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A Remark on Time Cost of PCA

The extra cost in our algorithm mainly comes from computation of PCA on the
dataset. PCA on CIFAR10 is very fast. PCA on datasets with higher dimension
would be slower, but thanks to recently developed modern randomized algorithm
such as [1, 3, 5], the time complexity of approximate PCA could be reduced from
O(D3) to O(D · d2), where D is the order of matrix and d is the dimension of
principal subspace. We find that PCA for ImageNet can be computed within
several hours if we resize the images to 112 × 112 (the approximation does not
affect much), and PCA for CASIA is faster. Another good news is that for a
dataset we only need to conduct PCA once and reuse in multiple runs. Mean-
while, the PCA results can be shared online. Therefore, our algorithm brings
little extra cost to training procedure.

B Evaluation under `2 Attack in Sec. 5.2

In this section, we evaluate the robustness of models in Table 3 under `2 attack.
We apply the `2-BIM attack [2] with 10/50 iterations under perturbation bounds
ε = 1× 255, 2× 255, 3× 255. We use step size 0.25× 255, 0.375× 255, 0.5× 255
respectively for ε = 1, 2, 3 in BIM10, and use step size 0.25 × 255 for all ε in
BIM50. We note that the AT-based models here we used are still trained against
`∞ attacks, but they are still rather robust against `2 attacks [4].

We show the results in Table 4. The results are similar to the case under `∞
attacks, but we can see that relatively our proposed MMC-P method performs
better than in Table 3. For example, in BIM10 targeted attacks, the performance
of MMC-P is close to or slightly surpasses that of AT-based methods. A possible
explanation is that our theoretical framework of gradient leaking is more suited
to the `2 threat model.
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Attack Training Method
Clean Untargeted Targeted
ε = 0 1 2 3 1 2 3

BIM10

SCE 93.5 4.6 4.6 4.5 0.0 0.0 0.0
MMC 92.5 30.9 21.7 15.9 47.6 37.9 30.3

MMC-P-500 90.3 43.4 35.6 29.5 56.4 49.9 43.9
MMC-P-300 87.9 43.3 35.5 30.4 54.0 47.5 42.3

SCE-AT 84.0 38.3 13.4 9.9 59.3 19.4 4.4
MMC-AT 83.3 46.9 37.2 34.8 56.9 46.1 41.9

BIM50

SCE 93.5 4.6 4.6 4.6 0.0 0.0 0.0
MMC 92.5 10.4 8.4 8.2 25.4 20.0 20.0

MMC-P-500 90.3 24.8 16.0 15.3 39.2 30.8 28.9
MMC-P-300 87.9 28.8 21.0 19.7 39.3 30.6 29.2

SCE-AT 84.0 35.1 11.6 9.5 56.5 12.2 1.0
MMC-AT 83.3 42.8 33.0 30.6 54.3 38.9 36.9

Table 4: The experimental results using MMC loss under `2 attacks on CIFAR10.
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Fig. 5: Average PCA proportion of the gradient on CASIA.
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C Results on CASIA-WebFace Corresponding to Fig. 4

In this section, we show the experimental results corresponding to Fig. 4 on the
CASIA-WebFace dataset. CASIA-WebFace (abbreviated as CASIA below) is a
dataset for face recognition, and we believe it has rather different properties
of data manifold from that of CIFAR10. Its cleaned version includes 455,594
images with 10,575 classes. In our experiments, each image is preprocessed to
112×112×3, and hence D = 37632. We adopt ResNet-50 as the backbone model
with the ordinary linear head layer. We show the curve of αd vs. d at the last
epoch in Fig. 5(a), and the curve of αd vs. the training epochs for d = 600, 1200
and 2000 in Fig. 5(b)1.

From Fig. 5(a), we can see that the result of CASIA is similar to that of
CIFAR10, in the sense that the component of gradients in the PCA principal
subspace (denoted ’grad’ in the figure legend) is far less than the component
of images in the same subspace (denoted ’images’ in the legend), and the PCA
components of the gradient (’grad’) and the adversarial perturbation (’pert’) is
almost identical.

The analysis on Fig. 5(b) is similar to the case of CIFAR10. The main differ-
ence is that on CASIA, αd keeps increasing for several epochs (instead of only
one epoch on CIFAR10) before decreasing. It suggests that the model takes a
longer time to complete the ”burn-in” process of classification since the CASIA
dataset is much larger than CIFAR10. In the remaining epochs, αd keeps de-
creasing, which is consistent with the results of CIFAR10, implying that further
training aggravates gradient leaking.

D Results on CASIA-WebFace Corresponding to Table 2

In this section, we show the experimental results corresponding to Table 2 on the
CASIA-WebFace dataset. The experimental settings are the same as in Sec. C
(dataset and model) and in Sec. 5.1 (training and attack method), except that
we adopt m = 15 here for the ‘noise’ method, and we did not perform adversarial
training for comparison due to the large scale of CASIA dataset. The results are
shown in Table 5, which are consistent with the results in Table 2 and prove the
effectiveness of our proposed defense.

E The Data Poisoning Experiment

In Section 3.2, we mentioned that we performed a data poisoning experiment
on CIFAR10 to verify the hypothesis: In the learning procedure, the classifier
would rely on the most discriminative dimensions which may be small-scale but

∗Equal contribution. †Corresponding author.
1 In CASIA, PCA with d = 600, 1200 and 2000 preserve 96.56%, 98.22% and 99.01%

of the energy of the image dataset respectively.
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Table 5: CASIA results of the ResNet-50 model. We show the mean/median
perturbation norm in the ’Pert’ column.

Method Err (%) Grad α600 α1200 Pert

ord 14.86 0.061 0.102 0.226 0.623/0.618
pca2000 17.67 0.041 0.363 0.656 0.997/0.989
noise2000 18.53 0.037 0.448 0.728 1.119/1.115
pca1200 20.94 0.034 0.529 0.756 1.239/1.205
noise1200 22.87 0.033 0.633 0.791 1.410/1.401

linear separable. In this section we introduce the design of the data poisoning
experiment and show the results.

We choose the PCA eigenvectors as the basis in the image space, and refer
to the ith dimension as the direction of the eigenvector with the ith largest
eigenvalue. For each data point we erase the components of the ith dimension
for all i ≥ 800, and set the component of the (800 + y)th dimension to c where
y is the label of the data point, and c is chosen such that the variance of the
(800 + y)th dimension after such modification is the same as before. Basically,
we manually create some small-scale features that is strongly correlated with the
label. Fig. 6 shows the curve of αd versus d in the data poisoning setting. We
find that apart from utilizing the created features, the neural networks ignore
the large-scale features of the first 800 dimensions nearly completely.
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Fig. 6: CIFAR10 PCA proportion at Epoch 190 in the data poisoning experi-
ment, where ’dense’ and ’wide’ refers to two network architectures, ’ord’ refers
to ordinary training and ’poison 800’ refers to the method used in the data poi-
soning experiment. We could see that the gradient proportion has a step-up at
dimension 800.
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F Visualization of the PCA Subspace

F.1 Visualization of the Eigenvectors

To show what the large-scale features and small-scale features are like, we vi-
sualize the PCA eigenvectors corresponding to the 100 largest eigenvalues on
the three datasets (CIFAR10, ImageNet and CASIA) mentioned in the paper
(CASIA is an abbreviation for CASIA-WebFace). We can see some interesting
properties among them. For example, roughly speaking, the scale in the dataset
(i.e., eigenvalue) of each feature is negatively related to its frequency when seen
as an image.

(a) CIFAR10 (b) ImageNet (c) CASIA

Fig. 7: Visualization of PCA eigenvectors corresponding to the 100 largest eigen-
values.

F.2 Visualization of the Reconstruction Results

The subspace spanned by {v1, v2, ..., vd} is refered to as the PCA (principal)

subspace. The projection of x to the PCA subspace is
∑d

i=1〈x, vi〉vi, which is
called its reconstruction. We show an example of the reconstruction result for
each of the three datasets (CIFAR10, ImageNet and CASIA) in Fig. 8 for some
choices of d. With a relatively small d such that d� D, the reconstruction could
be rather close to the original image.

(a) CIFAR10 (b) ImageNet (c) CASIA

Fig. 8: Reconstruction results, (a) a CIFAR10 image example and its 300, 800
dim main component reconstruction, (b) an ImageNet example and its 400,
1241, 6351 dim reconstruction, (c) a CASIA example and its 600, 1200, 2000
dim reconstruction.
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G More details on the PCA components of ImageNet
model gradients

Fig. 9 shows more details regarding the gradients of pretrained models on Ima-
geNet listed in Table 1. Specifically, we define

βd(g) =
(g>vd)2

‖g‖22
= αd(g)− αd−1(g)

as the (normalized) component of g along the dth eigenvector (sorted according
to descending eigenvalues). Similarly, we define the average gradient component
over the dataset as βd = αd − αd−1. Then a larger βd shows the preference of
the model for the corresponding feature (the dth eigenvector). Fig. 9 plots the
value of βd versus d for the 8 models. We only plot the first 5000 components
for clarity; βd for d > 5000 decreases when d increases.

We can see that for most of the models, as d increases, βd first increases
before decreasing (the same phenomenon occurs in CIFAR10 and CASIA). This
is an intriguing property of neural networks, since by Fig. 7, the features along
vd when d ∼ 100 should be rather useful for classification, but in fact they are
not well utilized by the model. Such phenomenon is another evidence supporting
our gradient leaking conjecture in the sense that the classification model tends to
underutilize the features along the data manifold. By contrast, the ’iat’ and ’iat-
den’ models provided by the authors of [6], which have experienced sufficient
adversarial training and are the most robust among the 8 ImageNet models,
show different properties in terms of gradient components. Basically, for these
two models, βd monotonically decreases as d increases, which suggests that little
gradient leaking is one of the properties of an ideal robust model.
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Fig. 9: PCA components for different models on ImageNet. To measure the rel-
ative scale of how a gradient vector lies in or out of specific linear subspace, we
square its inner product with basis vector.
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