they suffer from major flaws. Since both metrics rely
on the comparison of the length of shortest paths, false positive roads that do
not alter the length of these are completely neglected. Moreover, since paths are
sampled independently, multiple paths from a graph can be compared to a single
path in the other graph. This makes the scores insensitive to the errors made by
predicting one road where many closely spaced roads exist and predicting more
than one road where there is just one, as shown in Fig. 1.

2.3 Junction-Based Metric (JUNCT)

The path-based metrics capture the topological similarity indirectly. A more
direct approach [5], is to compare the degree of corresponding nodes with at
least three incident edges, called junctions. The correspondences are established
greedily by matching closest nodes. For each ground-truth junction v that is
matched to a predicted junction u, the per-junction recall fv,correct is taken to
be the fraction of edges incident on v that are also captured around u. Similarly,
the false discovery rate — one minus precision — fu,error is taken to be the
fraction of edges incident on u that do not appear around v. For unmatched
junctions, fv,correct = 0 and fu,error = 1, respectively. These per-junction scores
are then aggregated

ncorrect =
∑
v∈V

fv,correct , nerror =
∑
u∈U

fu,error ,

Fcorrect =
ncorrect
|V|

, and Ferror =
nerror

nerror + ncorrect
,

where |V| is the number of ground-truth junctions.



Towards Reliable Evaluation of Reconstructed Road Networks 5

Discussion The main issue with JUNCT is that it only accounts for nodes with
three or more incident edges. This disregards what happens at road end points
and makes the metric insensitive to interruptions in predicted networks. In other
words, a predicted network where all the roads are broken in the middle still
receives a perfect score. Moreover, a node that lacks k − 2 out of its k incident
edges is penalized more than any other, because it is no longer considered a
junction. This amounts to saying that a road junction with only two correctly
predicted incident roads is completely misclassified, a conclusion that is hard
to justify. The top of Fig. 2 illustrates this problem: An edge is missing from a
junction with three incident edges, which results in ncorrect = 0

3 instead of 2
3 .

2.4 Subgraph-Based Metric (SUBG)

In [7], it is suggested to compare the sets of locations accessible by traveling
a predefined distance away from corresponding points in two graphs. To this
end, a starting location is randomly selected in the ground truth network, and
its closest point in the predicted network is identified. Then, local subgraphs
are extracted by a breadth-first exploration of the graphs away from the start-
ing locations. The computation of the score is based on spatial coincidence of
‘control points’ inserted at regular intervals to the subgraphs. A control point
is considered to be matched, or a true positive, if it lies sufficiently close to a
control point in the other network. Unmatched control points in the predicted,
and annotated subgraphs are treated as false positives and false negatives, re-
spectively. Sampling and matching of local subgraphs is repeated many times,
and precision and recall are computed from the total counts of matched and
unmatched control points.

Discussion As the starting point is always sampled from the ground truth net-
work, the false positive roads that are sufficiently far from any ground truth road
are not covered by control points. In consequence, SUBG is not sensitive to such
errors. Moreover, since multiple control points of the ground truth network can
be matched to the same control point in the prediction, errors consisting in
predicting just one instead of two closely spaced roads go unnoticed.

2.5 Summary

One might imagine that the metrics were deliberately designed to expose some
errors and suppress the others in the interest of some specific application. How-
ever, no trace of such intentions can be found in the original publications. All the
studied metrics were proposed for general-purpose evaluation of road network
reconstructions, their insensitivity was never reported before, and seems to be
an artifact of relaxing the underlying graph-matching problem to independent
comparison of junctions, paths, and subgraphs. In many cases, the insensitivity
is not immediately obvious from the design of the metric alone, and in section 4.1
we propose a benchmark dataset for exposing it. In section 3, we show that these
flaws can be removed by careful metric design.
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(a) The existing path length statistics TLTS, APLS.
Both sampled paths (green) and their matches (cyan)
overlap. As a result, the scores do not capture the differ-
ence between the networks.

(b) Our new path-based score (OPT-P). Paths do not
overlap and the score captures the difference between the
networks.

Fig. 1. A comparison of (a) the existing path-based statistics and (b) our new path
score. Three paths are sampled from the predicted network (overlayed in green), and
matched to the ground truth network (the matching chains are highlighted in cyan).
The unmatched parts of the paths are highlighted in red. Removed parts of the networks
are shown in dotted gray. See section 2.2 for the definition of the APLS and TLTS
and section 3.1 for OPT-P.

3 New Metrics

In Section 2, we identified weaknesses of existing metrics that make them in-
sensitive to whole classes of errors, such as producing unwarranted breaks and
spurious roads, or merging parallel but distinct roads. Here, we introduce new
metrics that are sensitive to all these errors.

3.1 Path-Based Metric (OPT-P)

In section 2.2 we argued that TLTS [31] and APLS [12] are insensitive to
false positive predictions that do not affect the length of the shortest paths, for
example, ones that run close to other predicted roads. We illustrate such a case in
the left part of Fig. 1. We therefore introduce a new path-based metric OPT-P,
not affected by this insensitivity. It involves computing RP , which can loosely
be interpreted as path recall, and PP , which plays the role of path precision.
In contrast to earlier metrics, we do not sample or match paths independently.
Instead, we ensure that no two paths sampled from a graph share the same edges,
and that any two sampled paths are matched to two disjoint sets of edges in the
other graph. Moreover, when matching a pair of paths, we not only compare
their lengths, as done in existing metrics, but also ensure that their trajectories
run close in the image. This makes PP sensitive to the types of false positive
road predictions that the TLTS and APLS miss.

More precisely, we developed an iterative path sampling and matching scheme.
To compute recall, we iteratively sample a path from the ground truth network
and match it to the predicted network. Using the match, we compute our mea-
sure of connectivity as described in the next paragraph. We then remove the
sampled path from the ground-truth network to ensure that no two paths share
the same edges. We also remove the matched edges from the predicted network
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(a) the existing junction score JUNCT (b) the new junction score OPT-J

Fig. 2. A comparison of the existing junction score (a) to our junction score (b).
Feature points are marked as black dots, matches in green and unmatched features in
red. For readability, we only consider the features on the horizontal lines, and assume
the vertical lines continue indefinitely. Candidate and actual edge matches are depicted
by hollow nodes. Unmatched hollow nodes are not penalized. See section 2.3 for the
definition of JUNCT and section 3.2 for the definition OPT-J.

in order to guarantee that no edge from the predicted network is matched to
two different paths. We iterate until one of the networks has no more edges.
Fig. 1 illustrates this process. Precision is computed similarly, but the roles of
the networks are exchanged.

Matching a path π to a graph is performed using the Viterbi algorithm, and
more details of this procedure can be found in the appendix. If possible, the path
is projected to a chain of connected graph nodes. If the whole path cannot be
matched to a single chain due to disconnections in the predicted graph, its sub-
paths are still matched to connected chains whenever possible. This matching
induces a partitioning of the path π into a set of segments S(π), such that each
s ∈ S(π) maps to a different chain. If the path π exists in the graph and has
no disconnections, S(π) contains only one segment. In case of disconnections
|S(π)| > 1 and |S(π)| = 0 if π does not exist in the graph.

To compute PP and RP , we use the matched segments S(π) to estimate
the probability that a sub-path of π, with end points selected randomly and
with uniform probability along π, is connected in the target network. The sub-
path is connected in the target network only if its both end-points lie on the

same path segment s. The probability of such event is Pπ =
∑

s∈S l(s)
2

l(π)2 , where

l(.) denotes path length. Note that, if the matched path is entirely connected,
then |S(π)| = 1, and this probability is Pπ = 1. When the matched path has
disconnections, |S(π)| > 1 and Pπ < 1 . We define path recall as the average of
these probabilities over all paths π ∈ Π sampled from the ground truth network
RP = 1

|Π|
∑
π∈Π Pπ. The path precision PP is computed according to the same

formula, but with paths sampled from the predicted network and matched to
the ground truth one.

3.2 Junction-Based Metric (OPT-J)

As discussed in section 2.3, the junction score JUNCT [5] is insensitive to
road interruptions and excessively penalizes junctions that lack k − 2 out of k
incident edges. To address these shortcomings, we propose a new junction score
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OPT− J, including the junction precision PJ and recall RJ . As for JUNCT,
computing OPT− J involves matching feature nodes in the two networks and
comparing the numbers of edges incident on them. Unlike in JUNCT, where
the set of features comprises only junctions – nodes with at least three incident
edges – we use both junctions and endpoints as features. Moreover, we enable
matching a feature of one graph not only to a feature of the other graph, but
also to any point on its edge. This gives our metric the desired sensitivity to
unwarranted road breaks and prevents excessively penalizing specific patterns of
missing edges. Fig. 2 illustrates the differences between JUNCT and OPT− J.

We denote a match by (i, j), where i belongs to the ground truth and j to
the predicted graph, and both are features, or one of them is a feature, and the
other is its closest point on an edge. We perform greedy matching with the cost
of a match cij = αdij + |oi − oj |, where oi is the number of edges incident on
i if i is a feature and by convention oi = 2 if i is a point on an edge. dij is the
distance between i and j. α is a parameter of the score. We only allow a feature
to be matched once, but we do not constrain the number of features matched
to a single edge. We only consider matches (i, j) such that i and j are within a
predefined small distance dmax.

We denote the set of matches M , the sets of unmatched ground truth fea-
tures by F−gt and the set of unmatched predicted features by F−est. We estimate
the number of true positive incident edges as TPJ =

∑
(i,j)∈M min{oi, oj}, the

number of predicted edges as PPJ =
∑

(i,j)∈M oj +
∑
j∈F−est

oj , and the num-

ber of ground truth edges as APJ =
∑

(i,j)∈M oi +
∑
i∈F−gt

oi. We compute the

precision and recall as PJ = TPJ

PPJ
and RJ = TPJ

APJ
.

3.3 Subgraph-Based Metric (OPT-G)

In section 2.4 we have exposed the lack of sensitivity of the local graph compari-
son SUBG [7] to false positive roads that are far away from ground truth roads
and to errors involving missing one of several closely spaced roads. To remove
this lack of sensitivity, we propose a new score OPT-G. Like SUBG, OPT-G
is based on comparing sets of graph locations accessible by traveling a short dis-
tance in the graph from a randomly selected starting point. To prevent distinct
roads that parallel each other closely from being matched to a single one in the
other graph, we force the matching to be one-to-one. In addition, unlike in the
old score, we sample the starting points both in the ground-truth and predicted
graphs, which makes the score sensitive to false positive, as shown in Fig. 3.

To compute the score, we iteratively sample a starting point in one of the
graphs. We then find its closest point in the other graph. Using breadth-first
graph traversal, we crop out subgraphs accessible by traveling a predefined dis-
tance from the starting points. Control points are inserted at equal intervals
during the traversal. We then perform a one-to-one matching of control points
from the two graphs by the Hungarian algorithm, with the cost of matching two
points equal to the Euclidean distance between them. Only points within a pre-
defined distance are matched. Calculation of the score is based on the number
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Fig. 3. The difference between the existing subgraph-based score SUBG and our
subgraph-based score OPT-G. A single starting point is shown in both the predicted
network (as filled blue circle) and the ground truth networks (as a filled green circle).
The networks are drawn with dashed gray and solid black lines, respectively. All the
control points in the ground truth network (hollow green circles) are within a matching
distance (visualized with light blue disks) from the control points in the predicted
network (hollow blue circles). This makes the existing score insensitive to the missing
road. In our score, the matching is one-to-one (visualized by light blue lines). In result,
some of the control points remain unmatched (marked in red), which gives the score
sensitivity to the missing road.

of matched and unmatched control points. We define subgraph-based precision
as PG = TPG

PPG
and subgraph-based recall as RG = TPG

APG
, where TPG is the total

number of matched control points, PPG is the number of control points in the
predicted graph and APG is the number of control points in the ground truth
graph.

4 Experiments

In this section, we first use synthetic data to compare the behavior of the current
and new performance metrics. We will show that current ones are insensitive to
certain types of errors, while ours capture all of them. We then evaluate all the
metrics on real data and use them to compare state-of-the-art road reconstruc-
tion methods.

4.1 Synthetic Data

We created a synthetic benchmark dataset from crops of road networks from [5].
Its purpose is to enable the analysis of the responses of the metrics to varying
numbers of errors of a single type, for different types of errors.

We formed the dataset by duplicating the selected crops to emulate pairs of
‘ground truth’ and ‘predicted’ networks. We then perturbed the graphs by intro-
ducing a controlled number of errors that are representative of those encountered
in practice.
– Interruptions: Unwarranted breaks in roads.
– Overconnections: Spurious additional roads connecting randomly selected

pairs of points.
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Fig. 4. Example pairs of road networks from the benchmark dataset.

– Perturbations: displacing graph nodes from their true locations without dis-
connecting the roads.

– Doubled roads: Spurious copies of road segments shifted slightly and con-
nected to the originals.

– Doubled roads-ground truth: Same as above, but the copies are added to the
ground-truth, to emulate roads missing from the prediction.

– False positives far away from true roads: To simulate them, we removed part
of the ground truth while keeping the prediction unchanged.

Fig. 4 depicts example graphs from our dataset. As shown in Fig. 7, similar
errors appear in real reconstructions. In Fig. 5, we plot the behavior of all the
metrics as a function of the number of perturbations. If a metric is sensitive to
a particular kind of error, the curve will exhibit a large slope. By contrast, if the
metric is insensitive to that kind of error, the curve will be flat. Note that the
curves for our new metrics are never flat, which indicates that are adequately
sensitive to all the kinds of errors listed above. Unfortunately, this cannot be
said of the existing metrics.

4.2 Real Data

We now turn to the recent road delineation algorithms, and analyze their pre-
dictions for the publicly available Roadtracer [5] and DeepGlobe [11] datasets.
To do so we used publicly available algorithms implementations, and ones whose
authors kindly shared with us the delineation results:
– Segmentation. Segmentation-based approach where the output probability

map is thresholded and skeletonized. We use the prediction provided in [5]
for the Roadtracer dataset and our own implementation of UNet [27] for
DeepGlobe.

– RoadTracer. Iterative graph construction where node locations are selected
by a CNN [5].

– Seg-Path. Unified approach to segmenting linear structures and classifying
potential connections. [24]

– DeepRoad. Image segmentation followed by post-processing focused at fixing
missing connections [21].
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Fig. 5. Sensitivity of the existing and the new scores to different types of errors. The
plots that exhibit lack of sensitivity are outlined in red. Our proposed metrics do not
exhibit any of such insensitivity. See section 4.1 for details. Best viewed in color.

– RCNNUNet. Recursive image segmentation with post-processing for graph
extraction [33].

– MultiBranch. A recursive architecture co-trained in road segmentation and
orientation estimation [6].

– LinkNet. An encoder-decoder architecture [8] co-trained in segmentation and
orientation estimation [6].
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Fig. 6. This work was inspired by the observation that existing metrics are inconsis-
tent. We compared road reconstruction algorithms in pairs, by visualizing the differ-
ences of their scores for each city of the RoadTracer test set. Bars extending to the
right express preference for the first delineation method and ones extending to the left
for the second. The results produced by our metrics (bottom) are far more consistent
than ones produced by existing metrics (top). While, for a single pair of methods, it
is possible to pick a triplet of existing metrics that give roughly consistent results, we
show in Fig. 8 that their correlation is much weaker than for our scores.

Comparing Reconstruction Methods. A performance measure is meant to be used
to compare methods and, ultimately, to decide which one is best. In this section,
we show that this is difficult to do using existing metrics because they tend to
return different rankings. By contrast, ours are far more consistent. To show
this, we performed the following experiment.

For each individual metric, we computed the differences of the scores it re-
turns for two different delineation methods in a specific city of the RoadTracer
dataset. These differences are depicted in Fig. 6 by colored bars that extend to
the left when the score of the first method is higher than that of the second and
to the right otherwise. It is almost impossible to discern a clear pattern at the
top of the figure where we plotted the bars corresponding to the existing metrics.
By contrast, our metrics deliver a far clearer picture.

A possible interpretation of this result is that some type of problems are en-
countered more often in specific cities. As the existing metrics are more sensitive
to some kinds of errors than others, that would explain the discrepancies. This
would not necessarily be an issue if the metrics were designed to measure differ-
ent, possibly uncorrelated, qualities of interest. However, they are typically used
as overall quality measures and to demonstrate the advantage of one method
over the others. In this context their inconsistency is an issue, and the greater
consistency of our proposed measures is a distinct advantage.
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Fig. 7. Crops of a road network of (left) Pittsburgh and (right) Montreal and their re-
constructions from aerial images. Left : Predictions by seg-path [24] and rcnn-unet [33].
Right : Predictions by roadtracer and segmentation both provided by [5] Bottom: Dif-
ferences of the metrics for the two reconstructions.
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Fig. 8. Analysis of the correlations. Left : A matrix of correlations of the scores com-
puted for the maps reconstructed by different methods on the roadtracer dataset. The
correlation coefficients of the old scores are outlined in green, the correlation coefficients
of the new scores in blue. Right : The average correlation of all possible existing score
triplets (blue bars) against the average correlation of the three new scores (dashed red
line). Our metrics show better correlation than the existing ones.

In Fig. 7, we visualize fragments of two predicted networks. The scores on the
bottom of the figure show the comparison by the existing scores is inconclusive.
As we have seen in the benchmark experiment, APLS and TLTS are insensitive
to overconnections therefore they positively react to overconnected graphs as
seg-path predictions. On the other hand, OPT-P, which is based on the same
principle, takes spurious roads into account and agree with the other metrics. In
term of cost of fixing the errors, an operator would spend more time removing
spurious roads from seg-path than by adding the missing connection in rcnn-unet.
More visual comparisons are provided in the supplementary material.

Correlation Analysis. In contrast to the consistency analysis we just discussed we
now turn to compare correlations between the various metrics. On the left side of
Fig. 8 we show the correlations between pairs of scores on the RoadTracer dataset
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existing scores new scores

CCQ TLTS APLS JUNCT SUBG OPT-P OPT-J OPT-G

�dataset corr. comp. qual. corr. 2l+2s Fcor Ferr f1 f1 pre. rec. f1 pre. rec. f1 f1

R
o
a
d

T
ra

ce
r Roadtracer [5] 0.681 0.615 0.478 0.422 0.174 0.595 0.763 0.129 0.812 0.710 0.597 0.458 0.519 0.801 0.758 0.779 0.683

Segmentation [5] 0.775 0.649 0.546 0.346 0.190 0.625 0.728 0.137 0.782 0.704 0.645 0.488 0.556 0.820 0.760 0.788 0.690
Seg-path [24] 0.647 0.755 0.535 0.483 0.137 0.678 0.925 0.355 0.754 0.688 0.443 0.581 0.503 0.649 0.882 0.748 0.662
DeepRoadMapper [21] 0.842 0.474 0.435 0.071 0.235 0.243 0.422 0.203 0.514 0.477 0.651 0.271 0.383 0.822 0.524 0.640 0.482
RCNN-Unet [33] 0.830 0.719 0.626 0.291 0.353 0.594 0.723 0.120 0.790 0.729 0.672 0.510 0.580 0.827 0.759 0.792 0.707

D
G

lo
b

e LinkNet [6] 0.778 0.803 0.653 0.632 0.107 0.660 0.682 0.234 0.722 0.819 0.727 0.761 0.744 0.782 0.793 0.787 0.789
MultiBranch [6] 0.804 0.826 0.687 0.684 0.101 0.699 0.734 0.185 0.773 0.843 0.740 0.792 0.765 0.805 0.810 0.807 0.813
Segmentation [27] 0.545 0.841 0.495 0.720 0.138 0.618 0.941 0.542 0.616 0.787 0.520 0.859 0.648 0.582 0.872 0.698 0.724

Table 1. Values of the existing and the new scores computed for road networks
reconstructions by different methods on the RoadTracer and DeepGlobe datasets. Our
scores rank the methods much more consistently.

and on the right side we compare the average correlation of all possible triplets
of existing metrics to that of our three new scores. To evaluate the consistency
of a score triplet, we average correlations for all pairs within the triplet. Either
way, it can be seen that our metrics are far more correlated among themselves
than any pair of triplet of the other ones.

Comparing State-of-the-Art Methods. We now use both existing and new metrics
to compare state-of-the-art road reconstruction methods. As can be seen in Ta-
ble 1, on the RoadTracer dataset, existing metrics favor RoadTracer, RCNNUNet,
or Seg-Path. By contrast, the proposed metrics consistently point to RCNNUNet.
Moreover, all of them rank Segmentation second and Seg-Path and RoadTracer
compete for the third place with very similar scores in all our metrics. As seen in
the bottom part of Table 1 this also holds for the DeepGlobe data. The existing
scores are less inconsistent than for the RoadTracer dataset, with TLTS favoring
segmentation while other scores prefer MultiBranch, but our metrics all agree
on MultiBranch. Note also that precision- and recall-related scores for OPT-J
and OPT-P show recurring patterns whereas CCQ and JUNCT do not.

5 Conclusion

We were surprised to discover that all the existing scores for evaluation of road
network reconstructions suffer from design faults that make them insensitive to
particular types of errors. Our experiments show that the concerns this rises
about the reliability of evaluation by means of these scores are justifiable –
one could overturn the results of a study by carefully selecting the score used
for evaluation. We have demonstrated that correcting the flaws of the existing
metrics leads to improved consistency – our three new metrics are much more
coherent than the old ones, despite the fact that each of them is computed in a
different way.

We have focused on road network reconstructions, but the proposed scores
can be used for comparing any curvilinear networks.
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