
Learning to Cluster under Domain Shift:
Supplementary Material
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1 Additional Implementation Details

We use a ResNet-18 backbone for all the experiments and report the hyperpa-
rameters used for each in Table 1. For all datasets we compose T using ran-
dom crops, random horizontal flips and random hue, saturation and brightness
changes. The input resolution to the network is 64×64px and on our GPUS with
8GB of memory allows the use of a maximum batch size of 162 images. The
value of α is a function of the number of ground truth classes and the number
of source domains in each dataset. A larger number of ground truth classes C
causes a larger probability matrix Pcc′ to be estimated, while a higher number
of source domains empirically causes more instability, probably due to a higher
variance of features despite alignment. In particular, the PACS [3] dataset with
C = 7 does not suffer much from training instability problems, so a value of
α = 0.7 is chosen. On the other hand, the Office31 [4] and the Office-Home [5]
datasets with respectively C = 31 and C = 65 pose more stability problems. As
we note in our Ablation Study on the main paper, a value of α = 0.1 produces
the best results on the Office31 dataset when training on all the dataset domains.
Since in the standard experimental setting, however, we consider one domain as
the target and train on one less source domain, we decide to use a higher value
of α = 0.2. The number of classes produced by the overclustering head Coc is
chosen following [2] which obtains the best results when choosing a value from
5 to 7 times C. Note that on the Office-Home dataset, due to the high number
of ground truth classes, a factor of 2 is used. We use the Adam optimizer with
learning rate 10−4 in all the experiments.

2 Additional Details about Baselines

As stated in the main paper, we make use of the IIC [2] and DeepCluster [1]
algorithms as baselines for the evaluation of our method. With regards to the
IIC baseline, we make use of the same ResNet-18 backbone and the same hyper-
parameters reported in Table 1 to guarantee fairness in the evaluation. Note that
we do not employ the α-smoothing strategy in the IIC baseline in order to follow
their exact implementation. For DeepCluster, we use a ResNet-18 backbone and
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Table 1: Hyperparameter values used during the experiments. s denotes the num-
ber of times each head is replicated to improve training stability, Coc represents
the number of output classes used in the auxiliary overclustering head.

Dataset Task BS α s C Coc

PACS C,P,S→A 162 0.7 5 7 49
PACS A,P,S→C 162 0.7 5 7 49
PACS A,C,S→P 162 0.7 5 7 49
PACS A,C,P→S 162 0.7 5 7 49

Office31 D,W→A 162 0.2 5 31 155
Office31 A,W→D 162 0.2 5 31 155
Office31 A,D→W 162 0.2 5 31 155

Office-Home C,P,R→A 162 0.2 5 65 130
Office-Home A,P,R→C 162 0.2 5 65 130
Office-Home A,C,R→P 162 0.2 5 65 130
Office-Home A,C,P→R 162 0.2 5 65 130

train it using an SGD optimizer with learning rate 10−2 for all the experiments.
Despite [1] suggests the use of a number of clusters for self-supervision during
training equal to 10 times the number of ground truth classes, we employed
smaller factors due to the small number of samples in the datasets which does
not allow the intermediate K-means procedure to work effectively with a high
number of clusters.

3 Additional Target Adaptation Experimental Results

In this section, we propose to further investigate the effectiveness of the ACIDS
target domain adaptation procedure. We perform training on the source domains
and, starting from the same network parameters, we perform two different target
adaptation procedures. The first uses the ACIDS adaptation procedure described
in the main paper, the second performs adaptation using the same mutual infor-
mation loss used at training time, computed on the target domain. In order to
illustrate the stable convergence of the proposed model, we show in Fig.1 the evo-
lution of the accuracy on the target domain while performing adaptation on two
domains of the PACS dataset. The proposed target adaptation procedure leads
to faster convergence and higher accuracy on the Cartoon domain (Fig.1-left),
while it produces no appreciable effects on the Sketch domain (Fig.1-right).

4 Additional Parameter Ablation

We perform an evaluation of the effect of the α parameter described in Sec.3.3
on the main paper. Since it would be computationally expensive to run separate
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Fig. 1: Evolution of accuracy on the target domain during the target adaptation
phase using Cartoon (left) and Sketch (right) as target domains. The solid line
refers to the ACIDS target adaptation procedure, the dashed one refers to adap-
tation using the same mutual information maximization procedure used during
training. Time on the x-axis is expressed in thousands of optimization steps.
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Fig. 2: Ablation of the α parameter on the Office 31 dataset. Labels express the
source domain (A, D or W). Results expressed in accuracy (%).

training processes for every value of α and every domain, we adopt an evalua-
tion protocol where we perform training without target adaptation, considering
every domain as a source domain. For these experiments, we choose the Office31
dataset that is especially challenging in terms of optimization because of its high
number of classes C.

Fig.2 reports the numerical evaluation results. Without using our stabiliza-
tion method (α = 1.0), we obtain degraded results due to noise in the estimation
of Pcc′ . Lowering the value to α = 0.1 improves the estimation, achieving +5.8%
average accuracy with respect to α = 0. When further decreasing the value, how-
ever, accuracy starts to decrease. The estimation, in this case, becomes incorrect
because it is influenced by network parameters that differ too much from the
current ones.
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Fig. 3: t-SNE visualizations of the feature space extracted before the classifica-
tion heads for the proposed method (left) and the same method without the
mutual information loss for feature alignment Eq.(4) on the main paper (right),
using PACS Cartoon as the target domain. Colors represent the different target
domains. While in the proposed method the distributions of the domains align
(left), when the feature alignment loss is removed (right) the method produces
clusters based on the style rather than the content information (best viewed in
color).

5 Feature Alignment via Mutual Information Qualitative
Evaluation

In Fig.3 we report a qualitative analysis of the effect of the proposed mutual
information minimization procedure for feature alignment on the feature space.
The analysis shows that without the proposed procedure, the method produces
clusters based on style rather than the image semantics, while the desired domain
alignment is obtained when employing the proposed method.

6 Qualitative Clustering Results

In this section, we present qualitative clustering results produced by our method.
Each cluster visualization corresponds to the results produced by the model
after adaptation to the corresponding target domain. A visual inspection of the
produced clusters reveals that classes with the most distinctive features such as
“Giraffe” in PACS (Fig.6) or “Bike” in Office31 (Fig.8) tend to be clustered best,
while classes with shapes similar to others tend to be confused like the “Desktop
Computer” class in Office31. (Fig.12).
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Fig. 4: Clusters corresponding to the PACS “Dog” class from Art, Cartoon,
Photo and Sketch domains.

Fig. 5: Clusters corresponding to the PACS “Elephant” class from Art, Cartoon,
Photo and Sketch domains.

Fig. 6: Clusters corresponding to the PACS “Giraffe” class from Art, Cartoon,
Photo and Sketch domains.

Fig. 7: Clusters corresponding to the Office31 “Back Pack” class from Amazon,
DSLR and Webcam domains.

Fig. 8: Clusters corresponding to the Office31 “Bike” class from Amazon, DSLR
and Webcam domains.
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Fig. 9: Clusters corresponding to the Office31 “Bookshelf” class from Amazon,
DSLR and Webcam domains.

Fig. 10: Clusters corresponding to the Office31 “Calculator” class from Amazon,
DSLR and Webcam domains.

Fig. 11: Clusters corresponding to the Office31 “Desk Lamp” class from Amazon,
DSLR and Webcam domains.

Fig. 12: Clusters corresponding to the Office31 “Desktop Computer” class from
Amazon, DSLR and Webcam domains.
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